Articles | Volume 16, issue 6
https://doi.org/10.5194/hess-16-1709-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-16-1709-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Improving runoff estimates from regional climate models: a performance analysis in Spain
D. González-Zeas
Department of Hydraulic and Energy Engineering, Technical University of Madrid, Spain
L. Garrote
Department of Hydraulic and Energy Engineering, Technical University of Madrid, Spain
A. Iglesias
Department of Agricultural Economics and Social Sciences, Technical University of Madrid, Spain
A. Sordo-Ward
Department of Hydraulic and Energy Engineering, Technical University of Madrid, Spain
Related subject area
Subject: Global hydrology | Techniques and Approaches: Uncertainty analysis
Leveraging multi-variable observations to reduce and quantify the output uncertainty of a global hydrological model: evaluation of three ensemble-based approaches for the Mississippi River basin
Information content of soil hydrology in a west Amazon watershed as informed by GRACE
Diagnostic evaluation of river discharge into the Arctic Ocean and its impact on oceanic volume transports
The 63-year changes in annual streamflow volumes across Europe with a focus on the Mediterranean basin
Multivariable evaluation of land surface processes in forced and coupled modes reveals new error sources to the simulated water cycle in the IPSL (Institute Pierre Simon Laplace) climate model
Implications of model selection: a comparison of publicly available, conterminous US-extent hydrologic component estimates
Historical and future changes in global flood magnitude – evidence from a model–observation investigation
A global-scale evaluation of extreme event uncertainty in the eartH2Observe project
Assessment of precipitation error propagation in multi-model global water resource reanalysis
The potential of global reanalysis datasets in identifying flood events in Southern Africa
Hydrological assessment of atmospheric forcing uncertainty in the Euro-Mediterranean area using a land surface model
Global change in streamflow extremes under climate change over the 21st century
Have precipitation extremes and annual totals been increasing in the world's dry regions over the last 60 years?
Sensitivity of future continental United States water deficit projections to general circulation models, the evapotranspiration estimation method, and the greenhouse gas emission scenario
Variations of global and continental water balance components as impacted by climate forcing uncertainty and human water use
Evaluating uncertainty in estimates of soil moisture memory with a reverse ensemble approach
Flood and drought hydrologic monitoring: the role of model parameter uncertainty
Sensitivity of simulated global-scale freshwater fluxes and storages to input data, hydrological model structure, human water use and calibration
Climate change impacts on runoff in West Africa: a review
Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis
Disinformative data in large-scale hydrological modelling
The impact of climate mitigation on projections of future drought
Calibration and evaluation of a semi-distributed watershed model of Sub-Saharan Africa using GRACE data
Monitoring and quantifying future climate projections of dryness and wetness extremes: SPI bias
A comparative analysis of projected impacts of climate change on river runoff from global and catchment-scale hydrological models
Error characterisation of global active and passive microwave soil moisture datasets
Assessment of soil moisture fields from imperfect climate models with uncertain satellite observations
Petra Döll, Howlader Mohammad Mehedi Hasan, Kerstin Schulze, Helena Gerdener, Lara Börger, Somayeh Shadkam, Sebastian Ackermann, Seyed-Mohammad Hosseini-Moghari, Hannes Müller Schmied, Andreas Güntner, and Jürgen Kusche
Hydrol. Earth Syst. Sci., 28, 2259–2295, https://doi.org/10.5194/hess-28-2259-2024, https://doi.org/10.5194/hess-28-2259-2024, 2024
Short summary
Short summary
Currently, global hydrological models do not benefit from observations of model output variables to reduce and quantify model output uncertainty. For the Mississippi River basin, we explored three approaches for using both streamflow and total water storage anomaly observations to adjust the parameter sets in a global hydrological model. We developed a method for considering the observation uncertainties to quantify the uncertainty of model output and provide recommendations.
Elias C. Massoud, A. Anthony Bloom, Marcos Longo, John T. Reager, Paul A. Levine, and John R. Worden
Hydrol. Earth Syst. Sci., 26, 1407–1423, https://doi.org/10.5194/hess-26-1407-2022, https://doi.org/10.5194/hess-26-1407-2022, 2022
Short summary
Short summary
The water balance on river basin scales depends on a number of soil physical processes. Gaining information on these quantities using observations is a key step toward improving the skill of land surface hydrology models. In this study, we use data from the Gravity Recovery and Climate Experiment (NASA-GRACE) to inform and constrain these hydrologic processes. We show that our model is able to simulate the land hydrologic cycle for a watershed in the Amazon from January 2003 to December 2012.
Susanna Winkelbauer, Michael Mayer, Vanessa Seitner, Ervin Zsoter, Hao Zuo, and Leopold Haimberger
Hydrol. Earth Syst. Sci., 26, 279–304, https://doi.org/10.5194/hess-26-279-2022, https://doi.org/10.5194/hess-26-279-2022, 2022
Short summary
Short summary
We evaluate Arctic river discharge using in situ observations and state-of-the-art reanalyses, inter alia the most recent Global Flood Awareness System (GloFAS) river discharge reanalysis version 3.1. Furthermore, we combine reanalysis data, in situ observations, ocean reanalyses, and satellite data and use a Lagrangian optimization scheme to close the Arctic's volume budget on annual and seasonal scales, resulting in one reliable and up-to-date estimate of every volume budget term.
Daniele Masseroni, Stefania Camici, Alessio Cislaghi, Giorgio Vacchiano, Christian Massari, and Luca Brocca
Hydrol. Earth Syst. Sci., 25, 5589–5601, https://doi.org/10.5194/hess-25-5589-2021, https://doi.org/10.5194/hess-25-5589-2021, 2021
Short summary
Short summary
We evaluate 63 years of changes in annual streamflow volume across Europe, using a data set of more than 3000 stations, with a special focus on the Mediterranean basin. The results show decreasing (increasing) volumes in the southern (northern) regions. These trends are strongly consistent with the changes in temperature and precipitation.
Hiroki Mizuochi, Agnès Ducharne, Frédérique Cheruy, Josefine Ghattas, Amen Al-Yaari, Jean-Pierre Wigneron, Vladislav Bastrikov, Philippe Peylin, Fabienne Maignan, and Nicolas Vuichard
Hydrol. Earth Syst. Sci., 25, 2199–2221, https://doi.org/10.5194/hess-25-2199-2021, https://doi.org/10.5194/hess-25-2199-2021, 2021
Samuel Saxe, William Farmer, Jessica Driscoll, and Terri S. Hogue
Hydrol. Earth Syst. Sci., 25, 1529–1568, https://doi.org/10.5194/hess-25-1529-2021, https://doi.org/10.5194/hess-25-1529-2021, 2021
Short summary
Short summary
We compare simulated values from 47 models estimating surface water over the USA. Results show that model uncertainty is substantial over much of the conterminous USA and especially high in the west. Applying the studied models to a simple water accounting equation shows that model selection can significantly affect research results. This paper concludes that multimodel ensembles help to best represent uncertainty in conclusions and suggest targeted research efforts in arid regions.
Hong Xuan Do, Fang Zhao, Seth Westra, Michael Leonard, Lukas Gudmundsson, Julien Eric Stanislas Boulange, Jinfeng Chang, Philippe Ciais, Dieter Gerten, Simon N. Gosling, Hannes Müller Schmied, Tobias Stacke, Camelia-Eliza Telteu, and Yoshihide Wada
Hydrol. Earth Syst. Sci., 24, 1543–1564, https://doi.org/10.5194/hess-24-1543-2020, https://doi.org/10.5194/hess-24-1543-2020, 2020
Short summary
Short summary
We presented a global comparison between observed and simulated trends in a flood index over the 1971–2005 period using the Global Streamflow Indices and Metadata archive and six global hydrological models available through The Inter-Sectoral Impact Model Intercomparison Project. Streamflow simulations over 2006–2099 period robustly project high flood hazard in several regions. These high-flood-risk areas, however, are under-sampled by the current global streamflow databases.
Toby R. Marthews, Eleanor M. Blyth, Alberto Martínez-de la Torre, and Ted I. E. Veldkamp
Hydrol. Earth Syst. Sci., 24, 75–92, https://doi.org/10.5194/hess-24-75-2020, https://doi.org/10.5194/hess-24-75-2020, 2020
Short summary
Short summary
Climate change impact modellers can only act on predictions of the occurrence of an extreme event in the Earth system if they know the uncertainty in that prediction and how uncertainty is attributable to different model components. Using eartH2Observe data, we quantify the balance between different sources of uncertainty in global evapotranspiration and runoff, making a crucial contribution to understanding the spatial distribution of water resources allocation deficiencies.
Md Abul Ehsan Bhuiyan, Efthymios I. Nikolopoulos, Emmanouil N. Anagnostou, Jan Polcher, Clément Albergel, Emanuel Dutra, Gabriel Fink, Alberto Martínez-de la Torre, and Simon Munier
Hydrol. Earth Syst. Sci., 23, 1973–1994, https://doi.org/10.5194/hess-23-1973-2019, https://doi.org/10.5194/hess-23-1973-2019, 2019
Short summary
Short summary
This study investigates the propagation of precipitation uncertainty, and its interaction with hydrologic modeling, in global water resource reanalysis. Analysis is based on ensemble hydrologic simulations for a period of 11 years based on six global hydrologic models and five precipitation datasets. Results show that uncertainties in the model simulations are attributed to both uncertainty in precipitation forcing and the model structure.
Gaby J. Gründemann, Micha Werner, and Ted I. E. Veldkamp
Hydrol. Earth Syst. Sci., 22, 4667–4683, https://doi.org/10.5194/hess-22-4667-2018, https://doi.org/10.5194/hess-22-4667-2018, 2018
Short summary
Short summary
Flooding in vulnerable and data-sparse regions such as the Limpopo basin in Southern Africa is a key concern. Data available to local flood managers are often limited, inconsistent or asymmetrically distributed. We demonstrate that freely available global datasets are well suited to provide essential information. Despite the poor performance of simulated discharges, these datasets hold potential in identifying damaging flood events, particularly for higher-resolution datasets and larger basins.
Emiliano Gelati, Bertrand Decharme, Jean-Christophe Calvet, Marie Minvielle, Jan Polcher, David Fairbairn, and Graham P. Weedon
Hydrol. Earth Syst. Sci., 22, 2091–2115, https://doi.org/10.5194/hess-22-2091-2018, https://doi.org/10.5194/hess-22-2091-2018, 2018
Short summary
Short summary
We compared land surface model simulations forced by several meteorological datasets with observations over the Euro-Mediterranean area, for the 1979–2012 period. Precipitation was the most uncertain forcing variable. The impacts of forcing uncertainty were larger on the mean and standard deviation rather than the timing, shape and inter-annual variability of simulated discharge. Simulated leaf area index and surface soil moisture were relatively insensitive to these uncertainties.
Behzad Asadieh and Nir Y. Krakauer
Hydrol. Earth Syst. Sci., 21, 5863–5874, https://doi.org/10.5194/hess-21-5863-2017, https://doi.org/10.5194/hess-21-5863-2017, 2017
Short summary
Short summary
Multi-model analysis of global streamflow extremes for the 20th and 21st centuries under two warming scenarios is performed. About 37 and 43 % of global land areas show potential for increases in flood and drought events. Nearly 10 % of global land areas, holding around 30 % of world’s population, reflect a potentially worsening hazard of flood and drought. A significant increase in streamflow of the regions near and above the Arctic Circle, and decrease in subtropical arid areas, is projected.
Sebastian Sippel, Jakob Zscheischler, Martin Heimann, Holger Lange, Miguel D. Mahecha, Geert Jan van Oldenborgh, Friederike E. L. Otto, and Markus Reichstein
Hydrol. Earth Syst. Sci., 21, 441–458, https://doi.org/10.5194/hess-21-441-2017, https://doi.org/10.5194/hess-21-441-2017, 2017
Short summary
Short summary
The paper re-investigates the question whether observed precipitation extremes and annual totals have been increasing in the world's dry regions over the last 60 years. Despite recently postulated increasing trends, we demonstrate that large uncertainties prevail due to (1) the choice of dryness definition and (2) statistical data processing. In fact, we find only minor (and only some significant) increases if (1) dryness is based on aridity and (2) statistical artefacts are accounted for.
Seungwoo Chang, Wendy D. Graham, Syewoon Hwang, and Rafael Muñoz-Carpena
Hydrol. Earth Syst. Sci., 20, 3245–3261, https://doi.org/10.5194/hess-20-3245-2016, https://doi.org/10.5194/hess-20-3245-2016, 2016
Short summary
Short summary
Projecting water deficit depends on how researchers combine possible future climate scenarios such as general circulation models (GCMs), evapotranspiration estimation method (ET), and greenhouse gas emission scenarios. Using global sensitivity analysis, we found the relative contribution of each of these factors to projecting future water deficit and the choice of ET estimation method are as important as the choice of GCM, and greenhouse gas emission scenario is less influential than the others.
Hannes Müller Schmied, Linda Adam, Stephanie Eisner, Gabriel Fink, Martina Flörke, Hyungjun Kim, Taikan Oki, Felix Theodor Portmann, Robert Reinecke, Claudia Riedel, Qi Song, Jing Zhang, and Petra Döll
Hydrol. Earth Syst. Sci., 20, 2877–2898, https://doi.org/10.5194/hess-20-2877-2016, https://doi.org/10.5194/hess-20-2877-2016, 2016
Short summary
Short summary
The assessment of water balance components of the global land surface by means of hydrological models is affected by large uncertainties, in particular related to meteorological forcing. We analyze the effect of five state-of-the-art forcings on water balance components at different spatial and temporal scales modeled with WaterGAP. Furthermore, the dominant effect (precipitation/human alteration) for long-term changes in river discharge is assessed.
Dave MacLeod, Hannah Cloke, Florian Pappenberger, and Antje Weisheimer
Hydrol. Earth Syst. Sci., 20, 2737–2743, https://doi.org/10.5194/hess-20-2737-2016, https://doi.org/10.5194/hess-20-2737-2016, 2016
Short summary
Short summary
Soil moisture memory is a key aspect of seasonal climate predictions, through feedback between the land surface and the atmosphere. Estimates have been made of the length of soil moisture memory; however, we show here how estimates of memory show large variation with uncertain model parameters. Explicit representation of model uncertainty may then improve the realism of simulations and seasonal climate forecasts.
N. W. Chaney, J. D. Herman, P. M. Reed, and E. F. Wood
Hydrol. Earth Syst. Sci., 19, 3239–3251, https://doi.org/10.5194/hess-19-3239-2015, https://doi.org/10.5194/hess-19-3239-2015, 2015
Short summary
Short summary
Land surface modeling is playing an increasing role in global monitoring and prediction of extreme hydrologic events. However, uncertainties in parameter identifiability limit the reliability of model predictions. This study makes use of petascale computing to perform a comprehensive evaluation of land surface modeling for global flood and drought monitoring and suggests paths forward to overcome the challenges posed by parameter uncertainty.
H. Müller Schmied, S. Eisner, D. Franz, M. Wattenbach, F. T. Portmann, M. Flörke, and P. Döll
Hydrol. Earth Syst. Sci., 18, 3511–3538, https://doi.org/10.5194/hess-18-3511-2014, https://doi.org/10.5194/hess-18-3511-2014, 2014
P. Roudier, A. Ducharne, and L. Feyen
Hydrol. Earth Syst. Sci., 18, 2789–2801, https://doi.org/10.5194/hess-18-2789-2014, https://doi.org/10.5194/hess-18-2789-2014, 2014
B. Mueller, M. Hirschi, C. Jimenez, P. Ciais, P. A. Dirmeyer, A. J. Dolman, J. B. Fisher, M. Jung, F. Ludwig, F. Maignan, D. G. Miralles, M. F. McCabe, M. Reichstein, J. Sheffield, K. Wang, E. F. Wood, Y. Zhang, and S. I. Seneviratne
Hydrol. Earth Syst. Sci., 17, 3707–3720, https://doi.org/10.5194/hess-17-3707-2013, https://doi.org/10.5194/hess-17-3707-2013, 2013
A. Kauffeldt, S. Halldin, A. Rodhe, C.-Y. Xu, and I. K. Westerberg
Hydrol. Earth Syst. Sci., 17, 2845–2857, https://doi.org/10.5194/hess-17-2845-2013, https://doi.org/10.5194/hess-17-2845-2013, 2013
I. H. Taylor, E. Burke, L. McColl, P. D. Falloon, G. R. Harris, and D. McNeall
Hydrol. Earth Syst. Sci., 17, 2339–2358, https://doi.org/10.5194/hess-17-2339-2013, https://doi.org/10.5194/hess-17-2339-2013, 2013
H. Xie, L. Longuevergne, C. Ringler, and B. R. Scanlon
Hydrol. Earth Syst. Sci., 16, 3083–3099, https://doi.org/10.5194/hess-16-3083-2012, https://doi.org/10.5194/hess-16-3083-2012, 2012
F. Sienz, O. Bothe, and K. Fraedrich
Hydrol. Earth Syst. Sci., 16, 2143–2157, https://doi.org/10.5194/hess-16-2143-2012, https://doi.org/10.5194/hess-16-2143-2012, 2012
S. N. Gosling, R. G. Taylor, N. W. Arnell, and M. C. Todd
Hydrol. Earth Syst. Sci., 15, 279–294, https://doi.org/10.5194/hess-15-279-2011, https://doi.org/10.5194/hess-15-279-2011, 2011
W. A. Dorigo, K. Scipal, R. M. Parinussa, Y. Y. Liu, W. Wagner, R. A. M. de Jeu, and V. Naeimi
Hydrol. Earth Syst. Sci., 14, 2605–2616, https://doi.org/10.5194/hess-14-2605-2010, https://doi.org/10.5194/hess-14-2605-2010, 2010
G. Schumann, D. J. Lunt, P. J. Valdes, R. A. M. de Jeu, K. Scipal, and P. D. Bates
Hydrol. Earth Syst. Sci., 13, 1545–1553, https://doi.org/10.5194/hess-13-1545-2009, https://doi.org/10.5194/hess-13-1545-2009, 2009
Cited articles
Adam, J. C. and Lettenmaier, D. P.: Adjustment of global gridded precipitation for systematic bias, J. Geophys. Res., 108, 42–57, 2003.
Álvarez, J., Sánchez, A., and Quinta, L.: SIMPA, a GRASS based tool for Hydrological Studies, Proceedings of the FOSS/GRASS users Conference, Bangkok, Thailand, 12–14 September, 2004.
Arnell, N. W.: Climate change and water resources, Global Environ. Change, 9, S31–S49, 1999.
Arora, V. K.: The use of the aridity index to assess climate change effect on annual runoff, J. Hydrol. 265, 164–177, 2002.
Bárdossy, A. and Pegram, G.: Downscaling precipitation using regional climate models and circulation patterns towards hydrology, Water Resour. Res., 47, W04505, https://doi.org/10.1029/2010WR009689, 2011.
Bergström, S., Carlsson, B., Gardelin, M., Lindström, G., Pettersson, A., and Rummukainen, M.: Climate change impacts on runoff in Sweeden-assessments by global climate models, dynamical downscaling and hydrological modeling, Clim. Res., 16, 101–112, 2001.
Budyko, M. I.: Evaporation under natural conditions, Gidrometeorizdat, Leningrad, USSR, English translation by IPST, Jerusalem, 1948.
Buytaert, W., Célleri, R., and Timbe, L.: Predicting climate change impacts on water resources in the tropical Andes: the effects of GCM uncertainty, Geophys. Res. Lett., 36, L07406, https://doi.org/10.1029/2008GL037048, 2009.
Chen, J., Brissette, F. P., and Leconte, R.: Uncertainty of downscaling method in quantifying the impact of climate change on hydrology, J. Hydrol., 401, 190–202, 2011.
Christensen, J. H., Carter, T. R., Rummukainen, M., and Amanatidis, G.: Evaluating the performance and utility of regional climate models: the PRUDENCE Project, Climate Change, 81, 1–6, 2007.
Christensen, J. H., Boberg, F., Christensen, O. B., and Lucas-Picher, P.: On the need for bias correction of regional climate change projections of temperature and precipitation, Geophys. Res. Lett., 35, L20709, https://doi.org/10.1029/2008GL035694, 2008.
Conover, W. J.: Practical Nonparametric Statistics, 2nd Edn. Wiley, New York, 1980.
Daly, C., Gibson, W. P., Taylor, G. H., Johnson, G. L., and Pasteris, P.: A knowledge-based approach to the statistical mapping of climate, Clim. Res., 22, 99–113, 2002.
Déqué, M.: Frequency of precipitation and temperature extremes over France in an anthropogenica scenario: Model results and statistical correction according to observed values, Global Planet. Change, 57, 16–26, 2007.
Déqué, M., Jones, R. G., Wild, M., Giorgi, F., Christensen J. H., Hassell, D. C., Vidale, P. L., Rockel, B., Jacob, D., Kjellström, E., Castro, M., Kucharski, F., and van den Hurk, B.: Global high resolution versus limited area model climate change projections over Europe: quantifying confidence level from PRUDENCE results, Clim. Dynam., 25, 653–670, 2005.
Dibike, Y. B. and Coulibaly, P.: Hydrologic impact of climate change in the Saguenay watershed: comparison of downscaling methods and hydrologic models, J. Hydrol., 307, 145–163, 2005.
Döll, P., Kaspar, F., and Lehner, B.: A global hydrological model for deriving water availability indicators: model tuning and validation, J. Hydrol., 270, 105–134, 2003.
Döll, P., Berkhoff, K., Bormann, H., Fohrer, N., Gerten, D., Hagemann, S., and Krol, M.: Advances and visions in large-scale hydrological modelling: findings from the 11th Workshop on Large-Scale Hydrological Modelling, Adv. Geosci., 18, 51–61, https://doi.org/10.5194/adgeo-18-51-2008, 2008.
Elsner, M. M., Cuo, L., Voisin, N., Deems, J. S., Hamlet, A. F., Vano, J. A., Mickelson, K. E., Lee, S., and Lettenmaier, D. P.: Implications of 21st century climate change for the hydrology of Washington State, Climate Change, 102, 225–260, 2010.
Estrela, T. and Quintas, L.: El sistema integrado de modelización precipitación aportación (SIMPA), Revista de Ingeniería Civil, 104, 43–52, 1996.
Fekete, B. M. and Vörösmarty, C. J.: Uncertainties in precipitation and their impacts on runoff estimates, J. Climate, 17, 294–304, 2004.
Fekete, B. M., Vörösmarty, C. J., and Grabs, W.: Global, Composite Runoff Fields Based on Observed River Discharge and Simulated Water Balances, Rep. 22, Global Runoff data Cent., Koblenz, Germany, available at: http://www.grdc.sr.unh.edu/html/paper/ReportUS.pdf (last access: 20 June 2011), 1999.
Fekete, B. M., Vörösmarty, C. J., and Grabs, W.: High-resolution fields of global runoff combining river discharge and simulated water balances, Global Biogeochem. Cy., 16, 1042, https://doi.org/10.1029/1999GB001254, 2002.
Fowler, H. J., Blenkinsop, S., and Tebaldi, C.: Linking climate change modelling to impacts studies: recently advances in downscaling techinques for hydrological modeling, Int. J. Climatol., 27, 1547–1578, 2007.
Fujihara, Y., Tanaka, K., Watanabe, T., Nagano, T., and Kojiri, T.: Assessing the impacts of climate change of the Seyhan River Basin in Turkey: Use of dynamically downscaled data for hydrologic simulations, J. Hydrol., 353, 33–48, 2008.
Graham, L. P., Hageman, S., Jaun, S., and Beniston, M.: On interpreting hydrological change from regional climate models, Climate Change, 81, 97–122, 2007.
Giorgi, F., Hostetler, S. W., and Brodeur, C. S.: Analysis of the surface runoff hydrology in a regional climate model, Quart. J. Roy. Meteor. Soc., 120, 161–183, 1994.
González-Zeas, D.: Análisis hidrológico de los escenarios de cambio climático en España. Unpublished DEA from Ph.D. Thesis, Technical Universtiy of Madrid, Spain, 2010.
Haerter, J. O., Hagemann, S., Moseley, C., and Piani, C.: Climate model bias correction and the role of timescales, Hydrol. Earth Syst. Sci., 15, 1065–1079, https://doi.org/10.5194/hess-15-1065-2011, 2011.
Hagemann, S. and Gates, D.: Improving a subgrid runoff parameterization scheme for climate models by the use of high resolution data derived from satellite observations, Clim. Dynam., 21, 349–359, 2003.
Hagemann, S. and Jacob, D.: Gradient in the climate change signal of European discharge predicted by a multi-model ensemble, Climate Change, 81, 309–327, 2007.
Hagemann, S., Machenhauer, B., Jones, R., Christensen, O. B., Déqué, M., Jacob, D., and Vidale, P. L.: Evaluation of water and energy budgets in regional climate models applied over Europe, Clim. Dynam., 23, 547–567, 2004.
Hall, M. J.: How well does you model fit the data?, J. Hydroinform., 3, 49–55, 2001.
Hargreaves, G. H. and Samani, Z. A.: Estimating potential evapotranspiration, J. Irrig. Drain. E.-ASCE, 108, 225–230, 1982.
Hay, L. E. and Clark, M. P.: Use of statistically and dynamically downscaled atmospheric model output for hydrologic simulations in three mountainous basins in the western United States, J. Hydrol., 282, 56–75, 2003.
Hay, L. E., Clark, M. P., Wilby, R. L., Gutowski Jr., W. J., Leavesley, G. H., Pan, Z., Arritt, R. W., and Takle, E. S.: Use of regional climate model output for hydrologic simulations, J. Hydrometeorol., 3, 571–590, 2002.
Hewitson, B. C. and Crane, R. G.: Large-scale atmospheric controls on local precipitation in tropical Mexico, Geophys. Res. Lett., 19, 1835–1838, 1992.
Hijmas, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. and Jarvis, A.: Very high resolution interpolated climate surfaces for global land areas, Int. J. Climatol., 25, 1965–1978, 2005.
Hurk, B., Hirschi, M., Schär, C., Lenderink, G., Meijgaard, E., Ulden, A., Rockel, B., Hagemann, S., Grahan, P., Kjellström, E., and Jones, R.: Soil control on runoff response to climate change in regional climate model simulations, J. Climate, 18, 3536–3551, 2004.
Janssen, P. H. M. and Heuberger, P. S. C.: Calibration of process-oriented models, Ecol. Model., 83, 55–66, 1995.
Krause, P., Boyle, D. P., and Bäse, F.: Comparison of different efficiency criteria for hydrological model assessment, Adv. Geosci., 5, 89–97, https://doi.org/10.5194/adgeo-5-89-2005, 2005.
Kidson, J. W. and Thompson, C. S.: A comparison of statistical and model-based downscaling techniques for estimating local climate variations, J. Climate, 11, 735–753, 1998.
Kirchner, J. W.: Getting the right answers for the right reasons: Linking measurements analysis and models to advance the science of hydrology, Water Resour. Res., 42, W03S04, https://doi.org/10.1029/2005WR004362, 2006.
Klein, J., Frei, C., Gurtz, J., Lüthi, D., Vidale, P. L., and Schär, C.: Hydrologic simulations in the Rhine basin driven by a regional climate model, J. Geophys. Res., 110, D04102, https://doi.org/10.1029/2004JD005143, 2005.
Leander, R. and Buishand, T. A.: Re-sampling of regional climate model output for the simulation of extreme river flows, J. Hydrol., 332, 487–496, 2007.
Leavesley, G. H., Markstrom, S. L., Restrepo, P. J., and Viger, R. J.: A modular approach to addressing model design, scale, and parameter estimation issues in distributed hydrological modelling, Hydrol. Process., 16, 173–187, 2002.
Legates, D. R. and McCabe Jr., G. J.: Evaluating the use of "goodness of fit" measures in hydrologic and hydroclimatic model validation, Water Resour. Res., 35, 233–241, 1999.
Leung, L. R., Mearns, L. O., Giorgi, F., and Wilby, R. L.: Regional climate research, B. Amer. Meteorol. Soc., 84, 89–95, 2003.
Lettenmaier, D. P., Wood, A. W., Palmer, R. N., Wood, E. F., and Stakhiv, E. Z.: Water resources implications of global warming: A U.S. regional perspective, Climatic Change, 43, 537–579, 1999.
MacMahon, T., Peel, M. C., Pegram, G. G. G., and Smith, I. N.: A simple methodology for estimating mean and variability of annual runoff and reservoir yield under present and future climates, J. Hydrometeorol., 12, 135–146, 2011.
MARM: Metodologías de Evaluación de los Sistemas de Explotación de Recursos Hídricos, Centro de Estudios y Experimentación de Obras Públicas (CEDEX), Ministerio de Medio Ambiente y Medio Rural y Marino, Spain, 1998.
MARM, Ministry of Environment, Ministerio de Medio Ambiente: White Paper Book of Water in Spain. Libro Blanco del Agua en España. Secretaría de Estado de Aguas y Costas, available at: http://www.mma.es/rechid/libro b/index.htm (last access: 10 July 2011), 2000.
Maraun, D., Wetterhall, F., Ireson, A. M., Chandler, R. E., Kendon, E. J., Widmann, M., Brienen, S., Rust, H. W., Sauter, T., Themessl, M., Venema, V. K. C., Chun, K. P., Goodess, C. M., Jones, R. G., Onof, C., Vrac, M., and Thiele-Eich, I.: Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user, Rev. Geophys., 48, RG3003, https://doi.org/10.1029/2009RG000314, 2010.
Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., and Velth, T.: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations, T. ASABE, 50, 885–900, 2007.
Murphy, J.: An evaluation of statistical and dynamical techniques for downscaling local climate, J. Climate, 12, 2256–2284, 1999.
Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models, Part I – A discussion of principles, J. Hydrol., 10, 282–290, 1970.
Niu, G. Y., Yang, Z. L., Dickinson, R. E., and Gulden, L. E.: A simple TOPMODEL-based runoff parameterization (SIMTOP) for use in global climate models, J. Geophys. Res., 110, D21106, https://doi.org/10.1029/2005JD006111, 2005.
Ol'dekop, E. M.: On evaporation from de surface of river basins, Trans.Met.Obs. lur-evskogo, Univ. Tartu 4, 1911 (in Russian).
Piani, C., Haerter, J. O., and Coppola, E.: Statistical bias correction for daily precipitation in regional climate models over Europe, Theor. Appl. Climatol., 99, 7866–7873, https://doi.org/10.1007/S00704-009-0134-9, 2010a.
Piani, C., Weedon, G. P., Best, M., Gomes, S. M., Viterbo, P., Hagemann, S., and Haerter, J. O.: Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models, J. Hydrol., 395, 199–215, 2010b.
Pike, J. G.: The estimation of annual runoff from meteorological data in a tropical climate, J. Hydrol., 2, 116–123, 1964.
Potter, N. J. and Zhang, L.: Interannual variability of catchment water balance in Asutralia, J. Hydrol., 369, 120–129, 2009.
Schmidli, J., Frei, C., and Vidale, P.: Downscaling from GCM precipitation: a benchmark for dynamical and statistical downscaling methods, Int. J. Climatol., 26, 679–689, 2006.
Schreiber, P.: Über die Beziehungen zwischen dem Niederschlag und der Wasserführung der Flübe in Mitteleuropa, Meteorol. Z., 21, 441–452, 1904.
Sankarasubramanian, A. and Vogel, R. M.: Annual hydroclimatology in the United States, Water Resour. Res., 38, 1083, https://doi.org/10.1029/2001WR000619, 2002.
Sankarasubramanian, A. and Vogel, R. M.: Hydroclimatology of the continental United States, Geophys. Res. Lett., 30, 1363, https://doi.org/10.1029/2002GL015937, 2003.
Sharma, D., Das Gupta, A., and Babel, M. S.: Spatial disaggregation of bias-corrected GCM precipitation for improved hydrologic simulation: Ping River Basin, Thailand, Hydrol. Earth Syst. Sci., 11, 1373–1390, https://doi.org/10.5194/hess-11-1373-2007, 2007.
Silberstein, R. P.: Hydrological models are so good, do we still need data?, Environ. Modell. Softw., 21, 1340–1352, 2006.
Sperna Weiland, F. C., van Beek, L. P. H., Kwadijk, J. C. J., and Bierkens, M. F. P.: The ability of a GCM-forced hydrological model to reproduce global discharge variability, Hydrol. Earth Syst. Sci., 14, 1595–1621, https://doi.org/10.5194/hess-14-1595-2010, 2010.
Sperna Weiland, F. C., van Beek, L. P. H., Weerts, A. H., and Bierkens, M. F. P.: Extracting information from ensemble of GCMs to reliably assess future global runoff change, J. Hydrol., 412–413, 66–75, 2012.
Strzepek, K. M. and Yates, D. N.: Climate change impacts on the hydrologic resources of Europe: a simplified continental scale analysis, Climatic Change, 36, 79–92, 1997.
Terink, W., Hurkmans, R. T. W. L., Torfs, P. J. J. F., and Uijlenhoet, R.: Evaluation of a bias correction method applied to downscaled precipitation and temperature reanalysis data for the Rhine basin, Hydrol. Earth Syst. Sci., 14, 687–703, https://doi.org/10.5194/hess-14-687-2010, 2010.
Thornton, P. E., Running, S. W., and White, M. A.: Generating surfaces of daily meteorology variables over large regions of complex terrain, J. Hydrol., 190, 214–251, 1997.
Turc, L.: Le bilan d'eau des sols. Relation entre la précipitation, l'évaporation et l'écoulement, Ann. Agron. 5, 491–569, 1954.
Varis, O., Kajander, T., and Lemmelä, R.: Climate and water: from climate models to water resources management and vice versa, Climatic Change, 66, 321–344, 2004.
Vicuna, S. and Dracup, J. A.: The evolution of climate change impact studies on hydrology and water resources in California, Climatic Change, 82, 327–350, 2007.
Vogel, R. M., Wilson, I., and Daly, C.: Regional regression models of annual streamflow for the United States, J. Irrig. Drain. E.-ASCE, 125, 148–157, 1999.
Von Storch, H., Zorita E., and Cubasch, U.: Downscaling of global climate change to regional scales: an aplication to iberian rainfall in wintertime, J. Climate, 6, 1161–1171, 1993.
Wei, H., Gutowski, W. J., Vorosmarty, C. J., and Fekete, B. M.: Calibration and validation of a regional climate model for pan-Artic hydrologic simulation, J. Climate, 15, 3222–3236, 2002.
Wilby, R. L., Hay, L. E., Gutowski Jr., W. J., Arritt, R. W., Takle, E. S., Pan, Z., Leavesley, G. H., and Clark, M. P.: Hydrological responses to dynamically and statistically downscaled climate model output, Geophys. Res. Lett., 27, 1199–1202, 2000.
Wilby, R. L., Charles, S. P., Zorita, E., Timbal, B., Whetton, P., and Mearns, L. O.: Guidelines for use of climate scenarios developed from statistical downscaling methods, IPCC task group on data and scenario support for impacts and climate analysis, 2004.
Willmott, C. J.: On the validation of models, Phys. Geogr., 2, 184–194, 1981.
Willmott, C. J.: Some comments on the evaluation of model performance, B. Am. Meteorol. Soc., 63, 1309–1369, 1982.
Willmott, C. J., Ackleson, S. G., Davis, R. E., Feddema, J. J., Klink, K. M., Legates, D. R., O'Donnell, J., and Rowe, C. M.: Statistics for the Evaluation and Comparison of Models, J. Geophys. Res., 90, 8995–9005, 1985.
Wisser, D., Fekete, B. M., Vörösmarty, C. J., and Schumann, A. H.: Reconstructing 20th century global hydrography: a contribution to the Global Terrestrial Network- Hydrology (GTN-H), Hydrol. Earth Syst. Sci., 14, 1–24, https://doi.org/10.5194/hess-14-1-2010, 2010.
Wolock, D. M. and McCabe, G. J.: Explaining spatial variability in mean annual runoff in the conterminous United States, Clim. Res., 11, 149–159, 1999.
Wood, A. W., Maurer, E. P., Kumar, A., and Lettenmaier, D. P.: Long range experimental hydrologic forecasting for the eastern U.S., J. Geophys. Res., 107, 4429, https://doi.org/10.1029/2001JD000659, 2002.
Wood, A. W., Leung, L. R., Sridhar, V., and Lettermaier, D. P.: Hydrological implications of dynamical and statistical approaches to downscaling climate model outputs, Climatic Change, 62, 189–216, 2004.
Yates, D. N.: Approaches to continental scale runoff for integrated assessment models, J. Hydrol., 201, 289–310, 1997.
Zhang, L., Daws, W. R., and Walker, G. R.: Response of mean annual evapotranspiration to vegetation changes al catchment scale, Water Resour. Res., 37, 701–708, 2001.