Articles | Volume 29, issue 22
https://doi.org/10.5194/hess-29-6393-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-6393-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Soil oxygen dynamics: a key mediator of tile drainage impacts on coupled hydrological, biogeochemical, and crop systems
Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
Department of Natural Resources and Environmental Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
DOE Center for Advanced Bioenergy and Bioproducts Innovation, Urbana, IL, USA
Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
Department of Natural Resources and Environmental Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
DOE Center for Advanced Bioenergy and Bioproducts Innovation, Urbana, IL, USA
National Center for Supercomputing Applications, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
Bin Peng
CORRESPONDING AUTHOR
Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
Department of Natural Resources and Environmental Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
Department of Crop Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
Wang Zhou
Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
Department of Natural Resources and Environmental Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
Robert Grant
Department of Renewable Resources, University of Alberta, Alberta, T6G 2E3, Canada
Jinyun Tang
Climate Sciences Department, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Murugesu Sivapalan
Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
Department of Geography and Geographic Information Science, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, USA
Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA
Zhenong Jin
Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA
Related authors
No articles found.
Lena Wang, Sharon A. Billings, Li Li, Daniel R. Hirmas, Keira Johnson, Devon Kerins, Julio Pachon, Curtis Beutler, Karla M. Jarecke, Vaishnavi Varikuti, Micah Unruh, Hoori Ajami, Holly Barnard, Alejandro N. Flores, Kenneth Williams, and Pamela L. Sullivan
Biogeosciences, 22, 6097–6117, https://doi.org/10.5194/bg-22-6097-2025, https://doi.org/10.5194/bg-22-6097-2025, 2025
Short summary
Short summary
Our study looked at how different forest types and conditions affected soil microbes and soil carbon and stability. Aspen organic matter led to higher microbial activity, smaller soil aggregates, and more stable soil carbon, possibly reducing dissolved organic carbon movement from hillslopes to streams. This shows the importance of models like the Microbial Efficiency – Matrix Stabilization framework for predicting CO2 release, soil carbon stability, and carbon movement.
Kachinga Silwimba, Alejandro N. Flores, Irene Cionni, Sharon A. Billings, Pamela L. Sullivan, Hoori Ajami, Daniel R. Hirmas, and Li Li
Geosci. Model Dev., 18, 7707–7734, https://doi.org/10.5194/gmd-18-7707-2025, https://doi.org/10.5194/gmd-18-7707-2025, 2025
Short summary
Short summary
Land models need reliable soil properties to simulate water, but these settings are uncertain. We analyzed Community Land Model version 5 simulations for the United States from 1980 to 2010 to see how different soil settings shape patterns of soil moisture. Compared with an independent global land dataset, patterns align in many regions but differ in water-limited areas such as the Great Plains. Our maps show where to improve settings and guide future tests with observations.
Yuan Yang, Ming Pan, Dapeng Feng, Mu Xiao, Taylor Dixon, Robert Hartman, Chaopeng Shen, Yalan Song, Agniv Sengupta, Luca Delle Monache, and F. Martin Ralph
Hydrol. Earth Syst. Sci., 29, 5453–5476, https://doi.org/10.5194/hess-29-5453-2025, https://doi.org/10.5194/hess-29-5453-2025, 2025
Short summary
Short summary
We explore a machine learning-based data integration method that integrates streamflow (Q) and snow water equivalent (SWE) to improve streamflow estimates at various lag times (1–10 d, 1–6 months) and timescales (daily and monthly) over Western US basins. Benefits rank as: integrating Q at the daily scale > Q at the monthly scale > SWE at the monthly scale > SWE at the daily scale. Results highlight the method’s potential for short- and long-term streamflow forecasting in the Western US.
Lingbo Li, Hong-Yi Li, Guta Abeshu, Jinyun Tang, L. Ruby Leung, Chang Liao, Zeli Tan, Hanqin Tian, Peter Thornton, and Xiaojuan Yang
Earth Syst. Sci. Data, 17, 2713–2733, https://doi.org/10.5194/essd-17-2713-2025, https://doi.org/10.5194/essd-17-2713-2025, 2025
Short summary
Short summary
We have developed new maps that reveal how organic carbon from soil leaches into headwater streams over the contiguous United States. We use advanced artificial intelligence techniques and a massive amount of data, including observations at over 2500 gauges and a wealth of climate and environmental information. The maps are a critical step in understanding and predicting how carbon moves through our environment, hence making them a useful tool for tackling climate challenges.
Julien Lamour, Shawn P. Serbin, Alistair Rogers, Kelvin T. Acebron, Elizabeth Ainsworth, Loren P. Albert, Michael Alonzo, Jeremiah Anderson, Owen K. Atkin, Nicolas Barbier, Mallory L. Barnes, Carl J. Bernacchi, Ninon Besson, Angela C. Burnett, Joshua S. Caplan, Jérôme Chave, Alexander W. Cheesman, Ilona Clocher, Onoriode Coast, Sabrina Coste, Holly Croft, Boya Cui, Clément Dauvissat, Kenneth J. Davidson, Christopher Doughty, Kim S. Ely, Jean-Baptiste Féret, Iolanda Filella, Claire Fortunel, Peng Fu, Maquelle Garcia, Bruno O. Gimenez, Kaiyu Guan, Zhengfei Guo, David Heckmann, Patrick Heuret, Marney Isaac, Shan Kothari, Etsushi Kumagai, Thu Ya Kyaw, Liangyun Liu, Lingli Liu, Shuwen Liu, Joan Llusià, Troy Magney, Isabelle Maréchaux, Adam R. Martin, Katherine Meacham-Hensold, Christopher M. Montes, Romà Ogaya, Joy Ojo, Regison Oliveira, Alain Paquette, Josep Peñuelas, Antonia Debora Placido, Juan M. Posada, Xiaojin Qian, Heidi J. Renninger, Milagros Rodriguez-Caton, Andrés Rojas-González, Urte Schlüter, Giacomo Sellan, Courtney M. Siegert, Guangqin Song, Charles D. Southwick, Daisy C. Souza, Clément Stahl, Yanjun Su, Leeladarshini Sujeeun, To-Chia Ting, Vicente Vasquez, Amrutha Vijayakumar, Marcelo Vilas-Boas, Diane R. Wang, Sheng Wang, Han Wang, Jing Wang, Xin Wang, Andreas P. M. Weber, Christopher Y. S. Wong, Jin Wu, Fengqi Wu, Shengbiao Wu, Zhengbing Yan, Dedi Yang, and Yingyi Zhao
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-213, https://doi.org/10.5194/essd-2025-213, 2025
Revised manuscript under review for ESSD
Short summary
Short summary
We present the Global Spectra-Trait Initiative (GSTI), a collaborative repository of paired leaf hyperspectral and gas exchange measurements from diverse ecosystems. This repository provides a unique source of information for creating hyperspectral models for predicting photosynthetic traits and associated leaf traits in terrestrial plants.
Jinyun Tang and William J. Riley
Biogeosciences, 22, 1809–1819, https://doi.org/10.5194/bg-22-1809-2025, https://doi.org/10.5194/bg-22-1809-2025, 2025
Short summary
Short summary
A new mathematical formulation of the dynamic energy budget model is presented for the growth of biological organisms. This new formulation combines mass conservation law and chemical kinetics theory and is computationally faster than the standard formulation of dynamic energy budget models. In simulating the growth of Thalassiosira weissflogii in a nitrogen-limiting chemostat, the new model is as good as the standard dynamic energy budget model using almost the same parameter values.
Peijun Li, Yalan Song, Ming Pan, Kathryn Lawson, and Chaopeng Shen
EGUsphere, https://doi.org/10.5194/egusphere-2025-483, https://doi.org/10.5194/egusphere-2025-483, 2025
Short summary
Short summary
This study explores how combining different model types improves streamflow predictions, especially in data-sparse scenarios. By integrating two highly accurate models with distinct mechanisms and leveraging multiple meteorological datasets, we highlight their unique strengths and set new accuracy benchmarks across spatiotemporal conditions. Our findings enhance the understanding of how diverse models and multi-source data can be effectively used to improve hydrological predictions.
Zitong Li, Kang Sun, Kaiyu Guan, Sheng Wang, Bin Peng, Lieven Clarisse, Martin Van Damme, Pierre-François Coheur, Karen Cady-Pereira, Mark W. Shephard, Mark Zondlo, and Daniel Moore
EGUsphere, https://doi.org/10.5194/egusphere-2025-725, https://doi.org/10.5194/egusphere-2025-725, 2025
Short summary
Short summary
We estimate ammonia fluxes over the contiguous U.S. from 2008 to 2022 using a directional derivative approach applied to satellite observations from IASI and CrIS. Satellite-based flux estimates reveal that ammonia emissions deposit in nearby vegetation, with pronounced seasonal and spatial variability driven by agricultural activities, underscoring the need for improved monitoring and management strategies.
James Stegen, Amy J. Burgin, Michelle H. Busch, Joshua B. Fisher, Joshua Ladau, Jenna Abrahamson, Lauren Kinsman-Costello, Li Li, Xingyuan Chen, Thibault Datry, Nate McDowell, Corianne Tatariw, Anna Braswell, Jillian M. Deines, Julia A. Guimond, Peter Regier, Kenton Rod, Edward K. P. Bam, Etienne Fluet-Chouinard, Inke Forbrich, Kristin L. Jaeger, Teri O'Meara, Tim Scheibe, Erin Seybold, Jon N. Sweetman, Jianqiu Zheng, Daniel C. Allen, Elizabeth Herndon, Beth A. Middleton, Scott Painter, Kevin Roche, Julianne Scamardo, Ross Vander Vorste, Kristin Boye, Ellen Wohl, Margaret Zimmer, Kelly Hondula, Maggi Laan, Anna Marshall, and Kaizad F. Patel
Biogeosciences, 22, 995–1034, https://doi.org/10.5194/bg-22-995-2025, https://doi.org/10.5194/bg-22-995-2025, 2025
Short summary
Short summary
The loss and gain of surface water (variable inundation) are common processes across Earth. Global change shifts variable inundation dynamics, highlighting a need for unified understanding that transcends individual variably inundated ecosystems (VIEs). We review the literature, highlight challenges, and emphasize opportunities to generate transferable knowledge by viewing VIEs through a common lens. We aim to inspire the emergence of a cross-VIE community based on a proposed continuum approach.
Ather Abbas, Yuan Yang, Ming Pan, Yves Tramblay, Chaopeng Shen, Haoyu Ji, Solomon H. Gebrechorkos, Florian Pappenberger, Jong Cheol Pyo, Dapeng Feng, George Huffman, Phu Nguyen, Christian Massari, Luca Brocca, Tan Jackson, and Hylke E. Beck
EGUsphere, https://doi.org/10.5194/egusphere-2024-4194, https://doi.org/10.5194/egusphere-2024-4194, 2025
Short summary
Short summary
Our study evaluated 23 precipitation datasets using a hydrological model at global scale to assess their suitability and accuracy. We found that MSWEP V2.8 excels due to its ability to integrate data from multiple sources, while others, such as IMERG and JRA-3Q, demonstrated strong regional performances. This research assists in selecting the appropriate dataset for applications in water resource management, hazard assessment, agriculture, and environmental monitoring.
Dapeng Feng, Hylke Beck, Jens de Bruijn, Reetik Kumar Sahu, Yusuke Satoh, Yoshihide Wada, Jiangtao Liu, Ming Pan, Kathryn Lawson, and Chaopeng Shen
Geosci. Model Dev., 17, 7181–7198, https://doi.org/10.5194/gmd-17-7181-2024, https://doi.org/10.5194/gmd-17-7181-2024, 2024
Short summary
Short summary
Accurate hydrologic modeling is vital to characterizing water cycle responses to climate change. For the first time at this scale, we use differentiable physics-informed machine learning hydrologic models to simulate rainfall–runoff processes for 3753 basins around the world and compare them with purely data-driven and traditional modeling approaches. This sets a benchmark for hydrologic estimates around the world and builds foundations for improving global hydrologic simulations.
Lu Su, Dennis P. Lettenmaier, Ming Pan, and Benjamin Bass
Hydrol. Earth Syst. Sci., 28, 3079–3097, https://doi.org/10.5194/hess-28-3079-2024, https://doi.org/10.5194/hess-28-3079-2024, 2024
Short summary
Short summary
We fine-tuned the variable infiltration capacity (VIC) and Noah-MP models across 263 river basins in the Western US. We developed transfer relationships to similar basins and extended the fine-tuned parameters to ungauged basins. Both models performed best in humid areas, and the skills improved post-calibration. VIC outperforms Noah-MP in all but interior dry basins following regionalization. VIC simulates annual mean streamflow and high flow well, while Noah-MP performs better for low flows.
Pankaj Dey, Jeenu Mathai, Murugesu Sivapalan, and Pradeep P. Mujumdar
Hydrol. Earth Syst. Sci., 28, 1493–1514, https://doi.org/10.5194/hess-28-1493-2024, https://doi.org/10.5194/hess-28-1493-2024, 2024
Short summary
Short summary
This study explores the regional streamflow variability in Peninsular India. This variability is governed by monsoons, mountainous systems, and geologic gradients. A linkage between these influencing factors and streamflow variability is established using a Wegenerian approach and flow duration curves.
Jinyun Tang and William J. Riley
Biogeosciences, 21, 1061–1070, https://doi.org/10.5194/bg-21-1061-2024, https://doi.org/10.5194/bg-21-1061-2024, 2024
Short summary
Short summary
A chemical kinetics theory is proposed to explain the non-monotonic relationship between temperature and biochemical rates. It incorporates the observed thermally reversible enzyme denaturation that is ensured by the ceaseless thermal motion of molecules and ions in an enzyme solution and three well-established theories: (1) law of mass action, (2) diffusion-limited chemical reaction theory, and (3) transition state theory.
Gary Sterle, Julia Perdrial, Dustin W. Kincaid, Kristen L. Underwood, Donna M. Rizzo, Ijaz Ul Haq, Li Li, Byung Suk Lee, Thomas Adler, Hang Wen, Helena Middleton, and Adrian A. Harpold
Hydrol. Earth Syst. Sci., 28, 611–630, https://doi.org/10.5194/hess-28-611-2024, https://doi.org/10.5194/hess-28-611-2024, 2024
Short summary
Short summary
We develop stream water chemistry to pair with the existing CAMELS (Catchment Attributes and Meteorology for Large-sample Studies) dataset. The newly developed dataset, termed CAMELS-Chem, includes common stream water chemistry constituents and wet deposition chemistry in 516 catchments. Examples show the value of CAMELS-Chem to trend and spatial analyses, as well as its limitations in sampling length and consistency.
Chao Wang, Stephen Leisz, Li Li, Xiaoying Shi, Jiafu Mao, Yi Zheng, and Anping Chen
Earth Syst. Dynam., 15, 75–90, https://doi.org/10.5194/esd-15-75-2024, https://doi.org/10.5194/esd-15-75-2024, 2024
Short summary
Short summary
Climate change can significantly impact river runoff; however, predicting future runoff is challenging. Using historical runoff gauge data to evaluate model performances in runoff simulations for the Mekong River, we quantify future runoff changes in the Mekong River with the best simulation combination. Results suggest a significant increase in the annual runoff, along with varied seasonal distributions, thus heightening the need for adapted water resource management measures.
Pankaj Dey, Jeenu Mathai, Murugesu Sivapalan, and Pradeep Mujumdar
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-286, https://doi.org/10.5194/hess-2022-286, 2023
Preprint withdrawn
Short summary
Short summary
This study explores the regional streamflow variability in Peninsular India – which is governed by monsoons, mountainous systems and geologic gradients. A linkage between these influencers and streamflow variability is established.
Mohammad Ghoreishi, Amin Elshorbagy, Saman Razavi, Günter Blöschl, Murugesu Sivapalan, and Ahmed Abdelkader
Hydrol. Earth Syst. Sci., 27, 1201–1219, https://doi.org/10.5194/hess-27-1201-2023, https://doi.org/10.5194/hess-27-1201-2023, 2023
Short summary
Short summary
The study proposes a quantitative model of the willingness to cooperate in the Eastern Nile River basin. Our results suggest that the 2008 food crisis may account for Sudan recovering its willingness to cooperate with Ethiopia. Long-term lack of trust among the riparian countries may have reduced basin-wide cooperation. The model can be used to explore the effects of changes in future dam operations and other management decisions on the emergence of basin cooperation.
Sara Sadri, James S. Famiglietti, Ming Pan, Hylke E. Beck, Aaron Berg, and Eric F. Wood
Hydrol. Earth Syst. Sci., 26, 5373–5390, https://doi.org/10.5194/hess-26-5373-2022, https://doi.org/10.5194/hess-26-5373-2022, 2022
Short summary
Short summary
A farm-scale hydroclimatic machine learning framework to advise farmers was developed. FarmCan uses remote sensing data and farmers' input to forecast crop water deficits. The 8 d composite variables are better than daily ones for forecasting water deficit. Evapotranspiration (ET) and potential ET are more effective than soil moisture at predicting crop water deficit. FarmCan uses a crop-specific schedule to use surface or root zone soil moisture.
Yongping Wei, Jing Wei, Gen Li, Shuanglei Wu, David Yu, Mohammad Ghoreishi, You Lu, Felipe Augusto Arguello Souza, Murugesu Sivapalan, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 26, 2131–2146, https://doi.org/10.5194/hess-26-2131-2022, https://doi.org/10.5194/hess-26-2131-2022, 2022
Short summary
Short summary
There is increasing tension among the riparian countries of transboundary rivers. This article proposes a socio-hydrological framework that incorporates the slow and less visible societal processes into existing hydro-economic models, revealing the slow and hidden feedbacks between societal and hydrological processes. This framework will contribute to process-based understanding of the complex mechanism that drives conflict and cooperation in transboundary river management.
Licheng Liu, Shaoming Xu, Jinyun Tang, Kaiyu Guan, Timothy J. Griffis, Matthew D. Erickson, Alexander L. Frie, Xiaowei Jia, Taegon Kim, Lee T. Miller, Bin Peng, Shaowei Wu, Yufeng Yang, Wang Zhou, Vipin Kumar, and Zhenong Jin
Geosci. Model Dev., 15, 2839–2858, https://doi.org/10.5194/gmd-15-2839-2022, https://doi.org/10.5194/gmd-15-2839-2022, 2022
Short summary
Short summary
By incorporating the domain knowledge into a machine learning model, KGML-ag overcomes the well-known limitations of process-based models due to insufficient representations and constraints, and unlocks the “black box” of machine learning models. Therefore, KGML-ag can outperform existing approaches on capturing the hot moment and complex dynamics of N2O flux. This study will be a critical reference for the new generation of modeling paradigm for biogeochemistry and other geoscience processes.
Jinyun Tang, William J. Riley, and Qing Zhu
Geosci. Model Dev., 15, 1619–1632, https://doi.org/10.5194/gmd-15-1619-2022, https://doi.org/10.5194/gmd-15-1619-2022, 2022
Short summary
Short summary
We here describe version 2 of BeTR, a reactive transport model created to help ease the development of biogeochemical capability in Earth system models that are used for quantifying ecosystem–climate feedbacks. We then coupled BeTR-v2 to the Energy Exascale Earth System Model to quantify how different numerical couplings of plants and soils affect simulated ecosystem biogeochemistry. We found that different couplings lead to significant uncertainty that is not correctable by tuning parameters.
Wei Zhi, Yuning Shi, Hang Wen, Leila Saberi, Gene-Hua Crystal Ng, Kayalvizhi Sadayappan, Devon Kerins, Bryn Stewart, and Li Li
Geosci. Model Dev., 15, 315–333, https://doi.org/10.5194/gmd-15-315-2022, https://doi.org/10.5194/gmd-15-315-2022, 2022
Short summary
Short summary
Watersheds are the fundamental Earth surface functioning unit that connects the land to aquatic systems. Here we present the recently developed BioRT-Flux-PIHM v1.0, a watershed-scale biogeochemical reactive transport model, to improve our ability to understand and predict solute export and water quality. The model has been verified against the benchmark code CrunchTope and has recently been applied to understand reactive transport processes in multiple watersheds of different conditions.
Bharat Rastogi, John B. Miller, Micheal Trudeau, Arlyn E. Andrews, Lei Hu, Marikate Mountain, Thomas Nehrkorn, Bianca Baier, Kathryn McKain, John Mund, Kaiyu Guan, and Caroline B. Alden
Atmos. Chem. Phys., 21, 14385–14401, https://doi.org/10.5194/acp-21-14385-2021, https://doi.org/10.5194/acp-21-14385-2021, 2021
Short summary
Short summary
Predicting Earth's climate is difficult, partly due to uncertainty in forecasting how much CO2 can be removed by oceans and plants, because we cannot measure these exchanges directly on large scales. Satellites such as NASA's OCO-2 can provide part of the needed information, but data need to be highly precise and accurate. We evaluate these data and find small biases in certain months that are similar to the signals of interest. We argue that continued improvement of these data is necessary.
You Lu, Fuqiang Tian, Liying Guo, Iolanda Borzì, Rupesh Patil, Jing Wei, Dengfeng Liu, Yongping Wei, David J. Yu, and Murugesu Sivapalan
Hydrol. Earth Syst. Sci., 25, 1883–1903, https://doi.org/10.5194/hess-25-1883-2021, https://doi.org/10.5194/hess-25-1883-2021, 2021
Short summary
Short summary
The upstream countries in the transboundary Lancang–Mekong basin build dams for hydropower, while downstream ones gain irrigation and fishery benefits. Dam operation changes the seasonality of runoff downstream, resulting in their concerns. Upstream countries may cooperate and change their regulations of dams to gain indirect political benefits. The socio-hydrological model couples hydrology, reservoir, economy, and cooperation and reproduces the phenomena, providing a useful model framework.
Chongya Jiang, Kaiyu Guan, Genghong Wu, Bin Peng, and Sheng Wang
Earth Syst. Sci. Data, 13, 281–298, https://doi.org/10.5194/essd-13-281-2021, https://doi.org/10.5194/essd-13-281-2021, 2021
Short summary
Short summary
Photosynthesis, quantified by gross primary production (GPP), is a key Earth system process. To date, there is a lack of a high-spatiotemporal-resolution, real-time and observation-based GPP dataset. This work addresses this gap by developing a SatelLite Only Photosynthesis Estimation (SLOPE) model and generating a new GPP product, which is advanced in spatial and temporal resolutions, instantaneity, and quantitative uncertainty. The dataset will benefit a range of research and applications.
Hang Wen, Pamela L. Sullivan, Gwendolyn L. Macpherson, Sharon A. Billings, and Li Li
Biogeosciences, 18, 55–75, https://doi.org/10.5194/bg-18-55-2021, https://doi.org/10.5194/bg-18-55-2021, 2021
Short summary
Short summary
Carbonate weathering is essential in regulating carbon cycle at the century timescale. Plant roots accelerate weathering by elevating soil CO2 via respiration. It however remains poorly understood how and how much rooting characteristics modify flow paths and weathering. This work indicates that deepening roots in woodlands can enhance carbonate weathering by promoting recharge and CO2–carbonate contact in the deep, carbonate-abundant subsurface.
Hylke E. Beck, Ming Pan, Diego G. Miralles, Rolf H. Reichle, Wouter A. Dorigo, Sebastian Hahn, Justin Sheffield, Lanka Karthikeyan, Gianpaolo Balsamo, Robert M. Parinussa, Albert I. J. M. van Dijk, Jinyang Du, John S. Kimball, Noemi Vergopolan, and Eric F. Wood
Hydrol. Earth Syst. Sci., 25, 17–40, https://doi.org/10.5194/hess-25-17-2021, https://doi.org/10.5194/hess-25-17-2021, 2021
Short summary
Short summary
We evaluated the largest and most diverse set of surface soil moisture products ever evaluated in a single study. We found pronounced differences in performance among individual products and product groups. Our results provide guidance to choose the most suitable product for a particular application.
Kuang-Yu Chang, William J. Riley, Patrick M. Crill, Robert F. Grant, and Scott R. Saleska
Biogeosciences, 17, 5849–5860, https://doi.org/10.5194/bg-17-5849-2020, https://doi.org/10.5194/bg-17-5849-2020, 2020
Short summary
Short summary
Methane (CH4) is a strong greenhouse gas that can accelerate climate change and offset mitigation efforts. A key assumption embedded in many large-scale climate models is that ecosystem CH4 emissions can be estimated by fixed temperature relations. Here, we demonstrate that CH4 emissions cannot be parameterized by emergent temperature response alone due to variability driven by microbial and abiotic interactions. We also provide mechanistic understanding for observed CH4 emission hysteresis.
Peng Ji, Xing Yuan, Feng Ma, and Ming Pan
Hydrol. Earth Syst. Sci., 24, 5439–5451, https://doi.org/10.5194/hess-24-5439-2020, https://doi.org/10.5194/hess-24-5439-2020, 2020
Short summary
Short summary
By performing high-resolution land surface modeling driven by the latest CMIP6 climate models, we find both the dry streamflow extreme over the drought-prone Yellow River headwater and the wet streamflow extreme over the flood-prone Yangtze River headwater will increase under 1.5, 2.0 and 3.0 °C global warming levels and emphasize the importance of considering ecological changes (i.e., vegetation greening and CO2 physiological forcing) in the hydrological projection.
Cited articles
Adelsperger, S. R., Ficklin, D. L., and Robeson, S. M.: Tile drainage as a driver of streamflow flashiness in agricultural areas of the Midwest, USA, Hydrol. Process., 37, https://doi.org/10.1002/hyp.15021, 2023.
Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., White, M. J., Srinivasan, R., Santhi, C., Harmel, R. D., van Griensven, A., Van Liew, M. W., Kannan, N., and Jha, M. K.: SWAT: Model use, calibration, and validation, T. ASABE, 55, 1491–1508, 2012.
Ashraf, M. A.: Waterlogging stress in plants: A review, Afr. J. Agric. Res., 7, 1976–1981, 2012.
Askar, M. H., Youssef, M. A., Chescheir, G. M., Negm, L. M., King, K. W., Hesterberg, D. L., Amoozegar, A., and Skaggs, R. W.: DRAINMOD Simulation of macropore flow at subsurface drained agricultural fields: Model modification and field testing, Agr. Water Manage., 242, 106401, https://doi.org/10.1016/j.agwat.2020.106401, 2020.
Bailey, R. T., Bieger, K., Flores, L., and Tomer, M.: Evaluating the contribution of subsurface drainage to watershed water yield using SWAT+ with groundwater modeling, Sci. Total Environ., 802, 149962, https://doi.org/10.1016/j.scitotenv.2021.149962, 2022.
Beer, C., Ciais, P., Reichstein, M., Baldocchi, D., Law, B. E., Papale, D., Soussana, J.-F., Ammann, C., Buchmann, N., Frank, D., Gianelle, D., Janssens, I. A., Knohl, A., Köstner, B., Moors, E., Roupsard, O., Verbeeck, H., Vesala, T., Williams, C. A., and Wohlfahrt, G.: Temporal and among-site variability of inherent water use efficiency at the ecosystem level, Global Biogeochem. Cy., 23, https://doi.org/10.1029/2008gb003233, 2009.
Blann, K. L., Anderson, J. L., Sands, G. R., and Vondracek, B.: Effects of Agricultural Drainage on Aquatic Ecosystems: A Review, Crit. Rev. Environ. Sci. Technol., 39, 909–1001, 2009.
Boland-Brien, S. J., Basu, N. B., and Schilling, K. E.: Homogenization of spatial patterns of hydrologic response in artificially drained agricultural catchments, Hydrol. Process., 28, 5010–5020, 2014.
Bresler, E.: Simultaneous transport of solutes and water under transient unsaturated flow conditions, Water Resour. Res., 9, 975–986, 1973.
Brown, R. L., Hangs, R., Schoenau, J., and Bedard-Haughn, A.: Soil nitrogen and phosphorus dynamics and uptake by wheat grown in drained prairie soils under three moisture scenarios, Soil Sci. Soc. Am. J., 81, 1496–1504, 2017.
Cain, M. R., Woo, D. K., Kumar, P., Keefer, L., and Ward, A. S.: Antecedent conditions control thresholds of tile-runoff generation and nitrogen export in intensively managed landscapes, Water Resour. Res., 58, e2021WR030507, https://doi.org/10.1029/2021wr030507, 2022.
Castellano, M. J., Archontoulis, S. V., Helmers, M. J., Poffenbarger, H. J., and Six, J.: Sustainable intensification of agricultural drainage, Nat. Sustainabil., 2, 914–921, 2019.
Chighladze, G., Abendroth, L. J., Herzmann, D., Helmers, M., Ahiablame, L., Allred, B., Bowling, L., Brown, L., Fausey, N., Frankenberger, J., Jaynes, D., Jia, X., Kjaersgaard, J., King, K., Kladivko, E., Nelson, K., Pease, L., Reinhart, B., Strock, J., and Youssef, M.: Transforming Drainage Research Data (USDA-NIFA Award No. 2015-68007-23193), National Agricultural Library - ARS - USDA [data set], https://doi.org/10.15482/USDA.ADC/1521092, 2021.
David, M. B., Gentry, L. E., Kovacic, D. A., and Smith, K. M.: Nitrogen balance in and export from an agricultural watershed, J. Environ. Qual., 26, 1038–1048, 1997.
David, M. B., Drinkwater, L. E., and McIsaac, G. F.: Sources of nitrate yields in the Mississippi River Basin, J. Environ. Qual., 39, 1657–1667, 2010.
Delbecq, B. A., Brown, J. P., Florax, R. J. G. M., Kladivko, E. J., Nistor, A. P., and Lowenberg-DeBoer, J. M.: The impact of drainage water management technology on corn yields, Agron. J., 104, 1100–1109, 2012.
De Schepper, G. and Therrien, R.: Simulating seasonal variations of tile drainage discharge in an agricultural catchment, Resour. Res., 53, 3896–3920, https://doi.org/10.1002/2016WR020209, 2017.
Drinkwater, L. E. and Snapp, S. S.: Nutrients in Agroecosystems: Rethinking the Management Paradigm, Advances in Agronomy, 92, 163–186, https://doi.org/10.1016/S0065-2113(04)92003-2, 2007.
Ebrahimi-Mollabashi, E., Huth, N. I., Holzwoth, D. P., Ordóñez, R. A., Hatfield, J. L., Huber, I., Castellano, M. J., and Archontoulis, S. V.: Enhancing APSIM to simulate excessive moisture effects on root growth, Field Crops Res., 236, 58–67, 2019.
Elzenga, J. T. M. and van Veen, H.: Waterlogging and Plant Nutrient Uptake, in: Waterlogging Signalling and Tolerance in Plants, edited by: Mancuso, S. and Shabala, S., Springer, Berlin, Heidelberg, 23–35, https://doi.org/10.1007/978-3-642-10305-6_2, 2010.
Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B., and Otero-Casal, C.: Hydrologic regulation of plant rooting depth, P. Natl. Acad. Sci. USA, 114, 10572–10577, 2017.
Feddes, R., Kowalik, P., and Zaradny, H.: Simulation of field water use and crop yield, Wiley, ISBN 0470264632, ISBN 9780470264638, 1978.
Feddes, R. A., Hoff, H., Bruen, M., Dawson, T., de Rosnay, P., Dirmeyer, P., Jackson, R. B., Kabat, P., Kleidon, A., Lilly, A., and Pitman, A. J.: Modeling Root Water Uptake in Hydrological and Climate Models, B. Am. Meteorol. Soc., 82, 2797–2810, 2001.
Follett, R. F., Allmaras, R. R., and Reichman, G. A.: Distribution of corn roots in sandy soil with a declining water table, Agron. J., 66, 288–292, 1974.
Frankenberger, J., McMillan, S. K., Williams, M. R., Mazer, K., Ross, J., and Sohngen, B.: Drainage water management: A review of nutrient load reductions and cost effectiveness, J. ASABE, 67, https://doi.org/10.13031/ja.15549, 2023.
Ghane, E., Fausey, N. R., Shedekar, V. S., Piepho, H. P., Shang, Y., and Brown, L. C.: Crop yield evaluation under controlled drainage in Ohio, United States, J. Soil Water Conserv., 67, 465–473, 2012.
Gramlich, A., Stoll, S., Stamm, C., Walter, T., and Prasuhn, V.: Effects of artificial land drainage on hydrology, nutrient and pesticide fluxes from agricultural fields – A review, Agr. Ecosyst. Environ., 266, 84–99, 2018.
Grant, R.: Simulation of competition between barley and wild oats under different managements and climates, Ecol. Model., 71, 269–287, 1994.
Grant, R.: Chapter 6: Review of the Canadian Ecosystem Model – ecosys, in: Modeling Carbon and Nitrogen Dynamics for Soil Management, edited by: Shaffer, M. J., Ma, L., and Hansen, S., CRC Press, 173–264, ISBN: 1566705290, ISBN: 9781566705295, 2001.
Grant, R.: ECOSYS: The ECOSYS model for terrestrial ecosystem biogeochemistry, GitHub [code], https://github.com/jinyun1tang/ECOSYS (last access: January 2024), 2023.
Grant, R. F.: Simulation model of soil compaction and root growth, Plant Soil, 150, 1–14, 1993.
Grant, R. F.: Simulation in ecosys of root growth response to contrasting soil water and nitrogen, Ecol. Model., 107, 237–264, 1998.
Grant, R. F. and Pattey, E.: Mathematical modeling of nitrous oxide emissions from an agricultural field during spring thaw, Global Biogeochem. Cy., 13, 679–694, 1999.
Grant, R. F., Juma, N. G., and McGill, W. B.: Simulation of carbon and nitrogen transformations in soil: microbial biomass and metabolic products, Soil Biol. Biochem., 25, https://doi.org/10.1016/0038-0717(93)90047-F, 1993a.
Grant, R. F., Juma, N. G., and McGill, W. B.: Simulation of carbon and nitrogen transformations in soil: Mineralization, Soil Biol. Biochem., 25, 1317–1329, 1993b.
Grant, R. F., Wall, G. W., Kimball, B. A., Frumau, K. F. A., Pinter Jr., P. J., Hunsaker, D. J., and Lamorte, R. L.: Crop water relations under different CO2 and irrigation: testing of ecosys with the free air CO2 enrichment (FACE) experiment, Agr. Forest Meteorol., 95, 27–51, 1999.
Grant, R. F., Mekonnen, Z. A., Riley, W. J., Wainwright, H. M., Graham, D., and Torn, M. S.: Mathematical modelling of arctic polygonal tundra with ecosys: 1. Microtopography determines how active layer depths respond to changes in temperature and precipitation: Active layer depth in polygonal tundra, J. Geophys. Res.-Biogeo., 122, 3161–3173, 2017.
Grenon, G., Singh, B., De Sena, A., Madramootoo, C. A., von Sperber, C., Goyal, M. K., and Zhang, T.: Phosphorus fate, transport and management on subsurface drained agricultural organic soils: a review, Environ. Res. Lett., 16, 013004, https://doi.org/10.1088/1748-9326/abce81, 2021.
Guerrieri, R., Lepine, L., Asbjornsen, H., Xiao, J., and Ollinger, S. V.: Evapotranspiration and water use efficiency in relation to climate and canopy nitrogen in U.S. forests, J. Geophys. Res.-Biogeo., 121, 2610–2629, 2016.
Hammond, G. E., Lichtner, P. C., and Mills, R. T.: Evaluating the performance of parallel subsurface simulators: An illustrative example with PFLOTRAN, Water Resour. Res., 50, 208–228, 2014.
Hanrahan, B. R., King, K. W., Macrae, M. L., Williams, M. R., and Stinner, J. H.: Among-site variability in environmental and management characteristics: Effect on nutrient loss in agricultural tile drainage, J. Great Lakes Res., 46, 486–499, 2020.
Hansen, A. L., Refsgaard, J. C., Christensen, B. S. B., and Jensen, K. H.: Importance of including small-scale tile drain discharge in the calibration of a coupled groundwater-surface water catchment model, Water Resour. Res., 49, 585–603, 2013.
Helmers, M. J., Abendroth, L., Reinhart, B., Chighladze, G., Pease, L., Bowling, L., Youssef, M., Ghane, E., Ahiablame, L., Brown, L., Fausey, N., Frankenberger, J., Jaynes, D., King, K., Kladivko, E., Nelson, K., and Strock, J.: Impact of controlled drainage on subsurface drain flow and nitrate load: A synthesis of studies across the U.S. Midwest and Southeast, Agr. Water Manage., 259, 107265, https://doi.org/10.1016/j.agwat.2021.107265, 2022.
Hodge, A.: The plastic plant: root responses to heterogeneous supplies of nutrients, New Phytol., 162, 9–24, 2004.
Hodge, A., Berta, G., Doussan, C., Merchan, F., and Crespi, M.: Plant root growth, architecture and function, Plant Soil, 321, 153–187, 2009.
Hoffman, F. M., Koven, C. D., Keppel-Aleks, G., Lawrence, D. M., Riley, W. J., Randerson, J. T., Ahlström, A., Abramowitz, G., Baldocchi, D. D., Best, M. J., Bond-Lamberty, B., De Kauwe, M. G., Denning, A. S., Desai, A. R., Eyring, V., Fisher, J. B., Fisher, R. A., Gleckler, P. J., Huang, M., Hugelius, G., Jain, A. K., Kiang, N. Y., Kim, H., Koster, R. D., Kumar, S. V., Li, H., Luo, Y., Mao, J., McDowell, N. G., Mishra, U., Moorcroft, P. R., Pau, G. S. H., Ricciuto, D. M., Schaefer, K., Schwalm, C. R., Serbin, S. P., Shevliakova, E., Slater, A. G., Tang, J., Williams, M., Xia, J., Xu, C., Joseph, R., and Koch, D.: 2016 International Land Model Benchmarking (ILAMB) Workshop Report, USDOE Office of Science, Washington, D.C., USA, https://doi.org/10.2172/1330803, 2017.
Horton, R. E.: The role of infiltration in the hydrologic cycle, Eos Trans. Am. Geophys. Union, 14, 446–460, 1933.
Ivanov, V. Y., Bras, R. L., and Curtis, D. C.: A weather generator for hydrological, ecological, and agricultural applications, Water Resour. Res., 43, https://doi.org/10.1029/2006wr005364, 2007.
Jacinthe, P. A., Vidon, P., Fisher, K., Liu, X., and Baker, M. E.: Soil Methane and Carbon Dioxide Fluxes from Cropland and Riparian Buffers in Different Hydrogeomorphic Settings, J. Environ. Qual., 44, 1080–1090, 2015.
Jiang, Q., Qi, Z., Xue, L., Bukovsky, M., Madramootoo, C. A., and Smith, W.: Assessing climate change impacts on greenhouse gas emissions, N losses in drainage and crop production in a subsurface drained field, Sci. Total Environ., 705, 135969, https://doi.org/10.1016/j.scitotenv.2019.135969, 2020.
Jin, W., Aufrecht, J., Patino-Ramirez, F., Cabral, H., Arson, C., and Retterer, S. T.: Modeling root system growth around obstacles, Sci. Rep., 10, 15868, https://doi.org/10.1038/s41598-020-72557-8, 2020.
Jochen Schenk, H.: Vertical Vegetation Structure Below Ground: Scaling from Root to Globe, in: Progress in Botany: Genetics Physiology Systematics Ecology, edited by: Esser, K., Lüttge, U., Beyschlag, W., and Murata, J., Springer, Berlin, Heidelberg, 341–373, https://doi.org/10.1007/3-540-27043-4_14, 2005.
Jones, J. W., Antle, J. M., Basso, B., Boote, K. J., Conant, R. T., Foster, I., Godfray, H. C. J., Herrero, M., Howitt, R. E., Janssen, S., Keating, B. A., Munoz-Carpena, R., Porter, C. H., Rosenzweig, C., and Wheeler, T. R.: Brief history of agricultural systems modeling, Agric. Syst., 155, 240–254, 2017.
Kalita, P. K., Cooke, R. A. C., Anderson, S. M., Hirschi, M. C., and Mitchell, J. K.: Subsurface drainage and water quality: The Illinois experience, T. ASABE, 50, 1651–1656, 2007.
Kemper, W. D. and Rollins, J. B.: Osmotic efficiency coefficients across compacted clays, Soil Sci. Soc. Am. J., 30, 529–534, 1966.
Khand, K., Kjaersgaard, J., Hay, C., and Jia, X.: Estimating Impacts of Agricultural Subsurface Drainage on Evapotranspiration Using the Landsat Imagery-Based METRIC Model, Hydrology, 4, 49, https://doi.org/10.3390/hydrology4040049, 2017.
Kucharik, C. J.: Contribution of planting date trends to increased maize yields in the central United States, Agron. J., 100, 328–336, 2008.
Kumar, S., Nakajima, T., Kadono, A., Lal, R., and Fausey, N.: Long-term tillage and drainage influences on greenhouse gas fluxes from a poorly drained soil of central Ohio, J. Soil Water Conserv., 69, 553–563, 2014.
Lam, W. V., Macrae, M. L., English, M. C., O'Halloran, I. P., Plach, J. M., and Wang, Y.: Seasonal and event-based drivers of runoff and phosphorus export through agricultural tile drains under sandy loam soil in a cool temperate region, Hydrol. Process., 30, 2644–2656, 2016.
Lavaire, T., Gentry, L. E., David, M. B., and Cooke, R. A.: Fate of water and nitrate using drainage water management on tile systems in east-central Illinois, Agr. Water Manage., 191, 218–228, 2017.
Lesk, C., Rowhani, P., and Ramankutty, N.: Influence of extreme weather disasters on global crop production, Nature, 529, 84–87, 2016.
Li, H., Sivapalan, M., Tian, F., and Liu, D.: Water and nutrient balances in a large tile-drained agricultural catchment: a distributed modeling study, Hydrol. Earth Syst. Sci., 14, 2259–2275, https://doi.org/10.5194/hess-14-2259-2010, 2010.
Li, L., Maher, K., Navarre-Sitchler, A., Druhan, J., and Meile, C.: Expanding the role of reactive transport models in critical zone processes, Earth-Sci. Rev., 165, https://doi.org/10.1016/j.earscirev.2016.09.001, 2017.
Li, L., Sullivan, P. L., Benettin, P., Cirpka, O. A., Bishop, K., Brantley, S. L., Knapp, J. L. A., Meerveld, I., Rinaldo, A., Seibert, J., Wen, H., and Kirchner, J. W.: Toward catchment hydro-biogeochemical theories, WIREs Water, 8, https://doi.org/10.1002/wat2.1495, 2021.
Li, Y., Guan, K., Yu, A., Peng, B., Zhao, L., Li, B., and Peng, J.: Toward building a transparent statistical model for improving crop yield prediction: Modeling rainfed corn in the U.S., Field Crops Res., 234, 55–65, 2019.
Li, Z., Guan, K., Zhou, W., Peng, B., Jin, Z., Tang, J., Grant, R. F., Nafziger, E. D., Margenot, A. J., Gentry, L. E., DeLucia, E. H., Yang, W. H., Cai, Y., Qin, Z., Archontoulis, S. V., Fernández, F. G., Yu, Z., Lee, D., and Yang, Y.: Assessing the impacts of pre-growing-season weather conditions on soil nitrogen dynamics and corn productivity in the U.S. Midwest, Field Crops Res., 284, 108563, https://doi.org/10.1016/j.fcr.2022.108563, 2022.
Linn, D. M. and Doran, J. W.: Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils, Soil Sci. Soc. Am. J., 48, 1267–1272, 1984.
Liu, K., Harrison, M. T., Shabala, S., Meinke, H., Ahmed, I., Zhang, Y., Tian, X., and Zhou, M.: The state of the art in modeling waterlogging impacts on plants: What do we know and what do we need to know, Earths Future, 8, https://doi.org/10.1029/2020ef001801, 2020.
Lobell, D. B., Roberts, M. J., Schlenker, W., Braun, N., Little, B. B., Rejesus, R. M., and Hammer, G. L.: Greater sensitivity to drought accompanies maize yield increase in the U.S. Midwest, Science, 344, 516–519, 2014.
Ma, Z., Guan, K., Peng, B., Sivapalan, M., Li, L., Pan, M., Zhou, W., Warner, R., and Zhang, J.: Agricultural nitrate export patterns shaped by crop rotation and tile drainage, Water Res., 229, 119468, https://doi.org/10.1016/j.watres.2022.119468, 2023.
Macrae, M. L., English, M. C., Schiff, S. L., and Stone, M.: Intra-annual variability in the contribution of tile drains to basin discharge and phosphorus export in a first-order agricultural catchment, Agr. Water Manage., 92, 171–182, 2007.
Mezbahuddin, M., Grant, R. F., and Flanagan, L. B.: Modeling hydrological controls on variations in peat water content, water table depth, and surface energy exchange of a boreal western Canadian fen peatland, J. Geophys. Res.-Biogeo., https://doi.org/10.1002/2016JG003501, 2016.
Miller, S. A. and Lyon, S. W.: Tile drainage causes flashy streamflow response in Ohio watersheds, Hydrol. Process., 35, https://doi.org/10.1002/hyp.14326, 2021.
Mitchell, M. E., Newcomer-Johnson, T., Christensen, J., Crumpton, W., Dyson, B., Canfield, T. J., Helmers, M., and Forshay, K. J.: A review of ecosystem services from edge-of-field practices in tile-drained agricultural systems in the United States Corn Belt Region, J. Environ. Manage., 348, 119220, https://doi.org/10.1016/j.jenvman.2023.119220, 2023.
Moore, J.: Literature review: tile drainage and phosphorus losses from agricultural land, Lake Champlain Basin Program, https://www.lcbp.org/wp-content/uploads/2017/01/83_TileDrainage_LitReview.pdf (last access: October 2025), 2016.
Muma, M., Rousseau, A. N., and Gumiere, S. J.: Modeling of subsurface agricultural drainage using two hydrological models with different conceptual approaches as well as dimensions and spatial scales, Canadian Water Resources Journal/Revue canadienne des ressources hydriques, 42, 38–53, 2017.
Nanda, A. and Safeeq, M.: Threshold controlling runoff generation mechanisms in Mediterranean headwater catchments, J. Hydrol., 620, 129532, https://doi.org/10.1016/j.jhydrol.2023.129532, 2023.
NASS-USDA: 2017 Census of Agriculture, https://quickstats.nass.usda.gov/ (last access: May 2023), 2017.
Nóia Júnior, R. de S., Asseng, S., García-Vila, M., Liu, K., Stocca, V., dos Santos Vianna, M., Weber, T. K. D., Zhao, J., Palosuo, T., and Harrison, M. T.: A call to action for global research on the implications of waterlogging for wheat growth and yield, Agr. Water Manage., 284, 108334, https://doi.org/10.1016/j.agwat.2023.108334, 2023.
Ordóñez, R. A., Castellano, M. J., Hatfield, J. L., Helmers, M. J., Licht, M. A., Liebman, M., Dietzel, R., Martinez-Feria, R., Iqbal, J., Puntel, L. A., Córdova, S. C., Togliatti, K., Wright, E. E., and Archontoulis, S. V.: Maize and soybean root front velocity and maximum depth in Iowa, USA, Field Crops Res., 215, 122–131, 2018.
Pan, J., Sharif, R., Xu, X., and Chen, X.: Mechanisms of Waterlogging Tolerance in Plants: Research Progress and Prospects, Front. Plant Sci., 11, 627331, https://doi.org/10.3389/fpls.2020.627331, 2020.
Pasley, H. R., Huber, I., Castellano, M. J., and Archontoulis, S. V.: Modeling Flood-Induced Stress in Soybeans, Front. Plant Sci., 11, 62, https://doi.org/10.3389/fpls.2020.00062, 2020.
Paul-Limoges, E., Revill, A., Maier, R., Buchmann, N., and Damm, A.: Insights for the partitioning of ecosystem evaporation and transpiration in short-statured croplands, J. Geophys. Res.-Biogeo., 127, https://doi.org/10.1029/2021jg006760, 2022.
Pluer, W. T., Macrae, M., Buckley, A., and Reid, K.: Contribution of preferential flow to tile drainage varies spatially and temporally, Vadose Zone J., 19, https://doi.org/10.1002/vzj2.20043, 2020.
Qin, Z., Guan, K., Zhou, W., Peng, B., Villamil, M. B., Jin, Z., Tang, J., Grant, R., Gentry, L., Margenot, A. J., Bollero, G., and Li, Z.: Assessing the impacts of cover crops on maize and soybean yield in the U.S. Midwestern agroecosystems, Field Crops Res., 273, 108264, https://doi.org/10.1016/j.fcr.2021.108264, 2021.
Rahman, M. M., Lin, Z., Jia, X., Steele, D. D., and DeSutter, T. M.: Impact of subsurface drainage on streamflows in the Red River of the North basin, J. Hydrol., 511, 474–483, 2014.
Randall, G. W. and Mulla, D. J.: Nitrate nitrogen in surface waters as influenced by climatic conditions and agricultural practices, J. Environ. Qual., 30, 337–344, 2001.
Ren, B., Zhang, J., Dong, S., Liu, P., and Zhao, B.: Root and shoot responses of summer maize to waterlogging at different stages, Agron. J., 108, 1060–1069, 2016.
Ren, D., Engel, B., Mercado, J. A. V., Guo, T., Liu, Y., and Huang, G.: Modeling and assessing water and nutrient balances in a tile-drained agricultural watershed in the U.S. Corn Belt, Water Res., 210, 117976, https://doi.org/10.1016/j.watres.2021.117976, 2022.
Ross, J. A., Herbert, M. E., Sowa, S. P., Frankenberger, J. R., King, K. W., Christopher, S. F., Tank, J. L., Arnold, J. G., White, M. J., and Yen, H.: A synthesis and comparative evaluation of factors influencing the effectiveness of drainage water management, Agr. Water Manage., 178, 366–376, 2016.
Rubol, S., Manzoni, S., Bellin, A., and Porporato, A.: Modeling soil moisture and oxygen effects on soil biogeochemical cycles including dissimilatory nitrate reduction to ammonium (DNRA), Adv. Water Resour., 62, 106–124, 2013.
Rumph Frederiksen, R. and Molina-Navarro, E.: The importance of subsurface drainage on model performance and water balance in an agricultural catchment using SWAT and SWAT-MODFLOW, Agr. Water Manage., 255, 107058, https://doi.org/10.1016/j.agwat.2021.107058, 2021.
Schenk, H. J. and Jackson, R. B.: Mapping the global distribution of deep roots in relation to climate and soil characteristics, Geoderma, 126, 129–140, 2005.
Schilling, K. E. and Helmers, M.: Effects of subsurface drainage tiles on streamflow in Iowa agricultural watersheds: Exploratory hydrograph analysis, Hydrol. Process., 22, 4497–4506, 2008.
Schilling, K. E., Jindal, P., Basu, N. B., and Helmers, M. J.: Impact of artificial subsurface drainage on groundwater travel times and baseflow discharge in an agricultural watershed, Iowa (USA), Hydrol. Process., 26, 3092–3100, 2012.
Schmidhuber, J. and Tubiello, F. N.: Global food security under climate change, P. Natl. Acad. Sci. USA, 104, 19703–19708, 2007.
Seneviratne, S. I., Adnan, M., Badi, W., Dereczynski, C., Luca, A. D., Ghosh, S., Iskandar, I., Kossin, J., Lewis, S., Otto, F., Pinto, I., Satoh, M., Vicente-Serrano, S. M., Wehner, M., and Zhou, B.: Weather and climate extreme events in a changing climate, Climate Change 2021: The Physical Science Basis, in: Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, https://doi.org/10.1017/9781009157896.013, 1513–1766, 2022.
Sharpley, A. N.: EPIC-erosion/productivity impact calculator: 1, model documentation, USDA Techn. Bull. 1759, USDA, 235 pp., https://agrilife.org/epicapex/files/2015/05/EpicModelDocumentation.pdf (last access: May 2024), 1990.
Shedekar, V. S., King, K. W., Fausey, N. R., Islam, K. R., Soboyejo, A. B. O., Kalcic, M. M., and Brown, L. C.: Exploring the effectiveness of drainage water management on water budgets and nitrate loss using three evaluation approaches, Agr. Water Manage., 243, 106501, https://doi.org/10.1016/j.agwat.2020.106501, 2021.
Shen, C., Niu, J., and Phanikumar, M. S.: Evaluating controls on coupled hydrologic and vegetation dynamics in a humid continental climate watershed using a subsurface-land surface processes model, Water Resour. Res., 49, 2552–2572, 2013.
Shirzaei, M., Khoshmanesh, M., Ojha, C., Werth, S., Kerner, H., Carlson, G., Sherpa, S. F., Zhai, G., and Lee, J.-C.: Persistent impact of spring floods on crop loss in U.S. Midwest, Weather Clim. Ext., 34, 100392, https://doi.org/10.1016/j.wace.2021.100392, 2021.
Sims, J. T., Simard, R. R., and Joern, B. C.: Phosphorus loss in agricultural drainage: Historical perspective and current research, J. Environ. Qual., 27, 277–293, 1998.
Šimůnek, J. and Hopmans, J. W.: Modeling compensated root water and nutrient uptake, Ecol. Model., 220, 505–521, 2009.
Singh, G. and Nelson, K. A.: Long-term drainage, subirrigation, and tile spacing effects on maize production, Field Crops Res., 262, 108032, https://doi.org/10.1016/j.fcr.2020.108032, 2021.
Singh, N., Kogan, C., Chaudhary, S., Rajagopalan, K., and LaHue, G. T.: Controlled drainage and subirrigation suitability in the United States: A meta-analysis of crop yield and soil moisture effects, Vadose Zone J., 21, https://doi.org/10.1002/vzj2.20219, 2022.
Sinha, E., Michalak, A. M., and Balaji, V.: Eutrophication will increase during the 21st century as a result of precipitation changes, Science, 357, 405–408, 2017.
Skaggs, R. W., Brevé, M. A., and Gilliam, J. W.: Hydrologic and water quality impacts of agricultural drainage, Crit. Rev. Environ. Sci. Technol., 24, 1–32, 1994.
Skaggs, R. W., Youssef, M. A., and Chescheir, G. M.: DRAINMOD: Model use, calibration, and validation, T. ASABE, 55, 1509–1522, 2012.
Smith, W., Grant, B., Qi, Z., He, W., VanderZaag, A., Drury, C. F., and Helmers, M.: Development of the DNDC model to improve soil hydrology and incorporate mechanistic tile drainage: A comparative analysis with RZWQM2, Environ. Model. Softw., 123, 104577, https://doi.org/10.1016/j.envsoft.2019.104577, 2020.
Soil Survey Staff: Gridded Soil Survey Geographic (gSSURGO) Database for the Conterminous United States, United States Department of Agriculture, Natural Resources Conservation Service [data set], https://data.nal.usda.gov/dataset/gridded-soil-survey-geographic-database-gssurgo (last access: 23 January 2024), 2023.
Song, L., Liu, S., Kustas, W. P., Nieto, H., Sun, L., Xu, Z., Skaggs, T. H., Yang, Y., Ma, M., Xu, T., Tang, X., and Li, Q.: Monitoring and validating spatially and temporally continuous daily evaporation and transpiration at river basin scale, Remote Sens. Environ., 219, 72–88, 2018.
Steudle, E.: The cohesion-tension mechanism and the acquisition of water by plant roots, Annu. Rev. Plant Physiol. Plant Mol. Biol., 52, 847–875, 2001.
Stops, M. W., Sullivan, P. L., Peltier, E., Young, B., and Brookfield, A. E.: Tracking the hydrologic response of agricultural tile outlet terraces to storm events, Agr. Water Manage., 263, 107382, https://doi.org/10.1016/j.agwat.2021.107382, 2022.
Thomas, N. W., Arenas, A. A., Schilling, K. E., and Weber, L. J.: Numerical investigation of the spatial scale and time dependency of tile drainage contribution to stream flow, J. Hydrol., 538, 651–666, 2016.
Tromp-van Meerveld, H. J. and McDonnell, J. J.: Threshold relations in subsurface stormflow: 2. The fill and spill hypothesis, Water Resour. Res., 42, https://doi.org/10.1029/2004WR003800, 2006.
USDA NRCS: Conservation Practice Standard: Saturated Riparian Buffers, Federal Register, 604-CPS, https://www.nrcs.usda.gov/sites/default/files/2022-09/Saturated_Buffer_604_CPS_9_2020.pdf (last access: August 2024), 2017.
USDA NRCS: Conservation Practice Standard: Drainage Water Management, Federal Register, 554-CPS, https://www.nrcs.usda.gov/sites/default/files/2023-04/554-NHCP-CPS-Drainage-Water-Management-2023.pdf (last access: August 2024), 2023.
Valayamkunnath, P., Barlage, M., Chen, F., Gochis, D. J., and Franz, K. J.: Mapping of 30-meter resolution tile-drained croplands using a geospatial modeling approach, Sci, Data, 7, 257, https://doi.org/10.1038/s41597-020-00596-x, 2020.
Valayamkunnath, P., Gochis, D. J., Chen, F., Barlage, M., and Franz, K. J.: Modeling the hydrologic influence of subsurface tile drainage using the national water model, Water Resour. Res., 58, https://doi.org/10.1029/2021wr031242, 2022.
Vrettas, M. D. and Fung, I. Y.: Sensitivity of transpiration to subsurface properties: Exploration with a 1-D model, J. Adv. Model. Earth Syst., 9, 1030–1045, 2017.
Waldrop, M. P. and Firestone, M. K.: Response of microbial community composition and function to soil climate change, Microb. Ecol., 52, 716–724, 2006.
Wang, Z., Qi, Z., Xue, L., Bukovsky, M., and Helmers, M. J.: Modeling the impacts of climate change on nitrogen losses and crop yield in a subsurface drained field, Climatic Change, 129, 323–335, 2015.
Wang, Z., Timlin, D., Li, S., Fleisher, D., Dathe, A., Luo, C., Dong, L., Reddy, V. R., and Tully, K.: A diffusive model of maize root growth in MAIZSIM and its applications in Ridge-Furrow Rainfall Harvesting, Agr. Water Manage., 254, 106966, https://doi.org/10.1016/j.agwat.2021.106966, 2021.
Warren, J. M., Hanson, P. J., Iversen, C. M., Kumar, J., Walker, A. P., and Wullschleger, S. D.: Root structural and functional dynamics in terrestrial biosphere models–evaluation and recommendations, New Phytol., 205, 59–78, 2015.
Williams, M. R., King, K. W., and Fausey, N. R.: Contribution of tile drains to basin discharge and nitrogen export in a headwater agricultural watershed, Agr. Water Manage., 158, 42–50, 2015.
Williams, M. R., Penn, C. J., King, K. W., and McAfee, S. J.: Surface-to-tile drain connectivity and phosphorus transport: Effect of antecedent soil moisture, Hydrol. Process., 37, https://doi.org/10.1002/hyp.14831, 2023.
Wiskow, E. and van der Ploeg, R. R.: Calculation of drain spacings for optimal rainstorm flood control, J. Hydrol., 272, 163–174, 2003.
Woo, D. K. and Kumar, P.: Impacts of subsurface tile drainage on age – Concentration dynamics of inorganic nitrogen in soil, Water Resour. Res., https://doi.org/10.1029/2018WR024139, 2019.
Xia, Y., Mitchell, K., Ek, M., Sheffield, J., Cosgrove, B., Wood, E., Luo, L., Alonge, C., Wei, H., Meng, J., Livneh, B., Lettenmaier, D., Koren, V., Duan, Q., Mo, K., Fan, Y., and Mocko, D.: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products, J. Geophys. Res. [data set], 117, https://doi.org/10.1029/2011jd016048, 2012.
Yang, Y., Anderson, M., Gao, F., Hain, C., Kustas, W., Meyers, T., Crow, W., Finocchiaro, R., Otkin, J., Sun, L., and Yang, Y.: Impact of Tile Drainage on Evapotranspiration in South Dakota, USA, Based on High Spatiotemporal Resolution Evapotranspiration Time Series From a Multisatellite Data Fusion System, IEEE J. Select. Top. Appl. Earth Obs. Remote Sens., 10, 2550–2564, 2017.
Yang, Y., Liu, L., Zhou, W., Guan, K., Tang, J., Kim, T., Grant, R. F., Peng, B., Zhu, P., Li, Z., Griffis, T. J., and Jin, Z.: Distinct driving mechanisms of non-growing season N2O emissions call for spatial-specific mitigation strategies in the US Midwest, Agr. For. Meteorol., 324, 109108, https://doi.org/10.1016/j.agrformet.2022.109108, 2022.
Yimer, E. A., Riakhi, F.-E., Bailey, R. T., Nossent, J., and van Griensven, A.: The impact of extensive agricultural water drainage on the hydrology of the Kleine Nete watershed, Belgium, Sci. Total Environ., 885, 163903, https://doi.org/10.1016/j.scitotenv.2023.163903, 2023.
Youssef, M. A., Strock, J., Bagheri, E., Reinhart, B. D., Abendroth, L. J., Chighladze, G., Ghane, E., Shedekar, V., Fausey, N. R., Frankenberger, J. R., Helmers, M. J., Jaynes, D. B., Kladivko, E., Negm, L., Nelson, K., and Pease, L.: Impact of controlled drainage on corn yield under varying precipitation patterns: A synthesis of studies across the U.S. Midwest and Southeast, Agr. Water Manage., 275, 107993, https://doi.org/10.1016/j.agwat.2022.107993, 2023.
Zhang, J., Guan, K., Peng, B., Pan, M., Zhou, W., Jiang, C., Kimm, H., Franz, T. E., Grant, R. F., Yang, Y., Rudnick, D. R., Heeren, D. M., Suyker, A. E., Bauerle, W. L., and Miner, G. L.: Sustainable irrigation based on co-regulation of soil water supply and atmospheric evaporative demand, Nat. Commun., 12, 5549, https://doi.org/10.1038/s41467-021-25254-7, 2021.
Zhou, W., Guan, K., Peng, B., Tang, J., Jin, Z., Jiang, C., Grant, R., and Mezbahuddin, S.: Quantifying carbon budget, crop yields and their responses to environmental variability using the ecosys model for U.S. Midwestern agroecosystems, Agr. For. Meteorol., 307, 108521, https://doi.org/10.1016/j.agrformet.2021.108521, 2021.
Zhou, W., Ruby Leung, L., and Lu, J.: Seasonally Dependent Future Changes in the U.S. Midwest Hydroclimate and Extremes, J. Climate, 35, 17–27, 2022.
Zulauf, C. and Brown, B.: Use of tile, 2017 US Census of agriculture, farmdoc daily, https://farmdocdaily.illinois.edu/2019/08/use-of-tile-2017-us-census-of-agriculture.html (last access: August 2024), 2019.
Short summary
By involving soil oxygen dynamics, we explore tile drainage impacts on the coupled hydrology–biogeochemistry–crop system. We find that soil oxygen dynamics is the key mediator of tile–system dynamics. Tile drainage lowers soil water content and improves soil oxygen levels, helping crops grow during wet springs. The developed roots also help mitigate drought stress in dry summers. Overall, tile drainage increases crop resilience to climate change, making it a valuable future agricultural practice.
By involving soil oxygen dynamics, we explore tile drainage impacts on the coupled...