Articles | Volume 29, issue 22
https://doi.org/10.5194/hess-29-6445-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-6445-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Technical note: A low-cost approach to monitoring relative streamflow dynamics in small headwater streams using time lapse imagery and a deep learning model
Phillip J. Goodling
CORRESPONDING AUTHOR
Earth Surface Processes Division, US Geological Survey, 5522 Research Park Drive, Catonsville, MD, 21228, USA
Jennifer H. Fair
S. O. Conte Research Laboratory, Eastern Ecological Science Center, US Geological Survey, One Migratory way, Turners Falls, MA, 01376, USA
Amrita Gupta
Microsoft Corporation AI For Good Lab, Redmond, WA 98052, USA
Jeffrey D. Walker
Walker Environmental Research LLC, Brunswick, ME 04011, USA
Todd Dubreuil
S. O. Conte Research Laboratory, Eastern Ecological Science Center, US Geological Survey, One Migratory way, Turners Falls, MA, 01376, USA
Michael Hayden
S. O. Conte Research Laboratory, Eastern Ecological Science Center, US Geological Survey, One Migratory way, Turners Falls, MA, 01376, USA
Benjamin H. Letcher
S. O. Conte Research Laboratory, Eastern Ecological Science Center, US Geological Survey, One Migratory way, Turners Falls, MA, 01376, USA
Related authors
Martin A. Briggs, Phillip Goodling, Zachary C. Johnson, Karli M. Rogers, Nathaniel P. Hitt, Jennifer B. Fair, and Craig D. Snyder
Hydrol. Earth Syst. Sci., 26, 3989–4011, https://doi.org/10.5194/hess-26-3989-2022, https://doi.org/10.5194/hess-26-3989-2022, 2022
Short summary
Short summary
The geologic structure of mountain watersheds may control how groundwater and streamwater exchange, influencing where streams dry. We measured bedrock depth at 191 locations along eight headwater streams paired with stream temperature records, baseflow separation and observations of channel dewatering. The data indicated a prevalence of shallow bedrock generally less than 3 m depth, and local variation in that depth can drive stream dewatering but also influence stream baseflow supply.
Martin A. Briggs, Phillip Goodling, Zachary C. Johnson, Karli M. Rogers, Nathaniel P. Hitt, Jennifer B. Fair, and Craig D. Snyder
Hydrol. Earth Syst. Sci., 26, 3989–4011, https://doi.org/10.5194/hess-26-3989-2022, https://doi.org/10.5194/hess-26-3989-2022, 2022
Short summary
Short summary
The geologic structure of mountain watersheds may control how groundwater and streamwater exchange, influencing where streams dry. We measured bedrock depth at 191 locations along eight headwater streams paired with stream temperature records, baseflow separation and observations of channel dewatering. The data indicated a prevalence of shallow bedrock generally less than 3 m depth, and local variation in that depth can drive stream dewatering but also influence stream baseflow supply.
Cited articles
Bellucci, C. J., Becker, M. E., Czarnowski, M., and Fitting, C.: A novel method to evaluate stream connectivity using trail cameras, River Res. Appl., 36, 1504–1514, https://doi.org/10.1002/rra.3689, 2020.
Benda, L., Poff, N. L., Miller, D., Dunne, T., Reeves, G., Pess, G., and Pollock, M.: The Network Dynamics Hypothesis: How Channel Networks Structure Riverine Habitats, BioScience, 54, 413, https://doi.org/10.1641/0006-3568(2004)054[0413:TNDHHC]2.0.CO;2, 2004.
Birgand, F., Chapman, K., Hazra, A., Gilmore, T., Etheridge, R., and Staicu, A.-M.: Field performance of the GaugeCam image-based water level measurement system, PLOS Water, 1, e0000032, https://doi.org/10.1371/journal.pwat.0000032, 2022.
Briggs, M. A., Lane, J. W., Snyder, C. D., White, E. A., Johnson, Z. C., Nelms, D. L., and Hitt, N. P.: Shallow bedrock limits groundwater seepage-based headwater climate refugia, Limnologica, 68, 142–156, https://doi.org/10.1016/j.limno.2017.02.005, 2018.
Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., and Hullender, G.: Learning to rank using gradient descent, in: Proceedings of the 22nd International Conference on Machine Learning, Bonn, Germany, 7–11 August 2005, Association for Computing Machinery, NY, USA, 89–96, https://doi.org/10.1145/1102351.1102363, 2005.
Carlisle, D. M., Grantham, T. E., Eng, K., and Wolock, D. M.: Biological relevance of streamflow metrics: regional and national perspectives, Freshw. Sci., 36, 927–940, https://doi.org/10.1086/694913, 2017.
Chapman, K. W., Gilmore, T. E., Chapman, C. D., Birgand, F., Mittelstet, A. R., Harner, M. J., Mehrubeoglu, M., and Stranzl, J. E.: Technical Note: Open-Source Software for Water-Level Measurement in Images With a Calibration Target, Water Resour. Res., 58, e2022WR033203, https://doi.org/10.1029/2022WR033203, 2022.
Colvin, S. A. R., Sullivan, S. M. P., Shirey, P. D., Colvin, R. W., Winemiller, K. O., Hughes, R. M., Fausch, K. D., Infante, D. M., Olden, J. D., Bestgen, K. R., Danehy, R. J., and Eby, L.: Headwater Streams and Wetlands are Critical for Sustaining Fish, Fisheries, and Ecosystem Services, Fisheries, 44, 73–91, https://doi.org/10.1002/fsh.10229, 2019.
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L.: ImageNet: A large-scale hierarchical image database, in: 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPR Workshops), Miami, FL, 20–25 June 2009, IEEE, 248–255, https://doi.org/10.1109/CVPR.2009.5206848, 2009.
Deweber, J. T., Tsang, Y., Krueger, D. M., Whittier, J. B., Wagner, T., Infante, D. M., and Whelan, G.: Importance of Understanding Landscape Biases in USGS Gage Locations: Implications and Solutions for Managers, Fisheries, 39, 155–163, https://doi.org/10.1080/03632415.2014.891503, 2014.
Dunn, O. J.: Multiple Comparisons Using Rank Sums, Technometrics, 6, 241–252, https://doi.org/10.1080/00401706.1964.10490181, 1964.
EcoSHEDS: fpe-model, v0.9.0 [code], https://github.com/EcoSHEDS/fpe-model (last access: 13 November 2025), 2024.
Eltner, A., Elias, M., Sardemann, H., and Spieler, D.: Automatic Image-Based Water Stage Measurement for Long-Term Observations in Ungauged Catchments, Water Resour. Res., 54, 10362–10371, https://doi.org/10.1029/2018WR023913, 2018.
Eltner, A., Bressan, P. O., Akiyama, T., Gonçalves, W. N., and Marcato Junior, J.: Using Deep Learning for Automatic Water Stage Measurements, Water Resour. Res., 57, e2020WR027608, https://doi.org/10.1029/2020WR027608, 2021.
Fair, J. B., Bruet, C. R., Rogers, K. M., Dubreuil, T. L., Hayden, M. J., Hitt, N. P., Letcher, B. H., and Snyder, C. D.: USGS EcoDrought Stream Discharge, Gage Height and Water Temperature Data in Massachusetts (ver. 2.0, February 2025), U.S. Geological Survey [data set], https://doi.org/10.5066/P9ES4RQS, 2025.
Gilmore, T. E., Birgand, F., and Chapman, K. W.: Source and magnitude of error in an inexpensive image-based water level measurement system, J. Hydrol., 496, 178–186, https://doi.org/10.1016/j.jhydrol.2013.05.011, 2013.
Goodling, P. J., Fair, J. B., Gupta, A., Walker, J., Dubreuil, T. L., Hayden, M. J., and Letcher, B.: Model Predictions, Observations, and Annotation Data for Deep Learning Models Developed To Estimate Relative Flow at 11 Massachusetts Streamflow Sites, 2017-2024, U.S. Geological Survey [data set], https://doi.org/10.5066/P14LU6CQ, 2025.
Gupta, A., Chang, T., Walker, J., and Letcher, B.: Towards Continuous Streamflow Monitoring with Time-Lapse Cameras and Deep Learning, in: ACM SIGCAS/SIGCHI Conference on Computing and Sustainable Societies (COMPASS), COMPASS '22: ACM SIGCAS/SIGCHI Conference on Computing and Sustainable Societies, Seattle, WA, USA, 29 June–1 July 2022, Association for Computing Machinery, NY, USA, 353–363, https://doi.org/10.1145/3530190.3534805, 2022.
He, K., Zhang, X., Ren, S., and Sun, J.: Deep Residual Learning for Image Recognition, arXiv [preprint], https://doi.org/10.48550/ARXIV.1512.03385, 2015.
Hitt, N. P., Landsman, A. P., and Raesly, R. L.: Life history strategies of stream fishes linked to predictors of hydrologic stability, Ecol. Evol., 12, e8861, https://doi.org/10.1002/ece3.8861, 2022.
Horner, I., Renard, B., Le Coz, J., Branger, F., McMillan, H. K., and Pierrefeu, G.: Impact of Stage Measurement Errors on Streamflow Uncertainty, Water Resour. Res., 54, 1952–1976, https://doi.org/10.1002/2017WR022039, 2018.
Jaeger, K. L., Hafen, K. C., Dunham, J. B., Fritz, K. M., Kampf, S. K., Barnhart, T. B., Kaiser, K. E., Sando, R., Johnson, S. L., McShane, R. R., and Dunn, S. B.: Beyond Streamflow: Call for a National Data Repository of Streamflow Presence for Streams and Rivers in the United States, Water, 13, 1627, https://doi.org/10.3390/w13121627, 2021.
Kaplan, N. H., Sohrt, E., Blume, T., and Weiler, M.: Monitoring ephemeral, intermittent and perennial streamflow: a dataset from 182 sites in the Attert catchment, Luxembourg, Earth Syst. Sci. Data, 11, 1363–1374, https://doi.org/10.5194/essd-11-1363-2019, 2019.
Kassambara, A.: rstatix: Pipe-Friendly Framework for Basic Statistical Tests [code], https://doi.org/10.32614/CRAN.package.rstatix, 2023.
Kendall, M. G.: A NEW MEASURE OF RANK CORRELATION, Biometrika, 30, 81–93, https://doi.org/10.1093/biomet/30.1-2.81, 1938.
Keys, T. A., Jones, C. N., Scott, D. T., and Chuquin, D.: A cost-effective image processing approach for analyzing the ecohydrology of river corridors: Image processing of fluvial ecohydrology, Limnol. Oceanogr.-Meth., 14, 359–369, https://doi.org/10.1002/lom3.10095, 2016.
Kim, J., Han, Y., and Hahn, H.: Embedded implementation of image-based water-level measurement system, IET Comput. Vis., 5, 125, https://doi.org/10.1049/iet-cvi.2009.0144, 2011.
King, T., Hundt, S., Simonson, A., and Blasch, K.: Evaluation of Select Velocity Measurement Techniques for Estimating Discharge in Small Streams across the United States, J. Am. Water Resour. As., 58, 1510–1530, https://doi.org/10.1111/1752-1688.13053, 2022.
Krabbenhoft, C. A., Allen, G. H., Lin, P., Godsey, S. E., Allen, D. C., Burrows, R. M., DelVecchia, A. G., Fritz, K. M., Shanafield, M., Burgin, A. J., Zimmer, M. A., Datry, T., Dodds, W. K., Jones, C. N., Mims, M. C., Franklin, C., Hammond, J. C., Zipper, S., Ward, A. S., Costigan, K. H., Beck, H. E., and Olden, J. D.: Assessing placement bias of the global river gauge network, Nature Sustainability, 5, 586–592, https://doi.org/10.1038/s41893-022-00873-0, 2022.
Kruskal, W. H. and Wallis, W. A.: Use of Ranks in One-Criterion Variance Analysis, J. Am. Stat. Assoc., 47, 583–621, https://doi.org/10.1080/01621459.1952.10483441, 1952.
Leduc, P., Ashmore, P., and Sjogren, D.: Technical note: Stage and water width measurement of a mountain stream using a simple time-lapse camera, Hydrol. Earth Syst. Sci., 22, 1–11, https://doi.org/10.5194/hess-22-1-2018, 2018.
Levin, S. B., Briggs, M. A., Foks, S. S., Goodling, P. J., Raffensperger, J. P., Rosenberry, D. O., Scholl, M. A., Tiedeman, C. R., and Webb, R. M.: Uncertainties in measuring and estimating water-budget components: Current state of the science, WIREs Water, 10, e1646, https://doi.org/10.1002/wat2.1646, 2023.
Lin, Y.-T., Lin, Y.-C., and Han, J.-Y.: Automatic water-level detection using single-camera images with varied poses, Measurement, 127, 167–174, https://doi.org/10.1016/j.measurement.2018.05.100, 2018.
Liu, W.-C. and Huang, W.-C.: Evaluation of deep learning computer vision for water level measurements in rivers, Heliyon, 10, e25989, https://doi.org/10.1016/j.heliyon.2024.e25989, 2024.
Ljubičić, R., Strelnikova, D., Perks, M. T., Eltner, A., Peña-Haro, S., Pizarro, A., Dal Sasso, S. F., Scherling, U., Vuono, P., and Manfreda, S.: A comparison of tools and techniques for stabilising unmanned aerial system (UAS) imagery for surface flow observations, Hydrol. Earth Syst. Sci., 25, 5105–5132, https://doi.org/10.5194/hess-25-5105-2021, 2021.
McKay, L., Bondelid, T., Dewald, T., Johnston, J., Moore, R., and Rea, A.: NHDPlus version 2: User guide, United States Environmental Protection Agency, https://www.epa.gov/system/files/documents/2023-04/NHDPlusV2_User_Guide.pdf (last access: May 2024), 2012.
McManamay, R. A. and DeRolph, C. R.: A stream classification system for the conterminous United States, Sci. Data, 6, 190017, https://doi.org/10.1038/sdata.2019.17, 2019.
McMillan, H., Krueger, T., and Freer, J.: Benchmarking observational uncertainties for hydrology: rainfall, river discharge and water quality, Hydrol. Process., 26, 4078–4111, https://doi.org/10.1002/hyp.9384, 2012.
Messager, M. L., Lehner, B., Cockburn, C., Lamouroux, N., Pella, H., Snelder, T., Tockner, K., Trautmann, T., Watt, C., and Datry, T.: Global prevalence of non-perennial rivers and streams, Nature, 594, 391–397, https://doi.org/10.1038/s41586-021-03565-5, 2021.
Moore, R. B., McKay, L. D., Rea, A. H., Bondelid, T. R., Price, C. V., Dewald, T. G., and Johnston, C. M.: User's guide for the national hydrography dataset plus (NHDPlus) high resolution, Reston, VA, https://doi.org/10.3133/ofr20191096, 2019.
Nguyen, L. S., Schaeli, B., Sage, D., Kayal, S., Jeanbourquin, D., Barry, D. A., and Rossi, L.: Vision-based system for the control and measurement of wastewater flow rate in sewer systems, Water Sci. Technol., 60, 2281–2289, https://doi.org/10.2166/wst.2009.659, 2009.
Noto, S., Tauro, F., Petroselli, A., Apollonio, C., Botter, G., and Grimaldi, S.: Low-cost stage-camera system for continuous water-level monitoring in ephemeral streams, Hydrolog. Sci. J., 67, 1439–1448, https://doi.org/10.1080/02626667.2022.2079415, 2022.
R Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria [code], https://www.R-project.org (last access: 17 November 2025), 2021.
Schoener, G.: Time-Lapse Photography: Low-Cost, Low-Tech Alternative for Monitoring Flow Depth, J. Hydrol. Eng., 23, 06017007, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001616, 2018.
Seybold, E. C., Bergstrom, A., Jones, C. N., Burgin, A. J., Zipper, S., Godsey, S. E., Dodds, W. K., Zimmer, M. A., Shanafield, M., Datry, T., Mazor, R. D., Messager, M. L., Olden, J. D., Ward, A., Yu, S., Kaiser, K. E., Shogren, A., and Walker, R. H.: How low can you go? Widespread challenges in measuring low stream discharge and a path forward, Limnology and Oceanography Letters, 8, 804–811, https://doi.org/10.1002/lol2.10356, 2023.
Shorten, C. and Khoshgoftaar, T. M.: A survey on Image Data Augmentation for Deep Learning, Journal of Big Data, 6, 60, https://doi.org/10.1186/s40537-019-0197-0, 2019.
Steward, A. L., Von Schiller, D., Tockner, K., Marshall, J. C., and Bunn, S. E.: When the river runs dry: human and ecological values of dry riverbeds, Front. Ecol. Environ., 10, 202–209, https://doi.org/10.1890/110136, 2012.
Turnipseed, D. P. and Sauer, V. B.: Discharge measurements at gaging stations, Reston, VA, https://doi.org/10.3133/tm3A8, 2010.
U.S. Geological Survey: National Water Information System, USGS, https://doi.org/10.5066/F7P55KJN, 2024.
Vandaele, R., Dance, S. L., and Ojha, V.: Deep learning for automated river-level monitoring through river-camera images: an approach based on water segmentation and transfer learning, Hydrol. Earth Syst. Sci., 25, 4435–4453, https://doi.org/10.5194/hess-25-4435-2021, 2021.
Short summary
We describe a stream monitoring method using low-cost cameras and a deep learning model. It produces a relative hydrograph (0–100%). We applied the method to 11 cameras at 8 sites and found model performance sufficient to describe floods and droughts. The models were trained on image pairs annotated by people. We examined how well people performed annotations and how many annotations were needed. We concluded this method can be used to gain new insights into under-monitored small streams.
We describe a stream monitoring method using low-cost cameras and a deep learning model. It...