Articles | Volume 30, issue 1
https://doi.org/10.5194/hess-30-205-2026
https://doi.org/10.5194/hess-30-205-2026
Research article
 | 
14 Jan 2026
Research article |  | 14 Jan 2026

Multi-Machine Learning Ensemble Regionalization of Hydrological Parameters for Enhancing Flood Prediction in Ungauged Mountainous Catchments

Kai Li, Linmao Guo, Genxu Wang, Jihui Gao, Xiangyang Sun, Peng Huang, Jinlong Li, Jiapei Ma, and Xinyu Zhang

Related authors

Hillslope subsurface flow is driven by vegetation more than soil properties in colonized valley moraines along a humid mountain elevation
Fei Wang, Genxu Wang, Junfang Cui, Xiangyu Tang, Ruxin Yang, Kewei Huang, Jianqing Du, and Li Guo
Hydrol. Earth Syst. Sci., 29, 5267–5282, https://doi.org/10.5194/hess-29-5267-2025,https://doi.org/10.5194/hess-29-5267-2025, 2025
Short summary

Cited articles

Arsenault, R., Breton-Dufour, M., Poulin, A., Dallaire, G., and Romero-Lopez, R.: Streamflow prediction in ungauged basins: analysis of regionalization methods in a hydrologically heterogeneous region of Mexico, Hydrol. Sci. J., 64, 1297–1311, https://doi.org/10.1080/02626667.2019.1639716, 2019. 
Arsenault, R., Martel, J., and Mai, J.: Continuous streamflow prediction in ungauged basins: Long Short-Term Memory Neural Networks clearly outperform hydrological models, Hydrol. Earth Syst. Sci., 27, 139–157, https://doi.org/10.5194/hess-27-139-2023, 2023. 
Bellman, R. E.: On the reduction of dimensionality for classes of dynamic programming processes, RAND Corp., Santa Monica, California, USA, P-2243, 1961. 
Bergstra, J. and Bengio, Y.: Random search for hyper-parameter optimization, J. Mach. Learn. Res., 13, 281–305, 2012.  
Beven, K. J., Kirkby, M. J., Freer, J. E., and Lamb, R.: A history of TOPMODEL, Hydrol. Earth Syst. Sci., 25, 527–549, https://doi.org/10.5194/hess-25-527-2021, 2021. 
Download
Short summary
We propose a multi-machine learning ensemble—integrating Gradient Boosting Machine, K-Nearest Neighbors, and Extremely Randomized Trees (GBM-KNN-ERT)—to improve Topography-Based Subsurface Storm Flow (Top-SSF) parameter regionalization for flood prediction in ungauged catchments. Validated across 80 Chinese catchments, the ensemble achieved a Nash-Sutcliffe Efficiency (NSE) greater than 0.9 for 90 % of catchments, showing superior robustness to climate and donor variability.
Share