Hydrol. Earth Syst. Sci., 29, 6445-6460, 2025
https://doi.org/10.5194/hess-29-6445-2025

© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.

Hydrology and
Earth System
Sciences

Technical note: A low-cost approach to monitoring relative
streamflow dynamics in small headwater streams using time lapse
imagery and a deep learning model

Phillip J. Goodling', Jennifer H. Fair’, Amrita Gupta®, Jeffrey D. Walker*, Todd Dubreuil’, Michael Hayden?, and

Benjamin H. Letcher?

IEarth Surface Processes Division, US Geological Survey, 5522 Research Park Drive, Catonsville, MD, 21228, USA
2S. O. Conte Research Laboratory, Eastern Ecological Science Center, US Geological Survey, One Migratory way, Turners

Falls, MA, 01376, USA

3Microsoft Corporation Al For Good Lab, Redmond, WA 98052, USA
4Walker Environmental Research LLC, Brunswick, ME 04011, USA

Correspondence: Phillip J. Goodling (pgoodling @usgs.gov)

Received: 18 March 2025 — Discussion started: 28 March 2025

Revised: 18 June 2025 — Accepted: 1 August 2025 — Published: 19 November 2025

Abstract. Despite their ubiquity and importance as freshwa-
ter habitat, small headwater streams are under-monitored by
existing stream gage networks. To address this gap, we de-
scribe a low-cost, non-contact, and low-effort method that
enables organizations to monitor relative streamflow dynam-
ics in small headwater streams. The method uses a camera
to capture repeat images of the stream from a fixed posi-
tion. A person then annotates pairs of images, in each case
indicating which image has more apparent streamflow or in-
dicating equal flow if no difference is discernible. A deep
learning modeling framework called streamflow rank esti-
mation (SRE) is then trained on the annotated image pairs
and applied to rank all images from highest to lowest appar-
ent streamflow. From this result a relative hydrograph can be
derived. We found that our modeled relative hydrograph dy-
namics matched the observed hydrograph dynamics well for
11 cameras at 8 streamflow sites in western Massachusetts.
Higher performance was observed during the annotation pe-
riod (median Kendall’s Tau rank correlation of 0.75, with
a range of 0.6-0.83) than after it (median Kendall’s Tau of
0.59, with range 0.34-0.74). We found that annotation per-
formance was generally consistent across the 11 camera sites
and 2 individual annotators and was positively correlated
with streamflow variability at a site. A scaling simulation de-
termined that model performance improvements were lim-
ited after 1000 annotation pairs. Our model’s estimates of

relative flow, while not equivalent to absolute flow, may still
be useful for many applications, such as ecological model-
ing and calculating event-based hydrological statistics (e.g.,
the number of out-of-bank floods). We anticipate that this
method will be a valuable tool to extend existing stream mon-
itoring networks and provide new insights on dynamic head-
water systems.

1 Introduction

Small headwater streams make up 50 %—70 % of stream net-
work length (Benda et al., 2004; McManamay and DeRolph,
2019) and are fundamental units of riverine networks.
Streamflow dynamics in these streams are crucial controls
on aquatic ecosystem function (Carlisle et al., 2017; Colvin
et al., 2019; Hitt et al., 2022), thermal changes, and the rout-
ing of sediment and contaminants. Headwater streamflow dy-
namics are uniquely complex for the following reasons: (1) a
majority of small (second-order or less) stream channels dry
out seasonally or during drought events (Jaeger et al., 2021;
Messager et al., 2021); (2) along-channel changes can be
abrupt due to geologic controls and focused groundwater in-
puts (Briggs et al., 2018); and (3) due to small catchment
size, these streams are particularly susceptible to drastic hy-
drologic alterations, both anthropogenic (damming, imper-
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vious surface runoff) and natural (ice or beaver damming,
wildfire effects, geomorphic changes).

Despite their importance and vulnerability, headwater
and non-perennial streams are underrepresented by stream-
flow monitoring networks in the United States (Deweber
et al.,, 2014; Seybold et al., 2023) and across the world
(Krabbenhoft et al., 2022). Three primary limitations lead
to a sparse headwater monitoring network. First, monitor-
ing and maintaining traditional stage-discharge gage records
(Turnipseed and Sauer, 2010) at a high quality requires ex-
pertise and training that limits the number of organizations
able to collect the records. Second, velocity measurements
in small, shallow, and slow-moving streams are difficult to
collect and have high uncertainty, making the percentage er-
ror in streamflow discharge much higher in small streams
than large streams (Horner et al., 2018; King et al., 2022;
Levin et al., 2023; McMillan et al., 2012). Third, in-stream
instruments to measure stage in headwater streams are fre-
quently lost or damaged due to shifting streambeds, very high
local velocities, and beaver or other animal activity. Even
disregarding the challenges in collecting the data, where
streams are non-perennial or form disconnected pools, tra-
ditional pressure-transducer-based stage measurements pro-
vide incomplete information regarding (dis)connectedness of
the stream channel, making these records inadequate for cer-
tain uses in ecohydrological modeling (Steward et al., 2012).

Streamflow monitoring using imagery is an attractive al-
ternative to in-stream instruments and has grown in popular-
ity as camera technology has improved. Collecting imagery
is appealing because it requires very little training or spe-
cialized equipment. However, analyzing a large volume of
imagery can be a challenge; a range of approaches have been
introduced to date. Initially, manual interpretation (Schoener,
2018) or rules-based image processing techniques (Chapman
et al., 2022; Gilmore et al., 2013; Leduc et al., 2018; Noto
et al., 2022) were used to automate the reading of a staff
gage placed in the channel. While effective and low-cost,
these staff-plate-based approaches still require the installa-
tion of in-channel infrastructure that may not be permitted in
protected lands or can be damaged by high flows. Addition-
ally, stage monitoring is restricted to the location of the staff
plate; therefore, any debris on the staff plate or view block-
age due to snow or vegetation will result in missed readings.
Computer-vision-based approaches that avoid the use of an
in-channel staff plate have been introduced but generally re-
quire the manual identification of a specific region of interest
in the image (Keys et al., 2016), image orthorectification us-
ing ground control points, and detailed high-resolution 3D
models of riverbed and bank geometry to estimate changes
in stage (Eltner et al., 2018).

Advances in deep learning approaches for imagery analy-
sis have created new opportunities for environmental moni-
toring. For example, several recent studies have applied deep
learning to image-based stream stage monitoring to eliminate
the need for fixed in-stream staff plates. Many of these papers
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use established image segmentation algorithms (i.e., convo-
lutional neural networks) to classify parts of the image as
“water” or “not-water” (Eltner et al., 2021; Liu and Huang,
2024; Vandaele et al., 2021). Using a reference point on the
image and knowledge of the interface location, the stream
level is tracked over time. While effective, these approaches
are sensitive to channel rearrangement or view blockage at
the water—not-water interface. They also still require some
manual judgment about the location of interest in the image
frame for which stage is provided and image orthorectifica-
tion using ground control points.

Unlike other deep learning approaches for streamflow es-
timation, streamflow rank estimation (SRE) was developed
to minimize the need for external monitoring data to train
a model (Gupta et al., 2022). The approach aims to esti-
mate streamflow dynamics without the need for traditional
discharge observations, an in-channel staff plate, designat-
ing a region of interest, or imagery orthorectification. SRE
uses a learning-to-rank framework that is trained using many
pairs of stream images, with discharge in the images of each
pair visually compared, removing the need for stream dis-
charge training data. We refer to the person-generated pair-
wise ranks as “annotations”. The model is trained using the
annotations to sort images from high apparent streamflow to
low apparent streamflow by fine-tuning a convolutional neu-
ral network (a ResNet-18, He et al., 2015; architecture pre-
trained on ImageNet, Deng et al., 2009) and using a learning-
to-rank approach utilizing the RankNet loss function (Burges
et al., 2005). The rank of each image can be used to create
a streamflow percentile which is correlated with the stream-
flow discharge and can be interpreted as a dimensionless hy-
drograph. While the absolute streamflow could be estimated
from the streamflow percentile using an assumed streamflow
discharge distribution, for unmonitored catchments this dis-
tribution would need to be estimated independently of the
SRE model and would be a significant source of uncertainty
in absolute streamflow estimates (Gupta et al., 2022). As a
trade-off for low-effort model training and minimal exter-
nal information requirements, the rank-based streamflow per-
centile estimate is the primary output produced by the SRE
model.

To date, the SRE model has been tested at a limited num-
ber of sites with simulated annotations derived from known
streamflow discharge time series, but not with annotations
created by people. With simulated annotations, SRE char-
acterized streamflow percentile dynamics with a Kendall
rank correlation greater than 0.7 in five of six stream lo-
cations (Gupta et al., 2022). The number of annotations
(n =500, 1000, 2500, 10 000) and annotators’ ranking abil-
ity (could discern 0 %, 10 %, 20 %, or 50 % discharge dif-
ference) both strongly influenced the model’s ranking per-
formance. This promising early work motivated us to further
evaluate the real-world performance of the model by using
person-generated annotations and expanding the number of
stream sites at which we assessed model performance. With
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a better understanding of the factors influencing model per-
formance, we plan to apply SRE to currently unmonitored
headwater catchments.

This paper describes a methodology for monitoring rel-
ative streamflow dynamics in small headwater streams us-
ing time lapse imagery coupled with a deep learning model
trained using person-generated annotation. We evaluate the
real-world performance of this monitoring system and an-
swer the following questions:

1. How accurate are people at ranking images by stream-
flow?

2. How accurate are the image-derived relative hydro-
graphs developed using person-generated annotations?

3. Which factors influence ranking model accuracy and
can indicate which unmonitored catchments would be
suitable for low-cost camera monitoring?

4. How many person-generated annotations are required to
achieve stable ranking model performance?

2 Methods
2.1 Data collection

To collect time lapse imagery from low-cost cameras, this
project developed a web platform titled the Flow Photo
Explorer (https://www.usgs.gov/apps/ecosheds/fpe/, last ac-
cess: 13 November 2025). Since its inception in October
2021, the Flow Photo Explorer (FPE) platform has accepted
imagery submissions from an array of organizations with
a common motivation of enhancing and expanding stream
monitoring networks. While guidelines are provided on the
web page, there are few restrictions on how cameras are con-
figured and what views they capture. The only requirement
is that the imagery format uploaded to the FPE platform is
formatted with EXIF metadata, which is a common imagery
data format across many low-cost battery-powered game or
trail cameras. We recommend a photo every 15 min, though
the FPE database contains intervals from less than 5 min to
once per day. The recommended camera view is looking
downstream or upstream, though based on field conditions
some sites may instead feature cross-stream or tangential
views. We expect that the image-based monitoring approach
will work best when at least some fixed objects (i.e., trees,
boulders, bridge pilings, stream banks) are visible at all lev-
els of streamflow. An example camera view with these fixed
features visible is shown in Fig. 1. If a user knows a US Ge-
ological Survey (USGS) stream gage monitoring the same
stream reach, they can indicate the USGS station identifier,
and data are automatically pulled from the USGS National
Water Information System (U.S. Geological Survey, 2024)
database. Alternatively, they can upload their own stream-
flow observations, although they are not required. To test the
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methodology, we co-located 11 cameras with 8 USGS gages
in western Massachusetts for which records of stream dis-
charge are available (Fair et al., 2025). Four cameras were lo-
cated at the same streamflow monitoring location to examine
the effect of differing camera angles on monitoring perfor-
mance. In this study we collected imagery every 15 min with
Reconyx (Hyperfire 2 model) and Bushnell (Trophy and Es-
sential models) cameras that were mounted to trees (except
for one site that was affixed to a bridge) using swivel mounts
and a secure metal housing.

For this analysis we set minimum data availability criteria
to test the method at sites with sufficient data. We expected
that seasonal changes in vegetation, streamflow, and snow
cover would appear in the imagery. Therefore, we selected
sites with stream discharge and imagery data that spanned
at least 1.5 years. We implemented this criterion to ensure
that the model training period spanned at least 1 full year so
that all seasons were represented and so that we additionally
had access to a final half year of data for testing purposes.
Within this span, we allowed some data gaps, since these are
common in our available set of imagery data. We required at
least 180 complete days of data within the 1.5 years, which
is a completeness of approximately 33 %. Table 1 contains
a list of sites that met our data availability requirements.
These locations are mapped in Fig. 2. In this analysis we
used daytime-only imagery (from 07:00 to 19:00 local time
(UTC-5)), though many sites have cameras with an infrared
flash that also produce usable imagery at night.

To guide user site selection and setup, we evaluated pat-
terns in model performance according to two key site at-
tributes. The first is a measure of flow variability during the
monitoring period. Some streams, such as those heavily in-
fluenced by groundwater discharge, can have small fluctu-
ations in stream stage that are difficult to identify in im-
agery. We selected the coefficient of variation (CV) of log-
transformed streamflow (log;,(Q)) to quantify the general
variability in the stream. The second metric is a simple qual-
itative assessment of how stable the camera view is over the
period of record. This metric is primarily for quantifying if
there were abrupt changes in the field of view of the image
time series, mainly coinciding with when the camera was ser-
viced. Cameras can also shift slightly due to vibrations or
wind changing the mounting position, though these types of
shifts are minor alterations compared to abrupt view changes.
In this rating system, a camera stability value of “low” indi-
cates that there was at least one camera view change of 50 %
or greater (i.e., only half of the original frame was still vis-
ible). “Medium” indicates at least one camera view change
between 25 % and 50 %, while “high” indicates that all view
changes were below 25 %. These two attributes were selected
to inform user site selection and field methods.
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Figure 1. The recommended camera view includes stream banks and fixed objects such as trees or boulders visible at most flows. Photograph

by the US Geological Survey.

Table 1. Summary of data collected at locations included in this analysis. Streamflow observations were originally reported in a US Geologi-
cal Survey (USGS) data release (Fair et al., 2025). “Training period CV of log;(Q)” refers to the coefficient of variation of log-transformed

streamflow discharge during the model training period.

Location  Station name Monitoring period % of images  Number of ~ Training Camera  Drainage
ID (USGS station ID) (yyyy-mm-dd) that have annotations period  stability area

observed CV of (km?)

streamflow logo(Q)

ABB Avery Brook Bridge (01171000) 2021-03-10 to 2024-04-02 99.1 3147 0.8 Low 7.8
ABL Avery Brook River Left (01171000) 2021-07-02 to 2024-04-02 98.8 2277 0.8 High 7.8
ABR Avery Brook River Right (01171000)  2021-03-19 to 2024-04-02 99.3 2214 0.8  Medium 7.8
ABS Avery Brook Side (01171000) 2021-03-19 to 2024-04-02 99.2 2441 1.0 High 7.8
GR Green River (01170100) 2022-09-29 to 2024-03-29 99.2 5057 0.2 High 107.2
SB Sanderson Brook (01171010) 2021-04-01 to 2024-03-22 70.9 4821 12 Low 44
WBO West Brook 0 (01171100) 2022-02-01 to 2024-04-02 99.1 7953 0.8 High 27.7
WBL West Brook Lower (01171070) 2019-02-27 to 2024-04-09 67.7 2256 0.7 High 21.8
WBR West Brook Reservoir (01171020) 2021-03-25 to 2024-03-22 64.8 2325 1.1 High 16.1
WBSR West Branch Swift River (01174565)  2017-09-14 to 2024-03-28 99.5 3553 0.3 Medium 32.6
WWwW West Whately (1171005) 2021-04-06 to 2024-04-09 70.2 2510 —2.5 Medium 1.3

2.2 Data annotation

Training the neural network model to predict streamflow dy-
namics from imagery requires external site-specific informa-
tion. Because we hope to use this method in places with no
other information except for the imagery, we could not use
any streamflow data in model training. Instead, we relied on
people to rank pairs of images by streamflow in a process
called “data annotation”. In the FPE web application, users
were shown two photos from a given site side by side and
asked to indicate which one had more streamflow (Fig. 3).
The images selected to form a pair were selected at ran-
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dom. The users also indicated if the images appear “about
the same” or if the image was a “bad photo” (obscured or
too dark). “Don’t know” was selected if the photo is bad or
if other aspects of the images made them difficult to com-
pare, such as a large difference in camera view or camera
angle. Image pairs marked “don’t know” were not used in
model training. In this study, users were only presented with
images collected during daytime (07:00-19:00; all times are
given in local time). A typical user completed an annotation
in 1-3 s on average; if focused, an individual could perform
approximately 1000 annotations in an hour. Our dataset in-
cludes 17 unique annotators who contributed to the model
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P. J. Goodling et al.: Monitoring streams with imagery and a deep learning model

6449

n) = CANADA ¢ B)
S, $\"5: | Augusta
A | .
% ADIRONDACK | «k\ |
N =5 MOUNTAINS | o w
7, \ 5 S NEW |
% \é ) / HAMPSHIRE |
UNITED \h Concérd
S, B Extent —p @&“ : A
? 1 Albany. G L O 7 33
BoRi
,_,\_IN\ / Boston
o .
GoLIg C Extent
‘\k {r Hartord F ’I:I?rowdence
MEXICO | CONNECTICUT | j
1,000 100 {

—1Km,

o0

Pheo 7

Norrhampton
“Resenvoir

./¥ )

B
g,roo]
Sandfﬁo‘\/

J

Figure 2. Map of monitoring locations in western Massachusetts, USA (Fair et al., 2025; Goodling et al., 2025). Triangles in panels (c)
and (d) indicate monitoring sites and are labeled with site identifiers listed in Table 1. Arrows in panel (d) indicate streamflow direction.
Water bodies shown are from the NHDPlus Version 2 (McKay et al., 2012) (¢) and NHD High Resolution (Moore et al., 2019) (d) datasets.

training; however, only two annotators represent 93.7 % of
all the annotations, and we focus on these two in our discus-
sion of annotator performance. Both of these annotators were
student interns (one ecology graduate student, one environ-
mental science undergraduate student). The student interns
were associated with the project but had no specialized train-
ing or experience in streamflow monitoring.

The process of annotation was not error-free; the judg-
ments made by individual annotators could sometimes be
incorrect. This could be through simple errors in transcrip-
tion (i.e., clicking the incorrect button) or because the im-
agery pairs were difficult to compare because of lighting,
vegetation, or seasonal differences. These errors, if signifi-
cant, could provide spurious information to the deep learning
model. We therefore quantified the performance of our anno-
tation dataset using the known true flow-based ranks from the
co-located USGS gage data. Our primary metric was classifi-
cation accuracy for the selection of the “left” or “right” image
with higher streamflow in the image pair:

TL 4+ TR

x 100, (1)
TL + FL + TR + FR

Classification % accuracy =

where TL and TR refer to true-left and true-right selections,
and FL and FR refer to false-left and false-right selections.
We observed that the difficulty of the selection increases,
and therefore the classification accuracy decreases, if the two
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photos had similar streamflow. To fully describe annotation
performance, we provide our metrics as functions of the rel-
ative flow difference between the images. The relative flow
difference (A1) between a pair of photos shown to an anno-
tator was calculated as

|01 — Q2]

<2l 2
$(01+ 02) ®)

rel =

where Q1 and Q; represent streamflow values for the two
images. For positive values inclusive of zero, the value A
is bounded to be between 0 and 2. A A, value near zero
indicates close agreement between Q1 and Q;, whereas a
Arel value of 2 could indicate that one of the two values is
approaching zero or infinity. We compute the overall classi-
fication accuracy within binned increments of 0.1 Apj; the
unweighted binned performance is used to develop a func-
tion describing the relationship between A and classifica-
tion accuracy.

2.3 Modeling methodology

Annotated images were ranked into an ordered sequence
using the previously developed SRE neural network model
(Gupta et al., 2022). An independent model was trained for
each site. The SRE neural network model takes an image as
input, which includes three channels (RGB), and generates

Hydrol. Earth Syst. Sci., 29, 6445-6460, 2025
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Figure 3. The web-based annotation interface from the Flow Photo Explorer used in this study to develop training datasets for the ranking

model.

a dimensionless, continuous valued score representing rela-
tive streamflow as output. The score is derived by applying
a sequence of mathematical operations to the input image,
including spatial convolutions, which help the model extract
relevant features from the image. During training, the model
is given batches of paired images ranked by annotators based
on relative streamflow. Two neural networks with shared
model weights sequentially predict dimensionless scores for
the two images. The pair of scores is used to compute a prob-
abilistic ranking loss (Burges et al., 2005) that is minimized
when the model assigns a higher score to the image that the
annotator ranks as having higher flow or assigns the same
score to both images if the annotator ranks them as hav-
ing the same flow. This architecture is sometimes called a
“twin neural network”. Images are pre-processed by resizing,
center-cropping to exclude metadata bands, and normalizing.
While training, data augmentations such as random crops,
horizontal flips, rotations, and color jitter are applied to im-
prove model robustness and generalization and reduce over-
fitting (Shorten and Khoshgoftaar, 2019). Additional detail
on model development and image pre-processing is available
in the Supplement. After training, the model is used to gen-
erate score predictions for all images from a site, which are
then standardized into z scores by subtracting the mean and
dividing by the standard deviation.

The imagery data were divided into training, testing, and
validation splits to enable robust model evaluation. Unlike
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many machine learning applications, the model learns from
image pairs and not individual images; therefore, these splits
are a bit more complex to develop. When reporting model
performance, we identify images that comprised pairs used
for training (“train”, representing 80 % of annotations) or val-
idation (“val”, representing 20 % of annotations). Images that
were not part of any annotation pair provided to the model are
used for “test”. We further divided this into “test-in”’, which is
coincident with the time frame of annotation, and “test-out”
(when available) for the period following the period with an-
notations. “All-in” is the combined set of images, regardless
of if they are part of an annotation pair, during the anno-
tation period. “All” is the performance for all images. We
consider “test-in” to represent a retrospective model perfor-
mance, while “test-out” represents the expected performance
of a deployed operational model on new imagery.

The sites in this study were co-located with traditional
USGS streamflow gages, which enables us to evaluate model
performance relative to these instruments. Our model perfor-
mance metric is Kendall’s Tau, a nonparametric rank-based
correlation coefficient (Kendall, 1938). We selected this met-
ric because it is insensitive to monotonic transformations
such as log-transformation and percentile calculations, mak-
ing it appropriate to compare values on different scales and
with different distributions. As a metric it is strict regarding
timing; short-lived peaks, if slightly mistimed, will result in
low Kendall’s Tau. Because it is based on ranks, it is insen-
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sitive to the magnitude difference between two values. As a
result, low-flow observations, which are more common, have
a greater influence on the resulting Kendall’s Tau than short-
lived high-flow observations.

To provide a preliminary understanding of the factors
influencing model performance we present pairwise rela-
tionships between annotation accuracy, streamflow variabil-
ity, camera stability, and model performance. For compar-
isons among the numeric values we present the Pearson cor-
relation coefficient and two-sided p value calculated with
the cor.test function in R version 4.3.2 (R Core Team,
2021). For comparisons between numeric values and the cat-
egorical camera stability metric, we present the results of the
nonparametric Kruskal-Wallis test to evaluate if the distribu-
tion varies among the categories (Kruskal and Wallis, 1952).
If significant, we perform Dunne’s post hoc pairwise multiple
comparison test to identify which categories have statistically
different distributions (Dunn, 1964). The Kruskal-Wallis and
Dunne tests are computed with the rstatix R package (Kas-
sambara, 2023).

2.4 Sensitivity analysis

We performed a sensitivity analysis to understand how many
person-generated annotations are required to achieve accept-
able performance. In this case, the target performance level
was that achieved by training the model with all available
image pair annotations for a given site. We created nested
subsets of the annotations, beginning with increments of 100
up to 500, then using larger increments of 250 up to 1500,
and finally using increments of 500 up to 3000, with addi-
tional subsets at 4000 and the maximum number of avail-
able annotations. Smaller increments were used at the lower
end of the annotation range to capture the more substantial
improvements in model performance that are typically ob-
served with initial increases in training data. Each subset was
a strict superset of the previous one, meaning that each larger
subset contained all the pairs from the smaller subsets plus
additional pairs. This allowed us to assess how increasing
the volume of training data impacts model performance and
to identify the point where performance plateaus, avoiding
unnecessary annotation efforts that may not significantly im-
prove performance. The sensitivity analysis reported that the
Kendall Tau model performance metric is for the “test-in”
data split for daytime images (07:00-19:00 local time).

To ensure the robustness of our findings, the analysis was
repeated five times. For each repetition, we randomly per-
muted the order of the annotations before generating the
nested subsets, thereby mitigating any potential variance that
could arise from the specific sequence of training samples.
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3 Results
3.1 Annotation results

Annotation performance in our dataset was high (average
92.2 % accuracy) and was generally consistent across sites
and annotators. Accuracy was well described by an increas-
ing function of the relative flow difference (global fourth-
order polynomial, RZ=0.89; Fig. 4, red lines). At all sites,
annotation accuracy neared 100 % accuracy above a rela-
tive flow difference of 1 (which occurs when one image has
3 times as much streamflow as the other). As the relative
flow difference neared 0, classification accuracy approached
50 %, which is equivalent to guessing between the photos.
Similar curves are observed for the two primary annotators
(represented by symbols in Fig. 4). To characterize the over-
all accuracy of the annotation at a site, the percent accuracy
of all annotations regardless of relative flow difference is re-
ported in each panel of Fig. 4. The site with the lowest over-
all annotation performance — West Whately, with an 84 %
overall accuracy — had the lowest streamflow coefficient of
variation a “medium” level of camera stability (Table 1).

3.2 Modeling results

Predictions from models trained on person-generated anno-
tations were found to represent both individual storm events
and inter-annual hydrologic changes with a satisfactory de-
gree of fidelity, with “test-in” Kendall’s Tau values ranging
from 0.60 to 0.83 (Fig. 5). We separately report statistics for
the data splits “test-in”, “test-out”, “all-in”, and “all”. Most
models have a slight decrease in performance (approximately
0.02) when comparing the training to test-in results. This de-
crease is a measure of overfit to the data. Green River has
the greatest decrease (0.08, or 10 %). A review of the an-
notations for this site shows a low density in annotations at
the end of the training period that could account for this dif-
ference. Where available, the test-out performance is lower
than test-in performance (mean decrease is 0.20), suggesting
a decreased ability to generalize to new flow conditions or
camera views.

Within our camera monitoring dataset, we have sev-
eral co-located cameras that were independently annotated
and trained (lighter color bars in Fig. 5). Four co-located
cameras exhibited similar test-in performance, although a
downstream-facing view had slightly lower performance
than the other three. For the test-out period, two sites (Av-
ery Brook River Left and Avery Brook Side) have much bet-
ter performance than the other two. These sites have “high”
camera stability and greater annotation accuracy than the
other two sites. The streamflow has a similar (but not iden-
tical) coefficient of variation due to the differing monitoring
time frames among the cameras.

Model prediction time series show a clear correspondence
with observed streamflow time series, especially when both
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Figure 4. Annotation accuracy for each site as a function of the relative difference in streamflow between the two images shown to the
annotator. Percent accuracy was computed for annotations in binned intervals of 0.1 relative flow difference. Two annotators (represented
with symbols and named with five-digit alphanumeric identifier) performed annotations across the 11 camera sites. The red line is a fourth-
order polynomial fit across all 11 camera sites, with equation and fit statistics shown at the bottom of the figure.

datasets are displayed as rank percentile units (Fig. 6; the
Supplement). Major hydrologic events such as a drought that
occurred in this area from June-September of 2022 and a
prolonged wet period in July—August of 2023 are visible in
the estimates derived solely from the imagery model. The du-
ration and magnitude of major hydrologic events match well
between observed streamflow and model predictions. Short-
lived peaks from individual storm events are also well char-
acterized by their timing and general magnitude.

Model performance of the “test-in” set, annotation per-
formance, flow variability, and camera stability were found
to be highly interrelated (Fig. 7). Positive correlations were
observed between flow variability and annotation accuracy
(panel a), flow variability and model performance (panel c),
and annotation accuracy and model performance (panel d).
West Whately is an outlier to some extent; we report Pear-
son’s correlation coefficients and p values with and without
this camera site. The relationship between annotation accu-

Hydrol. Earth Syst. Sci., 29, 6445-6460, 2025

racy and model performance (panel d) has the highest corre-
lation and is least affected by the outlier presence. Camera
stability, a categorical variable, was weakly related to an-
notation accuracy (panel b). The Kruskal-Wallis test indi-
cates that the annotation performance is non-identical across
the three stability classes at the 0.05 significance level. The
post hoc Dunn pairwise multiple comparison test shows the
only significant difference is between the “high” stability
and “medium” stability classes. The Kruskal-Wallis test in-
dicates there is no significant difference in Kendall’s Tau
among the stability classes (panel e). Among the four cam-
eras located on the same stream reach (shown with lighter
shading), the highest performance in annotation accuracy and
test-out Kendall’s Tau was observed for Avery Brook River
Left, which had a highly stable camera.
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“ns” indicates not significant at that level.

3.3 Sensitivity analysis

The sensitivity analysis we employed allowed us to examine
the relationship between number of annotations and model
performance. For most sites, “test-in” model performance
improves significantly from 100 annotations to 500 annota-
tions, as the models learn more relevant features for infer-
ring relative streamflow (Fig. 8). Generally, the spread of in-
dividual iterations (n =35) was small relative to the perfor-
mance improvement associated with increasing annotations.
The model performance plateaus around 1000 annotations
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for most sites. Beyond this point, additional annotations of-
fer minimal gains, suggesting that the model is not extracting
further useful information from the additional annotations.

4 Discussion

We find that a low-cost methodology for monitoring rela-
tive streamflow dynamics in headwater streams is effective at
characterizing interannual hydrologic events and short-term
storm responses at the stream sites within our study. Based
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Model Performance vs. Number of Annotations

6455

Avery Brook Bridge Avery Brook River Left Avery Brook River Right Avery Brook Side
[ABB] [ABL] [ABR] [ABS]
0.8
0.8 §
0.7 1 -
0.6 1 .
0.7 A
05 K. T T T T T T T T T T T T T T T
Green River Sanderson Brook West Brook 0 West Brook Lower
[GR] [SB] [WBO0] [WBL]
3 0.8
0.8
K
" l -
'(=“ 0.7 1 ¥
3 0.74 92 1
g 0.6 4
2o
0.6
0.5 T T
o o o o o o o o o o o o o
o 8 8 8 8 =© S 8 S o S S It o 3 S 3
-~ N ™ < ~ N 2l N < © — ~—
West Brook Reservoir West Branch Swift River West Whately
BR] [WBSR] [Ww]
0.8+
0.8 4
0.8+ 0.7
i 0.6
0.7 4
0.5+
0.7 . ! ] !
06 0.4

# of annotations

Figure 8. Model performance as a function of the number of annotations used to train the model. Colored lines indicate individual scaling
experiments (n =5); the black line and points indicate mean performance. The dotted vertical line shows 1000 annotations. Axis limits
vary among panels. Performance computed on daytime (07:00-19:00 local time) photos only. Subplots labeled with site name and number

described in Table 1.

on our encouraging results, we anticipate that the approach
will provide a valuable alternative to traditional stream gag-
ing methods when relative streamflow dynamics information
is needed, but the streamflow discharge is not required. The
person-generated annotation, model performance patterns,
and sensitivity analysis performed in this study have implica-
tions for how we refine the modeling approach and provide
guidance to users as this platform evolves.

This study was our first insight into annotator accuracy.
In a previous study outlining the SRE method (Gupta et
al., 2022), the ability to correctly rank the image pair was
varied systematically using simulations. In that study, in ad-
dition to a perfect annotator that always ranked the image
pair correctly, the authors simulated annotations with vary-
ing ability to discern between streamflow differences in the
photo pair. The thresholds they tested included 10 %, 20 %,
and 50 % of the lesser discharge. The authors found that a
less discerning annotator had to perform more annotations to
train a model that reached similar performance to one trained
on annotations from a more discerning annotator. However,
these annotators could not make mistakes; incorrect labels
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were not introduced. Conversely, in this study, people per-
formed annotations. While the overall accuracy of the anno-
tators at individual sites ranges from 84 %-96 %, these ac-
curacy statistics obscure another feature of annotation; an-
notators are near perfect at distinguishing large differences
in flow and less accurate at distinguishing small differences
in flow. Even when provided with a “same” button and a
“don’t know” button, annotators make mistakes at small dif-
ferences in flow. This is likely due to the difficulty of the task
in the presence of camera angle shifts, obscuring vegetation,
changes in channel morphology, and the fact that it is sim-
ply difficult to discern small differences in streamflow visu-
ally. Annotation performance in our dataset followed similar
patterns for 2 annotators and across 11 camera sites, such
that all data could be reasonably fit with a single mathe-
matical function (see Fig. 4). Future studies could use this
function to simulate annotator performance more accurately
than previous threshold-based simulations. This study pri-
marily relied on annotations from two individuals with simi-
lar backgrounds, and a single annotator worked on each site,
resulting in a potential conflation of annotator and site vari-
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ability. Future work using larger annotation datasets or de-
signed common annotation sets could better assess the range
of skill across individuals and backgrounds. In this study we
used streamflow gage observations to quantify annotator and
model performance. Where observations are not available,
annotator performance could be assessed using multiple an-
notators assessing the same image pairs. Model performance
could be evaluated using post hoc human review using a sim-
ilar approach to annotation.

This study’s models, trained with person-generated anno-
tations, produced a time series of streamflow percentile es-
timates analogous to a relative hydrograph that can be used
to monitor the timing, duration, and relative magnitude of
hydrologic events (Fig. 6; the Supplement). All performance
metrics in this paper are provided for the original approxi-
mately 15 min interval frequency of the imagery and stream-
flow data, though the time series plots of model predictions
do show substantial sub-daily variability in streamflow per-
centiles. For example, at times in late 2023, daily percentiles
at the Avery Brook Bridge site consistently range from nearly
25 % to 90 % (Fig. 6). A review of individual images during
times of high sub-daily percentile variability shows that out-
liers in model prediction can be introduced by the presence
of sun glare on the camera, vegetation blocking the cam-
era view, twilight conditions, fog/haze, and other factors that
present the model with unfamiliar views (Sect. S3 in the Sup-
plement). Since we allow annotators to exclude photos that
are obscured, the model is not trained on these images, which
leads to poorer performance. A focus of future work on iden-
tifying and excluding these images will likely reduce the
variability at a sub-daily scale resulting from poor images.
Even in the presence of these features, the daily mean values
plotted correspond well with major hydrologic events, such
as a drought in the summer of 2022 that affected the region,
and individual storm events. Users of these modeled relative
streamflow data could create daily mean values if they were
interested in results at this scale. However, we report sub-
daily model performance because the headwater streams that
are a focus of this work are highly responsive to storm events,
and it is also important to capture these events to understand
and characterize streamflow dynamics.

Where available, this study found lower model perfor-
mance for the “test-out” period than the ‘test-in‘ period,
though the degree of performance decrease varied among
sites. Even for the four co-located sites on Avery Brook the
decrease in model performance from “test-in” to “test-out”
varied substantially (Fig. 5). We believe this may be due to a
combination of new camera views not seen in training and the
fact that the “test-out” period often included winter, which
can be a period of lower performance due to snow obscuring
the stream. The general approach we took may be limited
in its ability to describe the magnitude of out-of-distribution
streamflow in the “test-out” period, but due to the limited
availability of sites with “test-out” periods, we are unable to
draw conclusions that might hold true for other sites. Cre-
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ating models from longer paired imagery and streamflow
records with more extensive “test-out” periods will support
future efforts to minimize performance loss for the “test-out”
period, likely through improvements in the image augmenta-
tion steps of the modeling procedure.

Model performance among sites seems to be driven by the
variability in the streamflow during the monitoring period.
We find that annotator and model performance at sites that
have very steady flow is low relative to sites experiencing
wide variation in observed streamflow. To some extent this
is a consequence of Kendall’s Tau as a performance metric,
where a small range in the overall data causes small fluctua-
tions in stream discharge to manifest as large fluctuations in
rank percentile. However, physical characteristics matter; for
this method to perform well the stream needs to have visible
changes in streamflow during the training period. The site in
this study with the lowest streamflow coefficient of variation,
West Whately, also had a very low stream depth such that the
water surface was difficult to see within a meandering chan-
nel and in the presence of leaves. Future work with more
sites will be better positioned to evaluate how camera stabil-
ity, flow variability, and other factors affect annotation and
model performance. This study refines user guidance in two
important ways. First, our results suggest that sites that expe-
rience a wide range of flows (or for enough time that a wide
range of flows are experienced) will have higher model per-
formance. Second, since our simple camera stability classifi-
cation has a weak association with annotator accuracy and no
significant relationship with model performance, the method
is robust to slight changes in camera angle and can still be
used if these shifts are present. However, the limited three-
category approach in this study may limit the findings. More
complex frame-tracking algorithms to quantify camera sta-
bility (e.g., Ljubi¢i¢ et al., 2021) could further improve in-
sights into the robustness of the method to camera shifts.

A key requirement of this methodology is the need for a
person to perform annotations on the imagery datasets. Anec-
dotally, users typically annotate at an average pace of 1000
image pairs per hour using the interface. However, in prac-
tice, annotations are typically performed in smaller batches
(100-200 images per batch) with breaks in between, result-
ing in a slower effective pace. The sensitivity analysis per-
formed in this study helps evaluate the number of annotations
to reach near-optimal model performance while not wast-
ing annotator effort. For our available sites and annotation
datasets we approximate 1000 annotations as a reasonable
guideline when creating a new model. While there is slight
variability among the sites, the consistency of the shape of
the curves shown in Fig. 8 suggests that a single guideline
is reasonable. The number of annotations may also be con-
trolled by factors not included in the sensitivity analysis, such
as the record length and annotator accuracy. Additional sen-
sitivity analyses, likely using synthetic annotation datasets,
could further refine the guideline for how many annotations
to perform when developing ranking models at new sites.
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The output of the deep learning model is a relative flow
percentile estimate. Although streamflow discharge (i.e., a
flow rate with units of volume per time) is a more famil-
iar metric, relative flow has value for several applications.
With relative flow estimates we can (1) evaluate the duration
and timing of disturbances such as drought and flood events,
(2) provide inputs to statistical models such as ecological
population models that may not require absolute stream-
flow accuracy, (3) establish or confirm relationships between
streamflow at a study reach and at other nearby locations,
(4) evaluate the ability of hydrologic models to simulate
streamflow dynamics at a study reach, and (5) provide the
basis for counting the exceedance of site-relevant thresholds
(for example, the number of times a roadway is inundated or
the number of times an intermittent stream is active). These
outputs are aligned with the work of other authors to use
semiquantitative observations to study headwater streams,
for example stream connectivity (Bellucci et al., 2020; Ka-
plan et al., 2019). Nevertheless, some applications require
absolute flow, and in future work we intend to explore ap-
proaches to transform relative flow estimates produced by the
SRE model into absolute streamflow discharge estimates, ei-
ther by periodically measuring discharge at the site or by us-
ing discharge data from nearby locations (if available). For
now, we intend to communicate the appropriate use of these
relative percentile estimates and avoid implying that stream-
flow discharge is produced by this work.

Because our study reports relative rather than absolute
streamflow, it is difficult to directly compare our model per-
formance against other similar work. We report our perfor-
mance with the rank-based Kendall Tau value, which is anal-
ogous to a nonparametric R? value appropriate for our model
outputs. Similar studies using time lapse camera imagery to
monitor rivers focus on reproducing point-in-time stage ob-
servations, often using in-channel calibration targets such
as staff gages (Chapman et al., 2022; Eltner et al., 2018;
Gilmore et al., 2013; Kim et al., 2011; Lin et al., 2018;
Nguyen et al., 2009). These studies vary in approach, though
typical steps include identifying the target and water surface,
performing an orthorectification of the image into real-world
space, and conducting a measurement of a visual target. Typ-
ically, authors report sub-centimeter-level accuracy. For ex-
ample, a field study of uncertainty in one system reported
45 mm accuracy at the 90 % confidence interval in a tidal
marsh environment with tranquil waters, though the authors
noted this system was unsuited to fast-moving turbulent wa-
ter such as the mountainous headwater streams in our dataset
(Birgand et al., 2022). A deep-learning water-segmentation-
based approach reported Spearman correlations between in-
dependent stage measurements ranging from 0.57 to 0.94
at a single well-characterized gage site in eastern Germany
(Eltner et al., 2021). We note these performance metrics re-
ported by other similar studies, though due to differences in
the model outputs our performance metrics are not directly
comparable. Where evaluated in the field, most similar stud-
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ies report results for single sites and/or for durations of less
than 1 year (Birgand et al., 2022; Eltner et al., 2021; Leduc
et al., 2018; Liu and Huang, 2024; Schoener, 2018), making
this study’s multi-year monitoring of 11 camera sites a com-
paratively robust representation of model performance.

This work, while promising, is limited in a few important
ways. Primarily, this system is not (and is not intended to be)
a replacement for high-accuracy stream stage or discharge
measurements that are required for many applications such
as computing streamflow trend, calculating nutrient loads, or
supporting water management decision making. Users of this
system must understand the relative nature of the results and
determine if relative streamflow hydrographs are suitable for
their application; we envision suitable applications to include
habitat characterization, aquatic species population dynam-
ics modeling, refining process understanding in small catch-
ment studies, intermittent stream monitoring, and character-
izing event (i.e., flood or drought) timing. In this study, model
training and prediction is limited to daytime imagery, which
we defined simply as between 07:00 and 19:00 local time.
While these cameras also have infrared flash that illuminates
the channel, the degree to which the scene is visible at night
varies significantly between sites. The imagery at night be-
comes grayscale, and we expect that different portions of the
imagery become important for a model. It is unclear if night-
time imagery is best modeled with both day- and nighttime
imagery or if a night-only model should be trained, and fu-
ture work may investigate this. We also noticed that lens fog,
camera glare, vegetation blockages, and other visual imped-
iments had a negative impact on model performance. When
present, these image issues typically resulted in abrupt high
or low outliers in model score. For this analysis we retained
these predictions as part of the overall evaluation. We ex-
pect computer vision algorithms to detect and remove these
images, which would further improve model performance.
Data collection on the Flow Photo Explorer platform enables
users to flag “bad” images during data annotation, which will
enable us to develop outlier detection algorithms for this pur-
pose.

5 Conclusions

The camera-based methodology discussed here offers a novel
approach to estimating relative streamflow. Its low cost and
effort requirements should make it feasible to create dense
observation networks to fill gaps in existing streamflow mon-
itoring observations and thereby improve understanding of
relative streamflow dynamics in headwater streams. While
currently limited to estimates of relative streamflow trained
as single-site models, we expect continued improvements
that will expand the applicability and improve the ease of
training models for new locations. The purpose of this paper
was to answer questions based on an initial set of monitor-
ing stations. These findings will guide further development
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of the Flow Photo Explorer integrated web platform that al-
lows users to upload, annotate, model, and interpret head-
water stream imagery. To summarize, this study answers the
following questions:

1. How accurate are people at ranking images by stream-
Sflow? Overall annotation accuracy of image pair ranking
ranged from 84 % to 96 % (average of 92.2 %) among
the 11 camera sites. While limited to primarily two in-
dividuals, we see that our annotators are nearly 100 %
accurate at ranking stream image pairs when there are
large differences in observed streamflow. Small differ-
ences in streamflow between image pairs were more dif-
ficult for the annotators to identify. Due to consistency
among sites, the accuracy of person-generated stream-
flow annotations used in this study can be reasonably
simulated with a single globally fit equation.

2. How accurate are image-derived relative hydro-
graphs developed using person-generated annotations?
Kendall’s Tau values for streamflow percentile predic-
tions ranged from 0.6 to 0.83 for unannotated days
within the training period. These represent the retro-
spective model performance. Lower performance was
observed for predictions on data collected after the
training period, which may have a different distribution
of streamflow or changes to the image scene. Where
available, Kendall’s Tau values for the post-training pe-
riod range from 0.34 to 0.74.

3. Which factors influence ranking model accuracy and in-
dicate which unmonitored catchments would be suitable
for low-cost camera monitoring? The primary factor
describing among-site differences in performance was
streamflow variability. Describing relative streamflow
changes in streams with steady flow was challenging,
in part due to our relative (percentile-based) metrics of
performance. We expect better performance for streams
that exhibit large stage variations, are seasonally dry, or
have large seasonal variations in flow.

4. How many person-generated annotations are required
to achieve stable ranking model performance? An ex-
periment indicated that for most sites there were dimin-
ishing improvements in performance after about 1000
pairwise annotations. We therefore conclude this is a
reasonable minimum number of annotations to develop
a ranking model.

Code availability. Modeling code is provided at this GitHub code
repository: https://github.com/EcoSHEDS/fpe-model (fpe-model
v0.9.0; EcoSHEDS, 2024).

Data availability. The imagery, streamflow data, and model re-
sults used in this study are publicly visible on the web page
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https://www.usgs.gov/apps/ecosheds/fpe (last access: 13 November
2025). Streamflow data were originally reported in a US Geological
Survey (USGS) data release (https://doi.org/10.5066/P9ES4RQS,
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