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Abstract. Machine learning-based parameter regionalization
is an important method for flood prediction in ungauged
mountainous catchments. However, single machine learn-
ing parameter regionalization often exhibits limitations in
prediction accuracy and robustness. Therefore, this study
proposes a multi-machine learning ensemble regionalization
method that integrates Gradient Boosting Machine (GBM),
K-Nearest Neighbors (KNN), and Extremely Randomized
Trees (ERT) methods (GBM-KNN-ERT) to regionalize the
sensitive parameters of the Topography-Based Subsurface
Storm Flow (Top-SSF) model. Validated across 80 moun-
tainous catchments in southwestern China, the GBM-KNN-
ERT method demonstrates superior performance with 90 %
of ungauged catchments achieving the Nash-Sutcliffe Effi-
ciency (NSE) above 0.9, representing a 67.44 % improve-
ment over the best single machine learning parameter region-
alization. Notably, the GBM-KNN-ERT method shows im-
proved robustness to climate change and changes in the num-
ber of donor catchments compared to other regionalization
methods. An optimal balance between accuracy and com-
putational efficiency was achieved using 20—40 high quality
donor catchments (NSE greater than 0.85). This study pro-
vides systematic evidence that multi-machine learning en-
semble can effectively address regionalization challenges in
ungauged mountainous regions, offering a reliable tool for
water resource management and flood disaster mitigation.

Highlights.

1. Proposes a novel multi-machine learning ensemble regional-
ization method.

2. The GBM-KNN-ERT method increases the percentage of
catchments with high-accuracy flood predictions (NSE > 0.9)
to 90 %, which is a 67.44 % improvement over the best single
machine learning method.

3. The GBM-KNN-ERT method exhibits greater stability under
climate change.

1 Introduction

Floods in mountainous catchments, encompassing both flash
floods and general larger-scale flood events which can be
derived from mountainous upland catchments, pose a sig-
nificant threat to human safety and property, particularly
in regions lacking sufficient observational data (Luo et al.,
2015; Zhai et al., 2018). While hydrological models like the
Topography-Based Subsurface Storm Flow (Top-SSF) model
(Li et al., 2024) offer promising simulation capabilities, their
application in ungauged catchments is severely limited by
the absence of calibration data (Choi et al., 2023; Liu et
al., 2018). Effective parameter regionalization methods are
therefore essential for transferring hydrological knowledge
from gauged to ungauged regions, enabling reliable flood
prediction in ungauged mountainous catchment (Garambois
et al., 2015; Ragettli et al., 2017; Xu et al., 2018).

Parameter regionalization is a crucial method for flood
prediction in ungauged catchments (Arsenault et al., 2023;
Guo et al., 2021; Kratzert et al., 2019; Zhang et al., 2020).
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Compared to purely data-driven methods, parameter region-
alization offers enhanced physical interpretability (Nearing
et al., 2024; Tang et al., 2023; Zhang et al., 2024). Ex-
isting parameter regionalization methods can be broadly
classified into three categories: similarity-based, hydrologi-
cal signatures-based, and regression-based (Arsenault et al.,
2019; Wu et al., 2023). Similarity-based methods rely on
the assumption that catchments with similar characteristics
exhibit similar hydrological responses, considering spatial
proximity (Arsenault et al., 2019; Pugliese et al., 2018; Yang
et al., 2018) and physical similarity (similar climatic and
land cover conditions have similar hydrological characteris-
tics) (Kanishka and Eldho, 2017; Papageorgaki and Nalban-
tis, 2016). Hydrological signature-based methods use hydro-
logical signatures (quantitative metrics that describe statisti-
cal or dynamic properties of streamflow) as an intermediate
link, establishing relationships first between model parame-
ters and signatures, and then between signatures and catch-
ment descriptors to facilitate parameter transfer (McMillan,
2021; Zhang et al., 2018). Regression-based methods, which
directly link hydrological model parameters to catchment de-
scriptors, are widely used due to their simplicity and com-
putational efficiency (Guo et al., 2021; Kratzert et al., 2019;
Song et al., 2022; Wu et al., 2023). However, the performance
of regression-based methods is frequently constrained by the
inherent nonlinearity in the relationships between model pa-
rameters and catchment descriptors, coupled with the dif-
ficulty in adequately capturing spatial heterogeneity, espe-
cially within complex mountainous terrain (Wu et al., 2023).

Recent advances in machine learning offer potential so-
lutions by capturing nonlinear patterns in high-dimensional
data. Such as Decision Tree (DT), Extremely Randomized
Trees (ERT), Gradient Boosting Machine (GBM), K-Nearest
Neighbor (KNN), Random Forest (RF), and Support Vec-
tor Machines (SVM) have shown promise in parameter re-
gionalization (Golian et al., 2021; Song et al., 2022). How-
ever, existing machine learning-based parameter regional-
ization studies predominantly focus on runoff prediction at
coarser temporal scales (daily or monthly) (Li et al., 2022;
Wau et al., 2023), leaving a significant gap in high-resolution
(hourly or sub-hourly) flood prediction in ungauged moun-
tainous catchments. Moreover, these studies often rely on
single machine learning methods to estimate all hydrologi-
cal model parameters (Golian et al., 2021; Song et al., 2022;
Wu et al., 2023). Given that different machine learning meth-
ods operate on distinct principles (Jordan and Mitchell, 2015;
Zounemat-Kermani et al., 2021) and hydrological model pa-
rameters represent diverse hydrological processes (Li et al.,
2024), a single machine learning method may not adequately
capture the complexity of model parameter estimation (Go-
lian et al., 2021; Wu et al., 2023). Therefore, exploring the
multi-machine learning ensemble methods is essential to im-
prove the accuracy of high-resolution flood prediction in un-
gauged mountainous catchments.
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Southwest China’s mountainous regions are particularly
vulnerable to frequent floods, leading to ecosystem degra-
dation through habitat disruption and biodiversity loss (Gan
et al., 2018). The abundance of ungauged catchments in this
region poses a significant challenge to reliable flood predic-
tion. To address this critical issue, we systematically evalu-
ate the performance of a novel multi-machine learning en-
semble method for regionalizing Top-SSF model parameters
across 80 representative catchments (mean area: 1586 km?)
in Southwest China. By assessing ensemble method robust-
ness under climate change and with varying donor catchment
configurations, this study aims to significantly enhance flood
prediction accuracy in ungauged mountainous catchments,
contributing to improved ecosystem resilience, enhanced hu-
man safety, and more effective water resource management
in the face of escalating climatic pressures.

2 Study area and datasets
2.1 Study area

This study investigated 80 mountainous catchments in South-
western China, encompassing Sichuan, Yunnan, Guangxi,
Guizhou, and Chongqing provinces (Fig. 1). This region ex-
hibits diverse climatic zones, including subtropical monsoon,
plateau mountain, and tropical monsoon climates. The se-
lected catchments have an average area of 1586 km? (ranging
from 109 to 6564 km?), with elevations ranging from 63 to
6284 m. Mean annual temperature varies from 15 to 20 °C,
and annual precipitation ranges from 1200 to 1800 mm (Li
et al., 2016), with approximately 80 % of the annual pre-
cipitation occurring during summer and autumn, contribut-
ing to frequent flooding events (Cheng et al., 2019). These
catchments are situated within a heavily forested region, the
second largest in China (Hua et al., 2018), with forest cover
ranging from 3 % to 92 % (mean: 51 %), influencing evapo-
transpiration and runoff generation. Dominant soil types, ac-
cording to the Genetic Soil Classification of China (Shi et al.,
2004), include purple soil (12.20 %), yellow soil (11.39 %),
and red soil (9.52 %), each with distinct hydrological proper-
ties.

2.2 Datasets

Hourly flow data (2015-2018) for 80 mountainous catch-
ments in China were sourced from the Hydrological Bu-
reau of the Ministry of Water Resources, through China’s
hydrologic yearbooks, encompassing a spectrum of events
from flash floods and general floods which can be de-
rived from mountainous upland catchments. Hourly rain-
fall data (2015-2018) were obtained from ground meteoro-
logical stations across China (http://en.weather.com.cn, last
access: 8 July 2024), providing crucial input for hydro-
logical modelling. Additional meteorological variables, in-
cluding temperature, wind speed, dewpoint temperature, and
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Figure 1. Geographical distribution of the 80 gauged catchments used, with locations of hydrometry station (red points) and major rivers

indicated.

surface net solar radiation, were obtained from the ERAS
hourly dataset (1940—present) (Hersbach et al., 2023), ensur-
ing comprehensive atmospheric forcing. Relative humidity
was estimated using dewpoint temperature. Historical (1901—
2021) and projected future (SSP585, 2022-2100) temper-
ature and precipitation data for China, averaged from the
EC-Earth3, GFDL-ESM4, and MRI-ESM2-0 models at 1 km
resolution, were obtained from ”A Big Earth Data Platform
for Three Poles” to assess the impact of climate change
(Ding and Peng, 2020) (http://poles.tpdc.ac.cn, last access:
15 July 2024). Topographic data, including a 30m reso-
lution Digital Elevation Model (DEM), used for river net-
work and topographic index derivation, were obtained from
EARTHDATA and used for river network delineation and
topographic index derivation (https://search.earthdata.nasa.
gov/search, last access: 18 July 2024). Forest cover data
(30 m resolution) were sourced from the Global Forest Cover
and Forest Change Map (https://www.noda.ac.cn/, last ac-
cess: 18 July 2024), providing information on vegetation
characteristics. Bulk density (BD) data were derived from
the Soil Database of China for Land Surface Modelling (Dai
et al., 2013). Soil hydraulic parameters, specifically satu-
rated hydraulic conductivity (Ks_CH) for Clapp and Horn-
berger functions and the pore-connectivity parameter (L) for
van Genuchten and Mualem functions, were acquired from
the China Dataset of Soil Hydraulic Parameters Using Pedo-
transfer Functions for Land Surface Modeling (Shangguan et
al., 2013).
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3 Methodology
3.1 Hydrological model

Top-SSF is a semi-distributed hydrological model based on
the well-established TOPMODEL framework, which delin-
eates sub-basins based on the topographic index. It retains
the key advantages of TOPMODEL, such as its parsimo-
nious structure, physical interpretability, and ease of param-
eter transfer (Beven et al., 2021; Gao et al., 2018), consists
of 15 parameters representing six key hydrological compo-
nents: canopy interception, infiltration, evapotranspiration,
unsaturated zone moisture transport, subsurface storm flow,
and flow routing (Li et al., 2024). In the Top-SSF model,
flood can be comprised of four components: infiltration-
excess overland flow, saturation-excess overland flow, sub-
surface storm flow, and groundwater discharge.
Infiltration-excess overland flow occurs when the rainfall
intensity exceeds the infiltration capacity. In this study, in-
filtration is simulated using the Green-Ampt model. When
surface ponding occurs, the infiltration rate is determined by
solving the Green-Ampt equation iteratively, for which the
Newton-Raphson method is employed. The infiltration rate

(fin) 1s given by:

__ Ks(CD+ Fam)
Szm (1 — e(Fsam/Szm))

fin = (1)

where, fi, is the infiltration rate (m h_l); Ks is surface hy-
draulic conductivity (m h~! ); CD is capillary drive (m); Fart
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Table 1. Model forcing data and catchment descriptors information.

Data type Name Unit Function
Rainfall mm Input for hydrological model
Flood m3s~!  Used for model calibration
(hourly resolution)
Temperature K
Surface pressure Pa
D.ewpomt temperature K 1 Input for hydrological model
wind speed ms
Surface net solar radiation j m~2
Hydro-meteorology  Relative humidity %
1 km monthly precipitation (1901-2021) mm .
1 km monthly temperature (1901-2021) °C 23:12_1%; catzﬁiiflet
1 km monthly temperature (2022-2100, SSP5-8.5, °C descr'g tors
EC-Earth3, GFDL-ESM4, MRI-ESM2-0) P
1 km monthly precipitation (2022-2100, SSP5-8.5, mm
EC-Earth3, GFDL-ESM4, MRI-ESM2-0)
Soil bulk density (BD) gem ™3
Soil characteristics ~ Pore-connectivity parameter (L) for the van Genuchten = —
and Mualem functions
Saturated hydraulic conductivity (Ks_CH) of the Clapp cm d=! Surface average as
and Hornberger Functions catchment descriptors
Forest cover (FC) %
DEM m
Topography Topographic index -
Slope mm ™!
Catchment area km?

is the initial cumulative infiltration (m); Szm is the maximum
water storage capacity in the unsaturated zone (m).

Saturation excess overland flow occurs at computational
cell i when the groundwater table depth, S; is less than or
equal to zero (i.e., S; <0, indicating the water table has
reached the surface). It is calculated as:

rs,; = max {Suz; —max (S;,0), 0} 2)

where, rg; is the depth of saturation excess overland flow
generated at cell i (m); Suz; is the soil water storage in the
unsaturated zone, at cell i (m); S; is the groundwater table
depth at cell i (m).

The depth of subsurface storm flow generated at computa-
tional cell i, r¢; is given by:

Isf,i = qsf,0 (l - sz,i/Sfmax) 3)

where, rgf; is the depth of subsurface storm flow at cell i (m);

gst,0 1is initial subsurface storm flow (m); Sg; is the water

storage deficit in the subsurface storm flow zone at cell i (m).
The depth of groundwater discharge is calculated as:

Arp = elnTefSig/Szm (4)
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where, rp, is depth of groundwater discharge (m); InTe is the
log of the areal average of T (m?> h™1); is the catchment aver-
age topographic index; S_g is the catchment average ground-
water table depth (m). For the complete set of equations for
the Top-SSF model, the reader is referred to the Supplement
and Li et al. (2024).

3.2 Multi-machine learning ensemble method

To improve flood prediction accuracy in ungauged moun-
tainous catchments, we proposed a multi-machine learning
ensemble method for regionalizing sensitive parameters of
the Top-SSF model. This method leverages the complemen-
tary strengths of multi-machine learning methods to estimate
model parameters based on catchment descriptors (Fig. 2).
The characteristics, strengths, and limitations of each ma-
chine learning method are summarized in Table 2. The en-
semble method employs a cross-validation procedure to se-
lect the best-performing machine learning method for each
sensitive parameter. These selections are then integrated into
a unified regionalization scheme. By mitigating limitations
inherent in single machine learning regionalization, such as
model bias and overfitting, and by capturing complex hydro-
logical processes in mountainous catchment, this ensemble

https://doi.org/10.5194/hess-30-205-2026
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method aims to achieve more accurate flood prediction in un-
gauged catchments.

3.3 Parameter regionalization process

The parameter regionalization process comprised four key
steps: (1) Top-SSF model calibration and parameter sensitiv-
ity analysis; (2) selection of relevant catchment descriptors;
(3) establishment of regionalization relationships between
sensitive model parameters and catchment descriptors using
multi-machine learning ensemble methods; and (4) evalua-
tion of parameter regionalization performance.

3.3.1 Top-SSF model calibration and parameter
sensitivity analysis

In this study, the Top-SSF model was employed to simulate
hydrological processes. The model was driven by continu-
ous hourly meteorological data, including rainfall, temper-
ature, surface pressure, relative humidity, wind speed, and
surface net solar radiation. For each catchment, model pa-
rameters were calibrated using two hydrologically indepen-
dent and representative flood events. A third, distinct flood
event was then used for model validation. The Nash-Sutcliffe
Efficiency (NSE) served as the objective function during
calibration, with parameter optimization achieved using the
Shuffled Complex Evolution (SCE-UA) algorithm (Duan et
al., 1994), known for its global convergence and robustness
(Dakhlaoui et al., 2012; Qi et al., 2016). Model performance
was evaluated using the NSE, the relative error of flood peak
flow (Qp), and the absolute error in flood peak occurrence
time (7p), following China’s Specification for Hydrologi-
cal Information Forecast (GB/T 22482-2008). These metrics
quantify the model’s ability to predict flood dynamics, peak
flow, and timing. Following calibration, a sensitivity analy-
sis was conducted to identify and exclude insensitive model
parameters (Lenhart et al., 2002), which were then used for
regionalization. This approach reduces the dimensionality of
the regionalization problem and improves the efficiency of
the process.

The sensitivity index (Si) of each hydrological model pa-
rameter was determined using the method of Lenhart et
al. (2002), which assesses the influence of 4 10 % changes
in parameter values (Eq. 1). Table 3 outlines the sensitivity
analysis results for the model parameters across the 80 moun-
tainous catchments. The Si values are categorized as follows
(Guo et al., 2022): negligible sensitivity (|Si| < 0.05), mod-
erate sensitivity (0.05 < |Si| < 0.2), high sensitivity (0.2 <
|Si| < 1.00), and extremely high sensitivity (|Si| > 1.00).
Based on the sensitivity analyses, seven sensitive model pa-
rameters were identified: Szm, InTe, Sfmax, C, gsf, ¢t (Ta-
ble 3).

®

1 ZN 2(@®) —y1@®))/yo(t)

Si=—
N &1 2Ax/x0
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where yo(¢) is the flood value of the calibrated parame-
ter xo at time t; Ax is the adjusted parameter difference,
Ax/xg = 10%, y1(¢) is the flood value of the calibrated pa-
rameter xo — Ax at time ¢; y>(¢) is the flood value of the
calibrated parameter xo + Ax at time 7.

3.3.2 Catchment descriptor selection

To mitigate the effects of multicollinearity on the accu-
racy and reliability of the parameter regionalization methods,
catchment descriptors were screened using the variance infla-
tion factor (VIF) and correlation coefficients. A VIF thresh-
old of less than 10 (VIF < 10) was used to indicate accept-
ably low multicollinearity (Salmeron et al., 2018). Initial
screening identified strong correlations between several de-
scriptor pairs, notably L with Ks_CH, and Tem with Elev.
Furthermore, the VIF values for Ks_CH and Slope were
found to exceed 10. Consequently, Ks_CH and Slope were
removed from the potential set of descriptors. Following their
removal, a re-evaluation of the VIF for the remaining de-
scriptors was conducted. Although a notable correlation ex-
ists between Tem and elevation (Elev), their VIF values in the
reduced set were both below the threshold of 10. Given the
importance of Tem for representing climate impacts and Elev
as a key topographic driver, both were retained to preserve
potentially valuable information. The final set of seven catch-
ment descriptors selected for regionalization therefore com-
prised FC, Elev, Area, L, Tem, Pre, and BD. As illustrated in
Fig. 3b, the correlations among these final descriptors and the
sensitive model parameters are generally low (highest at 0.5),
suggesting that the relationships are complex and nonlinear.

3.3.3 Parameter regionalization

To simulate ungauged catchment conditions, each of the 80
catchments was iteratively treated as an ungauged catchment,
with the remaining 79 catchments serving as donor catch-
ments. A parameter regionalization method was then con-
structed using the catchment descriptors and sensitive model
parameters of the donor catchments to predict the seven sen-
sitive model parameters for the ungauged catchment based
on its catchment descriptors. These predicted model param-
eters were then input into the Top-SSF model to enable
flood prediction in ungauged catchments. To ensure robust
and generalizable results, K-fold cross-validation (K = 10)
was implemented. This involved randomly partitioning the
79 donor catchments into K subsets, using one subset as a
test set and the remaining K — 1 subsets for method train-
ing in each iteration (Jung, 2018). This approach maxi-
mizes data utilization and minimizes bias associated with
specific data partitioning. Hyperparameter tuning for each
machine learning method was performed using Randomized-
SearchCV (Bergstra and Bengio, 2012), with the objective of
minimizing the difference between predicted and observed
parameter values.

Hydrol. Earth Syst. Sci., 30, 205-225, 2026
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Table 2. Seven machine learning model characteristics, advantages and disadvantages.

Machine learning  Characteristic Advantage Disadvantages

DT A single decision tree hierarchically High interpretability; Unstable;
partitions the data space using a tree Minimal data Tends to overfit.
structure, with internal nodes preprocessing.
representing features, branches
representing decision rules, and leaf
nodes representing class labels.

ERT Construct multiple decision trees with Low overfitting risk; Possibility of increased
randomly selected feature values and Computational bias.
randomly divided nodes (Geurts et al., efficiency; Resilient to Limited
2006). noise. interpretability.

GBM Construct multiple decision trees. High accuracy for Limited
Multiple weak learners are trained structured data; Robust  interpretability;
iteratively and the loss function is to outliers; Minimal Complex adjustments.
optimised using gradient descent, data preprocessing.
progressively combined into a robust
model through the learning rate
(Friedman, 2002).

KNN It is a non-parametric, instance-based Simple and easy to Sensitivity to noisy and
supervised learning algorithm. It implement. scale of data. Accuracy
operates by finding the K nearest data Learning process is can be heavily
points in the training data to a given quick. impacted by the choice
data point and making predictions of K.
based on these (Wani et al., 2017).

RF A bagging algorithm proposed by Simple and easy to Prone to overfitting in
Breiman (2001) that uses ensemble implement. noisy regression tasks.
learning. Involves training numerous Low computational
decision trees and aggregating cost.
predictions Breiman (2001).

SVM Identifies hyperplanes in Uses kernel functions Sensitive to noise

high-dimensional spaces to segregate
data. The optimal hyperplane
maximizes the margin between it and
the nearest data points, termed support
vectors (Sain, 1996).

to address nonlinear
classification issues.

3.3.4 Evaluated metrics

The performance of the parameter regionalization methods
was evaluated by considering two key aspects. First, the ac-
curacy of the methods in estimating sensitive model param-
eters was assessed using three metrics: root mean square er-
ror (RMSE), standard deviation (SD), and the coefficient of
determination (R?). The R? was used to quantify the agree-
ment between estimated and calibrated parameter sets. Sec-
ond, to evaluate the impact of parameter regionalization on
flood prediction. The resulting flood predictions were then
evaluated using the NSE, Qp, and T;, metrics.

Hydrol. Earth Syst. Sci., 30, 205-225, 2026

Y (Qobs () — Qsim(1))?

NSE=1- i — (6)
Z/’:l (Qobs(j) - Qobs)
0p = Qobs.p — Dsimp % 100% (7)
Qobs,p
Tp = |Tobs,p - Tsim,p| (8)

where Qobs(j) is the observed flow rate (m3 s~ QOsim (J)
is the simulated flow rate (m3s~1); @ is the mean value
of the observed flow rate (m3s~!); Oobs,p is the observed
flood peak flow m3s~1); QOsim,p is the simulated flood
peak flow (m3 s_l); Tobs,pis the observed flood peak occur-
rence time (h); and Tgim,p is the simulated flood peak occur-

https://doi.org/10.5194/hess-30-205-2026
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Figure 2. Multi-machine learning ensemble method for regionalization in ungauged mountainous catchments. The red line indicates the

machine learning method that yielded the optimal parameter estimates.

Table 3. Top-SSF model main modules and default range of parameters.

Modular Parameter  Definition Unite Default range  Sensitivity index
Sc Canopy storage capacity m 0.00-0.01 <0.05
Canopy interception St Trunk storage capacity m 0.00-0.01 <0.05
Pt Proportion of rain diverted into % 0.00-1.00 <0.05
stemflow per cover
Evapotranspiration Sr Initia}l root zone storage deficit ~m 0.00-0.02 <0.05
Srmax Maximum root zone storage m 0.00-2 <0.05
deficit
. Ks Surface hydraulic conductivity — m h—! 0-0.01 <0.05
Infiltration . .
CD Capillary drive (Morel-Seytoux m 0-5 <0.05
and Khanji, 1974)
Suz Initial baseflow per unit area m 0.00-10~* <0.05
Szm Soil maximum water storage m 0.00-1.00 0.19
Unsaturated zone .
capacity
td Unsaturated zone time delay hm™! 0-3 1.07
per unit storage deficit
InTe log of the areal average of TO m?h~! —2.00-1.00 34
Stmax Maximum subsurface storm m 0.00-0.01 0.16
Subsurface storm flow zone flow zone deficit
C Transfer coefficient m~2h~! 0.00-0.1 0.26
gsf Initial subsurface storm flow m 0.00-0.02 0.18
per unit area
Routing t Flow routing correction - 0.00-5.0 1.21
coefficient

Note, the bolded values in the sensitivity index indicate sensitive model parameters.
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rence time (h).

1
RMS=\/NZi=1(Xi—Yi)2 )

1 N 5\2
SD:\/ﬁZizl(Yi -7) (10)
R L Xi—0E-DP
Y (Xi = X)2 L (Y —Y)?
where X; is the Top-SSF calibration model parameter value;
Y; is the model parameter estimated value using the parame-

ter regionalization method; X and Y are the mean values of
X; and Y;; N is the sample size equal to 80.

an

4 Result
4.1 Model performance

The Top-SSF model demonstrated good flood simulation per-
formance across the 80 gauged catchments, as quantified by
NSE, Oy, and T,. During the calibration period, 50 % of the
catchments achieved NSE values exceeding 0.78 (Fig. 5a),
the median Q) value was below 10 % (Fig. 5b), and the me-
dian T, value was within 2h (Fig. 5c). The average NSE
value was approximately 0.8, with a maximum of 0.96. The
majority of Qp values were around 8 %, and the majority
of T, values were below 2h. During the validation period,
the median NSE value was 0.76 (Fig. 5a), the median Q)
value was below 10 % (Fig. 5b), and the median 7, value
was within 4 h (Fig. 5¢). The hydrological response times for
the 80 catchments were approximated as the time from pre-
cipitation peak to flood peak. The estimated range is from 1
to 26 h. This diversity is indicative of the comprehensive na-
ture of the study, which encompasses both rapid flash floods
in smaller basins and more general floods in larger, moun-
tainous catchments (mean area: 1586 km?). For catchments
with longer response times, a median error of 2—4 h remains
operationally valuable for providing sufficient flood warn-
ing lead time. It is noteworthy that the median 7}, during the
calibration period (within 2 h) satisfied China’s Specification
for Hydrological Information Forecast (GB/T 22482-2008)
stringent requirements for high-quality forecasts.

Model performance also exhibited some dependence on
catchment characteristics. For instance, NSE generally im-
proved with increasing forest cover (Fig. 6a), potentially due
to the model’s explicit representation of forest canopy inter-
ception and subsurface storm flow generation mechanisms.
The relationship between NSE, O, T, and elevation was
more complex, suggesting a nonlinear influence of elevation
on model performance (Fig. 6a—c). The demonstrated robust
performance of the Top-SSF model provides a strong foun-
dation for its application in subsequent parameter regional-
ization analyses.
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4.2 Results of parameter regionalization

4.2.1 Comparison of sensitive model parameter
estimates

The six single machine learning regionalization methods ex-
hibited varying performance in estimating sensitive model
parameters (Fig. 7), likely due to differences in catchment
descriptor characteristics and the underlying principles of
each method. The corresponding hyperparameter configura-
tions are presented in Tables S1-6 of the Supplement. The
GBM demonstrated the highest accuracy in estimating Szm,
td, and C (R2 =0.90, 0.86, and 0.87, respectively,), with its
estimates also exhibiting a SD that closely matched the dis-
tribution of the calibrated parameter values. KNN provided
the most accurate estimates for InTe, gsf, and ¢ (R2 =0.87,
0.89, and 0.90, respectively), also with SD closely resem-
bling the calibrated parameter distributions. ERT performed
best in estimating Sfmax (R? =0.87), but its performance
was generally poorer for other parameters. DT, SVM, and RF
methods generally showed lower performance across all sen-
sitive model parameters. These differences in performance
highlight the potential benefits of multi-machine learning en-
semble methods for improving flood prediction in ungauged
mountainous catchments.

4.2.2 Comparison of flood forecasting results

The flood prediction performance of the Top-SSF model, in-
tegrated with different parameter regionalization methods,
was compared across 80 mountainous catchments in south-
western China. The methods included single machine learn-
ing methods and a multi-machine learning ensemble method
(GBM-KNN-ERT), where GBM estimated Szm, td, and C;
KNN estimated InTe, gsf, and ¢; and ERT estimated Sfmax.
The performance of these parameter regionalization methods
was then evaluated against the performance of the Top-SSF
model using calibrated parameters. Among the single ma-
chine learning methods, GBM performed best, with 60 catch-
ments achieving a positive NSE (NSE > 0, Fig. 8d). Criti-
cally, for high-accuracy predictions (NSE > 0.9), GBM suc-
ceeded in 43 catchments (54 %), also showing strong per-
formance with Q) less than 5% and T}, less than 1 hour
in most cases (Fig. 8a—c). The GBM-KNN-ERT ensemble
method yielded even better results. It increased the number
of catchments with positive NSE to 75 (Fig. 8d). More im-
pressively, the ensemble method achieved exceptional per-
formance (NSE > 0.9) in 72 catchments (90 %). This rep-
resents a 67.44 % increase in the number of high-accuracy
predictions compared to the best single method (GBM). Fur-
thermore, the ensemble method Q) values were more con-
centrated around zero, and 90 % of catchments maintained
near-zero T;, values. These results strongly demonstrate the
superior potential of multi-machine learning ensembles for
improving flood prediction in ungauged catchments.
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Figure 6. Influence of environmental factors on Top-SSF model performance in flood simulation. The graphs illustrate the relationship
between model evaluation metrics and forest cover (left) and elevation (right).

To further illustrate these performance differences visu-
ally, Fig. 8e, f, and g presents hydrographs from three ran-
domly selected flood events. These events represent cases
where the calibrated Top-SSF model itself achieved high
(NSE =0.91), medium (NSE =0.76), and low (NSE =0.55)
performance, respectively. A key insight from these plots is
that the Top-SSF simulation (solid black line) is the perfor-
mance benchmark for the regionalization methods. Although
the models aim to approximate measured floods, their perfor-
mance is ultimately limited by the accuracy of the Top-SSF
model structure and its optimized parameters.

The hydrographs show how the GBM-KNN-ERT ensem-
ble achieves superior performance by leveraging the comple-
mentary strengths of its component methods. For instance,
in the high-performance case (Fig. 8e), the GBM and KNN
methods capture the overall shape well, but the ERT simula-
tion provides a more precise estimation of the primary flood
peak. The final ensemble successfully integrates this peak
accuracy, resulting in the highest overall performance. Simi-
larly, Fig. 8f shows that the ensemble moderates the slow ini-
tial rise characteristic of the KNN method, leading to a more
realistic rising limb. The ensemble method ability to balance
competing errors is most evident in the low-performance
case (Fig. 8g). During the recession phase, the ensemble
method averages the high bias of the ERT method with the
low bias of the GBM and KNN methods, producing a hy-
drograph that more closely resembles the benchmark simula-
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tion than any single model could. This synergy demonstrates
that the ensemble method superior performance is a direct
result of its ability to integrate the specific, complementary
strengths of each member model across different parts of the
hydrological process.

5 Discussion

5.1 Reliability of multi-machine learning ensemble in
parameter regionalization

In this study, the GBM-KNN-ERT method demonstrated su-
perior regionalization performance, highlighting the poten-
tial of ensemble methods for improving hydrological predic-
tions in ungauged mountainous catchments. The success of
the ensemble is rooted in the distinct learning mechanisms
and behaviors of its individual components, which were re-
vealed during hyperparameter optimization.

The GBM method exhibited distinct parameter-specific
sensitivities to hyperparameters (Fig. 9a—c). For parameter
C, the negative correlation between R? and n_estimators
(> 300 trees) indicates overfitting risks when modeling com-
plex rainfall-runoff interactions in heterogeneous mountain-
ous terrain (Fig. 9a). This aligns with previous findings em-
phasizing the need for complexity control in hydrological
generalization (Schoups et al., 2008). Conversely, the im-
proved R? for parameter td with increased n_estimators high-
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lights the capacity of ensemble learning to capture complex,
nonlinear relationships between catchment descriptors and
hydrological parameters (Hastie et al., 2009). The contrasting
optimal max_depth of 10 layers for parameter C, compared
to shallower optimal depths (3—4 layers) for Szm and td, sug-
gests that parameters governing more complex hydrological
processes in mountainous catchments may require deeper de-
cision trees to effectively capture the interactions between
climate, topography, and soil properties (Wainwright and
Mulligan, 2013).
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KNN performance exhibited pronounced sensitivity to
neighbourhood size (n_neighbors) and distance metric (p),
highlighting the spatial heterogeneity of catchment descrip-
tors. For parameters InTe and gsf, optimal performance
was observed at n_neighbors =30 (Fig. 9d), aligns with
the hypothesis that meaningful hydrological similarities can
emerge even in topographically complex mountainous re-
gions when considered at broader spatial scales (Li et
al., 2022). Conversely, parameter ¢ achieved peak accu-
racy at n_neighbors =35, suggesting that localized, short-
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term weather events and fine-scale topographic similarities
in adjacent mountainous areas can significantly influence
local runoff processes (Garambois et al., 2015). The Man-
hattan distance metric (p = 1) outperformed Euclidean dis-
tance across all parameters (Fig. 9e). This performance ad-
vantage is primarily attributed to the method’s capacity to
alleviate the “curse of dimensionality” (Bellman, 1961) in-
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herent in high-dimensional datasets — a prevalent challenge
when characterizing complex mountainous catchments with
diverse descriptors. In such datasets, sparse data distribu-
tions and the presence of mixed variable types (e.g., topo-
graphic indices, land cover) can significantly degrade the dis-
criminative power of Euclidean distance (Rockstrom et al.,
2023). The robustness of the Manhattan distance arises from
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its axis-aligned sensitivity, which provides a more effective
means of handling feature scaling and integrating catchment
descriptors compared to the radial symmetry of Euclidean
distance.

ERT performance was maximized at max_features =0.1
(Fig. 9f). By restricting the random sampling of features dur-
ing node splits (using only 10 % of the features), both the
diversity of the trees was enhanced and the effects of mul-
ticollinearity between topographic and soil attributes were
reduced. This finding aligns with the theory proposed by
Geurts et al. (2006), which suggests that random feature se-
lection can significantly improve model generalization, a par-
ticularly important consideration in ungauged mountainous
catchments characterized by high levels of inter-correlation
among predictor variables.

These distinct sensitivities and learning mechanisms form
the scientific basis for the superiority of the GBM-KNN-ERT
method. As shown in Sect. 4.2, no single machine learning
method is universally optimal for all hydrological model pa-
rameters. Instead, the ensemble method effectively allocates
each parameter to the model best suited for its regionaliza-
tion. Specifically, GBM, with its capacity for modeling com-
plex interactions, proved optimal for integrated parameters
like Szm and td. In contrast, the instance-based KNN was su-
perior for parameters like InTe, which are governed by phys-
ical similarity and spatial coherence. Finally, the highly ran-
domized nature of ERT provided the necessary robustness
to model the noisy relationship associated with the Sfmax.
This synergistic combination, where each model contributes
its unique strength, results in a final regionalization frame-
work that is more accurate and physically plausible than any
individual method operating in isolation.

5.2 Combining multiple machine learning methods for
parameter regionalization

Machine learning methods exhibit distinct strengths in hy-
drological parameter estimation due to fundamental differ-
ences in data processing mechanisms, pattern recognition
strategies, and prediction generation (Bishop and Nasrabadi,
2006). This suggests that multi-machine learning ensemble
methods have the potential to synergistically integrate ad-
vantages while effectively compensating for individual lim-
itations, leading to more robust and accurate parameter es-
timates. As demonstrated in Fig. 10, the GBM-KNN-ERT
method achieved notable improvements over any single ma-
chine learning method, particularly for sensitive parameters
InTe, Sfmax, gsf and ¢, with R? increases ranging from
0.02 to 0.03 compared to the best-performing GBM method
(Fig. 10e).

Interestingly, a comparison of GBM4-KNN3 (where Sf-
max is estimated by GBM) and GBM3-KNN4 (where Sfmax
is estimated by KNN) revealed critical insights into model
parameter compatibility. Despite both achieving an identi-
cal R? of 0.85 for the estimation of Sfmax, GBM4-KNN3
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exhibited superior flood prediction performance, with 72
catchments achieving NSE > 0 compared to only 68 catch-
ments for GBM3-KNN4. This suggests that GBM possesses
an enhanced capability to resolve the complex coupling be-
tween soil moisture dynamics and topography, leading to
more physically plausible representation of subsurface storm
flow processes (Gupta et al., 2023). The wider distribution
of flood prediction performance observed for GBM3-KNN4
(Fig. 10a—c) further suggests that uncertainties introduced
by KNN in the estimation of Sfmax may propagate non-
linearly during flood simulations, potentially amplifying er-
rors. This observation aligns with theoretical expectations
that distance-based methods may tend to oversmooth criti-
cal thresholds or sharp transitions in heterogeneous environ-
ments, leading to a less accurate representation of hydrolog-
ical responses (Bellman, 1961).

Furthermore, an important consideration in adopting en-
semble methods is the trade-off between predictive accuracy
and computational efficiency. To evaluate this trade-off, we
compared the model training times for various parameter re-
gionalization methods, with the results summarized in Ta-
ble 4. The analysis shows that our proposed GBM-KNN-
ERT ensemble, while providing the highest predictive accu-
racy, required a total training time of 102.8 s. This is mod-
erately higher than the best-performing single model, GBM
(57.65), and other simpler ensemble methods like GBM4-
KNN3 (36.15). The increased computational time for the
GBM-KNN-ERT method is primarily attributed to the in-
clusion of the ERT method for estimating the Sfmax, which
is inherently more computationally intensive than GBM or
KNN.

However, it is crucial to contextualize this computational
cost for operational use. The process of training a regional-
ization method is an offline task, performed once to establish
the stable relationships between catchment descriptors and
model parameters. This one-time investment is not a con-
straint on real-time flood forecasting, as once the method is
trained, parameter estimation for a new ungauged catchment
is nearly instantaneous. To provide context for the reported
computational times, all model training and simulations were
performed on a workstation equipped with an Intel(R) Core
(TM) 19-10900K CPU @ 3.70 GHz, 32.0 GB of RAM, and
an NVIDIA Quadro P1000 (4 GB) GPU, running on a 64 bit
Windows operating system with Python 3.9. Given this con-
text, the modest increase in one-time training cost is a justi-
fiable investment for the significant improvements achieved
in flood prediction accuracy, model robustness, and stability.
Therefore, for applications in water resource management
and flood risk assessment where high accuracy is paramount,
the GBM-KNN-ERT method strikes an optimal and practi-
cal balance between computational efficiency and predictive
performance.
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Table 4. Running time (s) for different parameter regionalization methods.

GBM GBM4-KNN3 GBM3-KNN4 GBM-KNN-ERT KNN  ERT
InTe 11.3 34 34 3.7 3.6 74.4
Szm 7.8 7.5 7.7 7.8 0.6 76.7
td 8.2 8.1 8.0 8.5 0.6 74.7
Sfmax 7.7 8.2 0.6 73.6 0.5 74.9
C 7.8 7.7 7.7 8.0 0.6 74.9
gsf 7.4 0.6 0.6 0.6 0.6 76.3
t 7.4 0.6 0.6 0.6 0.5 75.3
Sum 57.6 36.1 28.6 102.8 7.0 5272

5.3 The influence of donor catchment quantity on
machine-learning parameter regionalization

The number of donor catchments used in machine learning-
based parameter regionalization methods is a critical fac-
tor influencing the accuracy and robustness of hydrologi-
cal predictions in ungauged catchments (Gauch et al., 2021;
Song et al., 2022; Zhang et al., 2022). In this study, we in-
vestigated the influence of donor catchment quantity (rang-
ing from 20 to 80) on the flood prediction performance of
the two best-performing parameter regionalization methods
(GBM4-KNN3 and GBM-KNN-ERT) across the 80 moun-
tainous catchments (Fig. 11). It is important to clarify that the
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following analysis is not a method for selecting donor catch-
ments based on physical similarity — a task handled by the
machine learning methods itself when it learns the relation-
ships between catchment descriptors and model parameters.
Instead, this experiment serves as a sensitivity analysis to un-
derstand how the regionalization performance is affected by
the overall quantity and quality of the available training data.

To systematically investigate the performance influence
of donor catchment quantity on parameter regionalization,
two distinct sampling strategies were employed across the
80 mountainous catchments. In Mode 1 (selection of donor
catchments based on decreasing NSE), which was designed
to test the impact of data quality, a non-monotonic relation-
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Figure 10. Assessment of combined machine learning methods for improved parameter regionalization in ungauged mountainous catch-
ments. Performance is evaluated against the GBM method, showing (a) NSE, (b) QOp, (¢) Tp, (d) Number of catchments with NSE > 0, and

(e) the difference in R2.

ship was observed. For both methods, regionalization per-
formance peaked with 20—40 donor catchments and then de-
clined, particularly for the GBM4-KNN3 method (Fig. 11a—
c¢). This performance degradation is not due to increasing
catchment dissimilarity, but rather to the introduction of
lower-quality training data. As the donor pool expands be-
yond the best-performing catchments, it begins to include
catchments where the Top-SSF model calibration itself was
less successful (i.e., lower NSE values). These “low-quality”
samples may introduce noise and less reliable parameter-
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descriptor relationships, which can mislead the training pro-
cess (Gauch et al., 2021; Zhang et al., 2022). Notably, the
GBM-KNN-ERT method demonstrated greater resilience to
this degradation. Its performance, while also peaking early,
did not degrade as sharply and instead tended to stabilize
after the inclusion of approximately 70 catchments. This
suggests that the more complex ensemble structure has a
superior ability to suppress noise and generalize from a
dataset containing a mix of high- and low-quality exam-
ples, highlighting its enhanced robustness. In contrast, Mode
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2 (random selection of donor catchments) demonstrated a
consistent improvement in regionalization performance for
both NSE and 7, as the number of donor catchments in-
creased (Fig. 11d-f). However, while the average perfor-
mance improves with data quantity, it is important to ac-
knowledge that this trend relies on the random samples being
generally representative; a poorly chosen random set could
still reduce generalizability. Notably, under both modes, the
GBM-KNN-ERT method consistently exhibited significantly
greater performance stability compared to the alternative
ensemble, GBM4-KNN3. This enhanced robustness likely
arises from its more effective suppression of data hetero-
geneity and noise interference, indicating that more complex
ensemble methods possess a greater capacity to balance the
benefits of increased data quantity with the potential draw-
backs of reduced data quality.

5.4 The impact of climate change on parameter
regionalization methods

The hydrological cycle within catchments is fundamentally
governed by complex interactions between climate and en-
vironmental factors. The Intergovernmental Panel on Cli-
mate Change (IPCC) has consistently documented a contin-
uous and accelerating transition in global climatic patterns,
characterized by increased variability and extreme events
(Pachauri et al., 2014). Consequently, future flood predic-
tions derived from parameter regionalization methods are ex-
pected to exhibit increased uncertainty and variability, high-
lighting the substantial influence of climate change on the
reliability and precision of flood predictions in ungauged
mountainous catchments (Yang et al., 2019). Therefore, a
sensitivity analysis was designed to evaluate the robustness
of the trained regionalization models when confronted with
climatic conditions outside their original training range.

To quantitatively assess the impact of climate change, an
experiment was devised where this impact was primarily re-
flected through changes in two key catchment descriptors:
Tem and Pre. For the historical period, these descriptors rep-
resent the multi-year averages over 1901-2021, while for
the future period, they represent the projected multi-year av-
erages over 2022-2100 under the SSP5-8.5 scenario. The
regionalization methods (GBM4-KNN3 and GBM-KNN-
ERT), which were trained exclusively using historical data,
were then applied under these future conditions. Crucially,
the method structures and hyperparameters remained fixed,
and no retraining was performed; only the historical Tem and
Pre values were replaced with their future projections. This
approach allows the response of the established historical re-
lationships to new, out-of-sample climatic inputs to be tested.
The simulated peak discharges for this analysis were derived
from the same three flood events used in the calibration and
validation of the Top-SSF model. This experimental design is
critical as it isolates the impact of the changed model parame-
ters from the compounding effect of a different future rainfall
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event. Consequently, any observed change in the simulated
flood peak is attributable solely to the sensitivity of the re-
gionalization method to the shift in climatic descriptors. Cu-
mulative distribution functions (CDFs) were then employed
to illustrate the discrepancies between the parameter region-
alization simulations and the reference simulations (derived
from calibrated model parameters) across the historical and
projected future periods for the 80 catchments (Fig. 12).

A comparative analysis of Fig. 12a and b reveals a clear
amplification of the absolute differences in predicted flood
peaks (quantified as the error in runoff modulus) between
the two parameter regionalization methods and the reference
Top-SSF model simulations during the transition from the
historical period to the projected future period. Specifically,
the maximum error in runoff modulus for the GBM4-KNN3
method increased by 68.46m>s~! km~2 from the historical
period to the future period, while the increase for the GBM-
KNN-ERT method was a smaller 56.65m>s~! km~2. These
results underscore that parameter regionalization methods
are inherently sensitive to changing climatic forcing. How-
ever, they also provide compelling evidence that the GBM-
KNN-ERT method exhibits superior stability and resilience
under climate change, demonstrating its potential for more
reliable long-term flood risk assessment in ungauged moun-
tainous regions.

Exploring the effects of climate change on parameter
regionalization methods provides valuable insights for ad-
vancing flood prediction research in prediction in ungauged
basins. The enhanced stability demonstrated by the GBM-
KNN-ERT ensemble offers a promising direction for devel-
oping robust regionalization methods capable of navigating
the challenges of a non-stationary climate.

5.5 Uncertainty and limitation

The uncertainty in this study arises from several sources, in-
cluding the hydrological model, the regionalization methods,
and the data itself. A critical evaluation of these sources helps
to contextualize our findings and assess the generalizability
of the ensemble method. Uncertainty from the hydrological
model is inherent in its structure and the calibrated param-
eters. Although the Top-SSF model performed well, its pa-
rameters are effective values subject to equifinality. This un-
certainty in the “true” parameter values can be viewed as a
form of calibration bias, which serves as the target data for
our regionalization. To mitigate this, we employed the ro-
bust SCE-UA optimization algorithm and focused only on
sensitive parameters. Uncertainty is also introduced by the
regionalization methods themselves, as the training data de-
rived from donor catchments are susceptible to errors that
can impact model performance (Mosavi et al., 2018; Xu and
Liang, 2021).

A specific methodological choice was the exclusion of
deep learning architectures, such as Multilayer Perceptrons
or Long Short-Term Memory (LSTM) networks. This de-
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cision was guided by several factors. First, parameter re-
gionalization is a static regression problem, mapping time-
invariant catchment descriptors to model parameters, which
does not align with the sequential data structure for which
LSTM is designed. Second, deep networks typically require

https://doi.org/10.5194/hess-30-205-2026

large datasets to avoid overfitting; with a dataset of 80 catch-
ments, traditional machine learning methods like GBM and
ERT are often more robust and less prone to memorizing
training data. Third, a key advantage of parameter region-
alization is its potential for physical interpretability. Unlike
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DL models, whose internal decision-making processes are
often obscured within abstract weight matrices, the ensemble
methods employed here offer more accessible transparency.
The tree-based models (GBM and ERT) allow for the direct
assessment of feature importance, enabling the verification of
physical consistency. Furthermore, the KNN component pro-
vides “instance-based” interpretability by explicitly identify-
ing the specific donor catchments used for transfer. This pre-
serves the traceable logic of hydrological similarity, clearly
indicating the geographical or physical source of the trans-
ferred parameters, a level of insight that is crucial for build-
ing trust in water resource management.

Furthermore, the primary contribution of this study is
not the identification of a single superior algorithm, but the
demonstration of a data-driven framework for constructing
a locally optimal ensemble. The complementarity of the
chosen models was not assumed but empirically validated
through a competitive evaluation process. Each of the seven
machine learning methods was independently trained and as-
sessed for its ability to estimate each sensitive parameter. The
final GBM-KNN-ERT ensemble was constructed by select-
ing only the empirically best-performing model for each pa-
rameter based on objective metrics (Rz, RMSE, SD). The
very fact that different methods were selected for different
hydrological parameters provides direct empirical evidence
of their complementary strengths, thus validating the ensem-
ble method.

Furthermore, the specific GBM-KNN-ERT combination
identified is necessarily data-dependent, raising questions
about its transferability. However, this study primary contri-
bution is not the specific model combination itself, but rather
the demonstration of a data-driven method for constructing
a locally optimal ensemble. This method is designed to be
generalizable; applying the same competitive evaluation pro-
cess to a new region would identify the best ensemble for that
specific dataset. The key to overcoming these limitations and
ensuring robust generalization lies in genuine model com-
plementarity. The ensemble method’s success is not an arti-
fact of overfitting to calibration bias or data quirks. Instead, it
stems from a physically plausible “division of labor”, where
different models are empirically shown to be better suited
for regionalizing parameters governed by distinct physical
processes. The ensemble method’s superior stability in the
out-of-sample climate change stress test further supports this
conclusion, indicating that it has captured robust underlying
relationships, not just noise.

To manage methodological uncertainty, we employed K-
fold cross-validation to ensure robust performance evalua-
tion and RandomizedSearchCV for hyperparameter tuning
to minimize overfitting (Bergstra and Bengio, 2012). A key
methodological decision was to evaluate the regionalization
methods against the outputs of the calibrated Top-SSF model,
rather than directly against observed flood events. This ap-
proach was chosen for two primary reasons. First, it isolates
the performance of the parameter regionalization itself. The
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calibrated simulation represents the theoretical ’best-case’
performance for the given hydrological model structure; con-
sequently, any deviation from this benchmark can be directly
attributed to imperfections in the regionalization method,
rather than being confounded by the inherent structural lim-
itations of the Top-SSF model. Second, this strategy ensures
that the machine learning models learn the underlying phys-
ical relationships intended by the hydrological model, not
simply mimic data noise or measurement errors present in
the observations. If trained against raw observations, the ma-
chine learning methods might derive “spurious” parameter
sets that compensate for both the hydrological model’s struc-
tural flaws and observational errors. Such parameters could
appear effective but would lack physical meaning and gener-
alizability. These measures, combined with the evidence for
model complementarity, provide a strong basis for the scien-
tific validity and potential for generalization of our proposed
ensemble method.

6 Conclusions

This study introduces a novel multi-machine learning en-
semble method (GBM-KNN-ERT) to enhance model pa-
rameter transferability and improve flood prediction in un-
gauged mountainous catchments. The proposed GBM-KNN-
ERT method demonstrated a substantial advancement in both
flood prediction accuracy and model robustness, achiev-
ing exceptional performance with 90 % of ungauged catch-
ments exhibiting a NSE exceeding 0.9, a significant 67.44 %
improvement compared to the best single machine learn-
ing method evaluated in this study. Importantly, the GBM-
KNN-ERT method exhibited remarkable stability under sim-
ulated climate change, thereby highlighting its potential for
reliable application in non-stationary hydrological environ-
ments. Furthermore, the method demonstrated notable adapt-
ability to varying donor-catchment configurations, where an
optimal balance between predictive accuracy and computa-
tional efficiency with a relatively limited set of 20—40 high-
quality donor catchments (NSE > 0.85). By integrating the
diverse strengths of multiple machine learning with hydro-
logical model, the proposed methodology significantly ad-
vances the field of flood prediction in ungauged catchments,
offering a reliable tool for water resource management and
flood disaster mitigation.
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tion.
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