Beven, K. and Freer, J.: Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology, J. Hydrol., 249(1–4), 11–29, https://doi.org/10.1016/S0022-1694(01)00421-8, 2001.
Binley, A. and Beven, K.: Vadose zone flow model uncertainty as conditioned on geophysical data, Ground Water, 41(2), 119–127, https://doi.org/10.1111/j.1745-6584.2003.tb02576.x, 2003.
Bredehoeft, J.: From models to performance assessment: The conceptualization problem, Ground Water, 41(5), 571–577, https://doi.org/10.1111/j.1745-6584.2003.tb02395.x, 2003.
Bredehoeft, J.: The conceptualization model problem-surprise, Hydrogeol. J., 13(1), 37–46, https://doi.org/10.1007/s10040-004-0430-5, 2005.
Chib, S. and Greenberg, E.: Understanding the Metropolis-Hastings algorithm, Am. Stat., 49(4), 327–335, http://www.jstor.org/stable/2684568, 1995.
DGA: Modelo de simulación hidrogeológico de la Pampa del Tamarugal, Dirección General de Aguas, Santiago, Chile, 98 pp., 1988.
DGA: Determinación de la disponibilidad de recursos h\'idricos para constituir nuevos derechos de aprovechamiento de aguas subterráneas en el sector del acu\'ifero de la Pampa del Tamarugal, S.D.T. Nr. 68, Dirección General de Aguas, Santiago, Chile, 27 pp., 1996.
DICTUC: Evaluación del impacto del proyecto de extracción de aguas subterráneas en la zona sur de la Pampa del Tamarugal, Tech. rep., Dirección de Investigaciones Cient\'ificas y Tecnológicas Universidad Católica de Chile, Santiago, Chile, 1995.
DICTUC: Análisis técnico de solicitud de derechos de aprovechamiento de ACF Minera. Acu\'ifero Pampa del Tamarugal, Dirección de Investigaciones Cient\'ificas y Tecnológicas Universidad Católica de Chile, Santiago, Chile, 107 pp., 2005.
DICTUC: EIA Proyecto Pampa Hermosa. Anexo IX.1 Geolog\'ia del acu\'ifero de la Pampa del Tamarugal, Dirección de Investigaciones Cient\'ificas y Tecnológicas Universidad Católica de Chile, Santiago, Chile, https://www.e-seia.cl/expediente/expedientes.php?modo=ficha&id_expediente=3083858&idExpediente=3083858, 99 pp., 2007.
DICTUC: EIA Proyecto Pampa Hermosa. Anexo VIII.2 Hidrogeolog\'ia, Dirección de Investigaciones Cient\'ificas y Tecnológicas Universidad Católica de Chile, Santiago, Chile, https://www.e-seia.cl/expediente/expedientes.php?modo=ficha&id_expediente=3083858&idExpediente=3083858, 169 pp., 2008.
Digert, F., Hoke, G., Jordan, T., and Isaaks, B.: Subsurface stratigraphy of the neogene Pampa del Tamarugal basin, northern Chile, in: X Congreso Geológico Chileno, Concepción, Chile, 8 pp., 2003.
Dingman, R. and Galli, C.: Geology and groundwater resources of the Pica area, Tarapaca Province, Chile, Tech. rep., US Geological Survey, Virginia, USA, 125 pp., 1965.
Draper, D.: Assessment and propagation of model uncertainty, J. Roy. Stat. Soc. B, 57(1), 45–97, http://www.jstor.org/stable/2346087, 1995.
DSM: Estación Cerro Gordo. Modelo de flujo numérico de aguas subterráneas, DSM Minera S.A., Santiago, Chile, 70 pp., 2002.
FAO: Role of forestry in combating desertification: Proceedings of the FAO Expert Consultation on the Role of Forestry in Combating Desertification held in Saltillo, Mexico, 24–28 June 1985, Tech. rep., FAO, Rome, Italy, http://www.fao.org/docrep/t0115e/T0115E00.htm, 1989.
Feyen, L., Beven, K., De Smedt, F., and Freer, J.: Stochastic capture zone delineation within the GLUE-methodology: Conditioning on head observations, Water Resour. Res., 37(3), 625–638, http://www.agu.org/pubs/crossref/2001/2000WR900351.shtml, 2001.
Fritz, P., Suzuki, O., Silva, C., and Salati, E.: Isotope hydrology of groundwaters in the Pampa del Tamarugal, Chile, J. Hydrol., 53(1–2), 161–184, https://doi.org/10.1016/0022-1694(81)90043-3, 1981.
Gelman, A., Carlin, J., Stern, H., and Rubin, D.: Bayesian Data Analysis, 2nd edn., Chapman and Hall/CRC, New York, USA, 696 pp., 2004.
Ghosh, J., Delampady, M., and Samanta, T.: An Introduction to Bayesian Analysis – Theory and Methods, 1st edn., Springer-Verlag, New York, USA, 352 pp., 2006.
Gilks, W., Richardson, S., and Spiegelhalter, D.: Markov Chain Monte Carlo in Practice, 1st edn., Chapman and Hall/CRC, Boca Raton, Florida, USA, 512 pp., 1995.
Harbaugh, A., Banta, E., Hill, M., and McDonald, M.: MODFLOW-2000 US Geological Survey modular ground-water model-user guide to modularization concepts and the ground-water flow process, Open file rep., 00–92, United States Geological Survey, Reston, Virginia, USA, 2000.
Harrar, W., Sonnenberg, T., and Henriksen, H.: Capture zone, travel time, and solute transport predictions using inverse modelling and different geological models, Hydrogeol. J., 11(5), 536–548, https://doi.org/10.1007/s10040-003-0276-2, 2003.
Hastings, W.: Monte Carlo sampling methods using Markov chains and their applications, Biometrika, 57(1), 97–109, https://doi.org/10.1093/biomet/57.1.97, 1970.
Hoeting, J., Madigan, D., Raftery, A., and Volinsky, C.: Bayesian model averaging: A tutorial, Stat. Sci., 14(4), 382–401, http://www.jstor.org/stable/2676803, 1999.
Højberg, A. and Refsgaard, J.: Model uncertainty-parameter uncertainty versus conceptual models, Water Sci. Technol., 52(6), 177–186, http://www.iwaponline.com/wst/05206/wst052060177.htm, 2005.
Houston, J.: Groundwater recharge through an alluvial fan in the Atacama Desert, northern Chile: mechanisms, magnitudes and causes, Hydrol. Process., 16(15), 3019–3035, https://doi.org/10.1002/hyp.1086, 2002.
Houston, J.: The great Atacama flood of 2001 and its implications for Andean hydrology, Hydrol. Process., 20(3), 591–610, https://doi.org/10.1002/hyp.5926, 2006.
Ijiri, Y., Saegusa, H., Sawada, A., Ono, M., Watanabe, K., Karasaki, K., Doughty, C., Shimo, M., and Fumimura, K.: Evaluation of uncertainties originating from the different modeling approaches applied to analyze regional groundwater flow in the Tono area of Japan, J. Contam. Hydrol., 103(3–4), 168–181, https://doi.org/10.1016/j.jconhyd.2008.10.010, 2009.
JICA-DGA-PCI: The study on the development of water resources in northern Chile, Supporting report B: Geology and groundwater, Japanese International Cooperation Agency, Dirección General de Aguas, and Pacific Consultants International, Santiago, Chile, 216 pp., 1995.
Kass, R. and Raftery, A.: Bayes factors, J. Am. Stat. Assoc., 90(430), 773–795, http://www.jstor.org/stable/2291091, 1995.
Magaritz, M., Aravena, R., Peña, H., Suzuki, O., and Grilli, A.: Source of groundwaters in the deserts of northern Chile: Evidence for deep circulation of groundwaters from the Andes, Ground Water, 28(4), 513–517, https://doi.org/10.1111/j.1745-6584.1990.tb01706.x, 1990.
Makowski, D., Wallach, D., and Tremblay, M.: Using a Bayesian approach to parameter estimation; comparison of the GLUE and MCMC methods, Agronomie, 22(2), 191–203, https://doi.org/10.1051/agro:2002007, 2002.
Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., and Teller, E.: Equation of state calculations by fast computing machines, J. Chem. Phys., 21(6), 1087–1092, https://doi.org/10.1063/1.1699114, 1953.
Meyer, P., Ye, M., Rockhold, M., Neuman, S., and Cantrell, K.: Combined estimation of hydrogeologic conceptual model parameter and scenario uncertainty with application to uranium transport at the Hanford Site 300 area, Report NUREG/CR-6940 PNNL-16396, US Nuclear Regulatory Commission, Washington, US, 125 pp., 2007.
Neuman, S.: Maximum likelihood Bayesian averaging of uncertain model predictions, Stoch. Env. Res. Risk A, 17(5), 291–305, https://doi.org/10.1007/s00477-003-0151-7, 2003.
Neuman, S. and Wierenga, P.: A comprehensive strategy of hydrogeologic modelling and uncertainty analysis for nuclear facilities and sites, Report NUREG/CR-6805, US Nuclear Regulatory Commission, Washington, USA, 309 pp., 2003.
Poeter, E. and Anderson, D.: Multimodel ranking and inference in ground water modelling, Ground Water, 43(4), 597–605, https://doi.org/10.1111/j.1745-6584.2005.0061.x, 2005.
Refsgaard, J., Van der Sluijs, J., Brown, J., and Van der Keur, P.: A framework for dealing with uncertainty due to model structure error, Adv. Water Resour., 29(11), 1586–1597, https://doi.org/10.1016/j.advwatres.2005.11.013, 2006.
Refsgaard, J., Van der Sluijs, J., Højberg, A., and Vanrolleghem, P.: Uncertainty in the environmental modelling process–A framework and guidance, Environ. Modell. Softw., 22(11), 1543–1556, https://doi.org/10.1016/j.envsoft.2007.02.004, 2007.
Risacher, F., Alonso, H., and Salazar, C.: The origin of brines and salts in Chilean salar: A hydrochemical review, Earth Sci. Rev., 63(3–4), 249–293, https://doi.org/10.1016/S0012-8252(03)00037-0, 2003.
Rojas, R. and Dassargues, A.: Groundwater flow modelling of the regional aquifer of the Pampa del Tamarugal, northern Chile, Hydrogeol. J., 15(3), 537–551, https://doi.org/10.1007/s10040-006-0084-6, 2007.
Rojas, R., Feyen, L., and Dassargues, A.: Conceptual model uncertainty in groundwater modelling: Combining generalized likelihood uncertainty estimation and Bayesian model averaging, Water Resour. Res., 44, W12418, https://doi.org/10.1029/2008WR006908, 2008.
Rojas, R., Feyen, L., Batelaan, O., and Dassargues, A.: On the value of conditioning data to reduce conceptual model uncertainty in groundwater modelling, Water Resour. Res., under review, 2009a.
Rojas, R., Feyen, L., and Dassargues, A.: Sensitivity analysis of prior model probabilities and the value of prior knowledge in the assessment of conceptual model uncertainty in groundwater modelling, Hydrol. Process., 23(8), 1131–1146, https://doi.org/10.1002/hyp.7231, 2009b.
Rojas, R., Kahunde, S., Peeters, L., Batelaan, O., and Dassargues, A.: Application of a multimodel approach to account for conceptual model and scenario uncertainties in groundwater modelling, J. Hydrol., under review, 2009c.
Salazar, C., Rojas, L., and Pollastri, A.: Evaluación de recursos h\'idricos en el sector de Pica hoya de la Pampa del Tamarugal I Región-Chile, in: VI Jornadas del CONAPHI Chile, Santiago, Chile, 16 pp., 1999.
Seifert, D., Sonnenberg, T., Scharling, P., and Hinsby, K.: Use of alternative conceptual models to assess the impact of a buried valley on groundwater vulnerability, Hydrogeol. J., 16(4), 659–674, https://doi.org/10.1007/s10040-007-0252-3, 2008.
Sorensen, D. and Gianola, D.: Likelihood, Bayesian, and MCMC methods in quantitative genetics, Vol. I, 1st edn., Springer-Verlag, New York, USA, 760 pp., 2002.
Suzuki, O. and Aravena, R.: Hidrolog\'ia isotópica y el recurso agua del sector Esmeralda-Pica-Matilla, Nucleotécnica, 4(8), 41–51, 1985.
Troldborg, L., Refsgaard, J., Jensen, K., and Engesgaard, P.: The importance of alternative conceptual models for simulation of concentrations in a multi-aquifer system, Hydrogeol. J., 15(5), 843–860, https://doi.org/10.1007/s10040-007-0192-y, 2007.
Wasserman, L.: Bayesian model selection and model averaging, J. Math. Psychol., 44(1), 92–107, https://doi.org/10.1006/jmps.1999.1278, 2000.
Ye, M., Meyer, P., and Neuman, S.: On model selection criteria in multimodel analysis, Water Resour. Res., 44, W03428, https://doi.org/10.1029/2008WR006803, 2008a.
Ye, M., Neuman, S., and Meyer, P.: Maximum likelihood Bayesian averaging of spatial variability models in unsaturated fractured tuff, Water Resour. Res., 40, W05113, https://doi.org/10.1029/2003WR002557, 2004.
Ye, M., Pohlmann, K., and Chapman, J.: Expert elicitation of recharge model probabilities for the Death Valley regional flow system, J. Hydrol., 354(1–4), 102–115, https://doi.org/10.1016/j.jhydrol.2008.03.001, 2008b.