Articles | Volume 29, issue 22
https://doi.org/10.5194/hess-29-6373-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-6373-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Growth in agricultural water demand aggravates water supply-demand risk in arid Northwest China: more a result of anthropogenic activities than climate change
Yang You
Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling 712100, China
Pingan Jiang
Xinjiang Agricultural University, Urumuqi 830052, China
Yakun Wang
Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling 712100, China
Wene Wang
Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling 712100, China
Dianyu Chen
CORRESPONDING AUTHOR
Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling 712100, China
Xiaotao Hu
CORRESPONDING AUTHOR
Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling 712100, China
Related authors
No articles found.
Yakun Wang, Xiaolong Hu, Lijun Wang, Jinmin Li, Lin Lin, Kai Huang, and Liangsheng Shi
Hydrol. Earth Syst. Sci., 27, 2661–2680, https://doi.org/10.5194/hess-27-2661-2023, https://doi.org/10.5194/hess-27-2661-2023, 2023
Short summary
Short summary
To avoid overloaded monitoring cost from redundant measurements, this study proposed a non-parametric data worth analysis framework to assess the worth of future soil moisture data regarding the model-free unsaturated flow models before data gathering. Results indicated that (1) the method can quantify the data worth of alternative monitoring schemes to obtain the optimal one, and (2) high-quality and representative small data could be a better choice than unfiltered big data.
Cited articles
Adem, E., Chaabani, A., Yilmaz, N., Boteva, S., Zhang, L., and Elhag, M.: Assessing the impacts of precipitation on water yield estimation in arid environments: Case study in the southwestern part of Saudi Arabia, Sustain. Chem. Pharm., 39, 101539, https://doi.org/10.1016/j.scp.2024.101539, 2024.
Bai, Y., Han, C., Tang, F., Li, Z., Tian, H., Huang, Z., Ma, L., Hu, X., Wang, J., Chen, B., Sun, L., Cheng, X., and Han, H.: Potential Impacts of Land Use Change on Ecosystem Service Supply and Demand Under Different Scenarios in the Gansu Section of the Yellow River Basin, China, Remote Sens.-Basel., 17, 489, https://doi.org/10.3390/rs17030489, 2025.
Beltran-Peña, A., Rosa, L., and D'Odorico, P.: Global food self-sufficiency in the 21st century under sustainable intensification of agriculture, Environ. Res. Lett., 15, 095004, https://doi.org/10.1088/1748-9326/ab9388, 2020.
Berdugo, M., Kéfi, S., Soliveres, S., and Maestre, F. T.: Plant spatial patterns identify alternative ecosystem multifunctionality states in global drylands, Nat. Ecol. Evol., 1, 0003, https://doi.org/10.1038/s41559-016-0003, 2017.
Budyko, M. I. and Miller, D. H.: Climate and life, Academic Press, New York, 6, 461–463, https://doi.org/10.1016/0033-5894(67)90014-2, 1974.
Cao, D., Wang, Y., and Zang, L.: Land reallocation and collective action in the commons: Application of social-ecological system framework with evidence from rural China, Land Use Policy., 144, 107267, https://doi.org/10.1016/j.landusepol.2024.107267, 2024.
Caretta, M. A., Mukherji, A., Arfanuzzaman, M., Betts, R. A., Gelfan, A., Hirabayashi, Y., Lissner, T. K., Liu, J., Lopez Gunn, E., Morgan. R., Mwanga, S., and Suprat, S.: Chapter 4: Water, in: Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press, Cambridge and New York, https://www.ipcc.ch/report/ar6/wg2 (last access: 3 November 2025), 2022.
Chen, G., Zuo, D., Xu, Z., Wang, G., Han, Y., Peng, D., Pang, B., Abbaspour, K. C., and Yang, H.: Changes in water conservation and possible causes in the Yellow River Basin of China during the recent four decades, J. Hydrol., 637, 131314, https://doi.org/10.1016/j.jhydrol.2024.131314, 2024a.
Chen, J., Pu, J., Li, J., and Zhang, T.: Response of carbon-and water-use efficiency to climate change and human activities in China, Ecol. Indic., 160, 111829, https://doi.org/10.1016/j.ecolind.2024.111829, 2024b.
Chen, M., Luo, Y., Shen, Y., Han, Z., and Cui, Y.: Driving force analysis of irrigation water consumption using principal component regression analysis, Agr. Water Manage., 234, 106089, https://doi.org/10.1016/j.agwat.2020.106089, 2020.
Chen, P., Wang, S., Liu, Y., Wang, Y., Wang, Y., Zhang, T., Zhang, H., Yao, Y., and Song, J.: Water availability in China's oases decreased between 1987 and 2017, Earth's Future, 11, e2022EF003340, https://doi.org/10.1029/2022EF003340, 2023a.
Chen, W., Li, G., Wang, D., Yang, Z., Wang, Z., Zhang, X., Peng, B., Bi, P., and Zhang, F.: Influence of the ecosystem conversion process on the carbon and water cycles in different regions of China, Ecol. Indic., 148, 110040, https://doi.org/10.1016/j.ecolind.2023.110040, 2023b.
Chen, Y., Fang, G., Li, Z., Zhang, X., Gao, L., Elbeltagi, A., Shaer, H., Duan, W., Wassif, O., Li, Y., Luo, P., Selmi, A., Yu, R., Yang, J., Hu, Y., Liu, C., Long, Y., Malik, I., Fu, A., Wistuba, M., Yang, Y., Zhu, C., and Gao, Y.: The crisis in oases: Research on ecological security and sustainable development in arid regions, Annu. Rev. Env. Resour., 49, 1–20, https://doi.org/10.1146/annurev-environ-111522-105932, 2024c.
Deng, G., Jiang, H., Wen, Y., Ma, S., He, C., Sheng, L., and Guo, Y.: Driving effects of ecosystems and social systems on water supply and demand in semiarid areas, J. Clean. Prod., 482, 144222, https://doi.org/10.1016/j.jclepro.2024.144222, 2024.
Dey, P. and Mishra, A.: Separating the impacts of climate change and human activities on streamflow: A review of methodologies and critical assumptions, J. Hydrol., 548, 278–290, https://doi.org/10.1016/j.jhydrol.2017.03.014, 2017.
Ding, R., Qin, Y., Li, T., and Fu, G.: Exploring spatiotemporal dynamics in temporal stability of soil carbon, nitrogen, phosphorus, and pH in Tibetan grasslands, Geoderma, 451, 117062, https://doi.org/10.1016/j.geoderma.2024.117062, 2024.
Donohue, R. J., Roderick, M. L., and McVicar, T. R.: Roots, storms and soil pores: Incorporating key ecohydrological processes into Budyko's hydrological model, J. Hydrol., 436, 35–50, https://doi.org/10.1016/j.jhydrol.2012.02.033, 2012.
Duarte, H. F., Kim, J. B., Sun, G., McNulty, S. G., and Xiao, J.: Climate and vegetation change impacts on future conterminous United States water yield, J. Hydrol., 639, 131472, https://doi.org/10.1016/j.jhydrol.2024.131472, 2024.
Feng, Y., Sun, F., and Deng, X.: Attributing the divergent changes of drought from humid to dry regions across China, J. Hydrol., 660, 133363, https://doi.org/10.1016/j.jhydrol.2025.133363, 2025.
Gaines, M. D., Tulbure, M. G., Perin, V., Composto, R., and Tiwari, V.: Projecting surface water area under different climate and development scenarios, Earth's Future, 12, e2024EF004625, https://doi.org/10.1029/2024EF004625, 2024.
Gao, L., Tao, F., Liu, R., Wang, Z., Leng, H., and Zhou, T.: Multi-scenario simulation and ecological risk analysis of land use based on the PLUS model: a case study of Nanjing, Sustain. Cities Soc., 85, 104055, https://doi.org/10.1016/j.scs.2022.104055, 2022.
Gharib, A. A., Blumberg, J., Manning, D. T., Goemans, C., and Arabi, M.: Assessment of vulnerability to water shortage in semi-arid river basins: The value of demand reduction and storage capacity, Sci. Total Environ., 871, 161964, https://doi.org/10.1016/j.scitotenv.2023.161964, 2023.
Guo, Q., Yu, C., Xu, Z., Yang, Y., and Wang, X.: Impacts of climate and land-use changes on water yields: Similarities and differences among typical watersheds distributed throughout China, J. Hydrol.-Reg. Stud., 45, 101294, https://doi.org/10.1016/j.ejrh.2022.101294, 2023.
Han, X., Kang, Y., Wan, S., and Li, X.: Effect of salinity on oleic sunflower (Helianthus annuus Linn.) under drip irrigation in arid area of Northwest China, Agr. Water Manage., 259, 107267, https://doi.org/10.1016/j.agwat.2021.107267, 2022.
Harifidy, R. Z., Hiroshi, I., Harivelo, R. Z. M., Jun, M., Kazuyoshi, S., and Keiichi, M.: Assessing future intra-basin water availability in madagascar: Accounting for climate change, population growth, and land use change, Water Res., 257, 121711, https://doi.org/10.1016/j.watres.2024.121711, 2024.
He, C., Liu, Z., Wu, J., Pan, X., Fang, Z., Li, J., and Bryan, B. A.: Future global urban water scarcity and potential solutions, Nat. Commun., 12, 4667, https://doi.org/10.1038/s41467-021-25026-3, 2021.
He, X., Zhang, F., Zhou, T., Xu, Y., Xu, Y., Jim, C. Y., Johnson., B. A., and Ma, X.: Human activities dominated terrestrial productivity increase over the past 22 years in typical arid and semiarid regions of Xinjiang, China, Catena, 250, 108754, https://doi.org/10.1016/j.catena.2025.108754, 2025.
Hu, Y., Cui, C., Liu, Z., and Zhang, Y.: Vegetation dynamics in Mainland Southeast Asia: Climate and anthropogenic influences, Land Use Policy, 153, 107546, https://doi.org/10.1016/j.landusepol.2025.107546, 2025.
Huang, J., Yu, H., Guan, X., Wang, G., and Guo, R.: Accelerated dryland expansion under climate change, Nat. Clim. Change, 6, 166–171, https://doi.org/10.1038/nclimate2837, 2016.
Huang, S., Krysanova, V., Zhai, J., and Su, B.: Impact of intensive irrigation activities on river discharge under agricultural scenarios in the semi-arid Aksu River basin, northwest China, Water Resour Manage., 29, 945–959, https://doi.org/10.1007/s11269-014-0853-2, 2015.
Huang, Y., Zheng, G., Li, X., Xiao, J., Xu, Z., and Tian, P.: Habitat quality evaluation and pattern simulation of coastal salt marsh wetlands, Sci. Total Environ., 945, 174003, https://doi.org/10.1016/j.scitotenv.2024.174003, 2024.
Huggins, X., Gleeson, T., Kummu, M., Zipper, S. C., Wada, Y., Troy, T. J., and Famiglietti, J. S.: Hotspots for social and ecological impacts from freshwater stress and storage loss, Nat. Commun., 13, 439, https://doi.org/10.1038/s41467-022-28029-w, 2022.
Jia, G., Hu, W. M., Zhang, B., Li, G., Shen, S. Y., Gao, Z. H., and Li, Y.: Assessing impacts of the Ecological Retreat project on water conservation in the Yellow River Basin, Sci. Total Environ., 828, 154483, https://doi.org/10.1016/j.scitotenv.2022.154483, 2022.
Jia, G., Li, C., Chen, X., Hu, Y., Chen, W., and Kang, J.: Impacts of Land Use and Climate Change on Water-Related Ecosystem Service Trade-offs in the Yangtze River Economic Belt, Ecosyst. Health Sust., 10, 0208, https://doi.org/10.34133/ehs.0208, 2024.
Jones, E. R., Bierkens, M. F., and van Vliet, M. T.: Current and future global water scarcity intensifies when accounting for surface water quality, Nat. Clim. Chang., 14, 629–635, https://doi.org/10.1038/s41558-024-02007-0, 2024.
Konapala, G., Mishra, A. K., Wada, Y., and Mann, M. E.: Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation, Nat Commun., 11, 3044, https://doi.org/10.1038/s41467-020-16757-w, 2020.
Kulaixi, Z., Chen, Y., Li, Y., and Wang, C.: Dynamic evolution and scenario simulation of ecosystem services under the impact of land-use change in an arid Inland River Basin in Xinjiang, China, Remote Sens., 15, 2476, https://doi.org/10.3390/rs15092476, 2023.
Li, C., Fu, B., Wang, S., Stringer, L. C., Wang, Y., Li, Z., Liu, Y., and Zhou, W.: Drivers and impacts of changes in China's drylands, Nat. Rev. Earth Environ., 2, 858–873, https://doi.org/10.1038/s43017-021-00226-z, 2021.
Li, F., Xin, Q., Fu, Z., Sun, Y., and Xiong, Y.: A refined supply-demand framework to quantify variability in ecosystem services related to surface water in support of sustainable development goals, Earth's Future, 12, e2023EF004058, https://doi.org/10.1029/2023EF004058, 2024.
Li, M., Wang, L., Singh, V. P., Chen, Y., Li, H., Li, T., Zhou, Z., and Fu, Q.: Green and efficient fine control of regional irrigation water use coupled with crop growth-carbon emission processes, Eur. J. Agron., 164, 127442, https://doi.org/10.1016/j.eja.2024.127442, 2025a.
Li, S., Wei, W., Chen, Y., Duan, W., and Fang, G.: TSWS: An observation-based streamflow dataset of Tianshan Mountains watersheds (1901–2019), Sci Data., 12, 708, https://doi.org/10.1038/s41597-025-05046-0, 2025b.
Li, Z., Fang, G., Chen, Y., Duan, W., and Mukanov, Y.: Agricultural water demands in Central Asia under 1.5 °C and 2.0 °C global warming, Agr. Water Manage., 231, 106020, https://doi.org/10.1016/j.agwat.2020.106020, 2020.
Liang, X., Guan, Q., Clarke, K. C., Liu, S., Wang, B., and Yao, Y.: Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: a case study in Wuhan, China, Comput. Environ. Urban, 85, 101569, https://doi.org/10.1016/j.compenvurbsys.2020.101569, 2021.
Liang, Y., Wen, Y., Meng, Y., Li, H., Song, L., Zhang, J., Ma, Z., Han, Y., and Wang, Z.: Effects of biodegradable film types and drip irrigation amounts on maize growth and field carbon sequestration in arid northwest China, Agr. Water Manage., 299, 108894, https://doi.org/10.1016/j.agwat.2024.108894, 2024.
Lin, Y. P., Hong, N. M., Wu, P. J., Wu, C. F., and Verburg, P. H.: Impacts of land use change scenarios on hydrology and land use patterns in the Wu-Tu watershed in Northern Taiwan, Landscape Urban Plan., 80, 111–126, https://doi.org/10.1016/j.landurbplan.2006.06.007, 2007.
Lipczynska-Kochany, E.: Effect of climate change on humic substances and associated impacts on the quality of surface water and groundwater: A review, Sci Total Environ., 640, 1548–1565, https://doi.org/10.1016/j.scitotenv.2018.05.376, 2018.
Liu, C., Jiang, E., Qu, B., Li, L., Hao, L., and Zhang, W.: Spatial–temporal evolution of economic-ecological benefits and their driving factors in Yellow River irrigation areas, Ecol. Indic., 173, 113419, https://doi.org/10.1016/j.ecolind.2025.113419, 2025a.
Liu, J., Kuang, W., Zhang, Z., Xu, X., Qin, Y., Ning, J., Zhou, W., Zhang, S., Li, R., Yan, C., Wu, S., Shi, X., Jiang, N., Yu, D., Pan, X., and Chi, W.: Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s, J. Geogr. Sci., 24, 195–210, https://doi.org/10.1007/s11442-014-1082-6, 2014.
Liu, X., Liang, X., Li, X., Xu, X., Ou, J., Chen, Y., Li, S., Wang, S., and Pei, F.: A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects, Landscape Urban Plan., 168, 94–116, https://doi.org/10.1016/j.landurbplan.2017.09.019, 2017.
Liu, X., Liu, Y., Wang, Y., and Liu, Z.: Evaluating potential impacts of land use changes on water supply–demand under multiple development scenarios in dryland region, J. Hydrol., 610, 127811, https://doi.org/10.1016/j.jhydrol.2022.127811, 2022.
Liu, Y., Jing, Y., and Han, S.: Multi-scenario simulation of land use/land cover change and water yield evaluation coupled with the GMOP-PLUS-InVEST model: A case study of the Nansi Lake Basin in China, Ecol. Indic., 155, 110926, https://doi.org/10.1016/j.ecolind.2023.110926, 2023.
Liu, Y., Wang, X., Tan, M., Zhang, F., and Li, X.: Impact of spatial transfer of farmland on the food-water-GHG nexus in China during 2000–2020, Resour. Conserv. Recy., 221, 108390, https://doi.org/10.1016/j.resconrec.2025.108390, 2025b.
Lu, Z., Li, W., and Yue, R.: Investigation of the long-term supply–demand relationships of ecosystem services at multiple scales under SSP–RCP scenarios to promote ecological sustainability in China's largest city cluster, Sustain. Cities Soc., 104, 105295, https://doi.org/10.1016/j.scs.2024.105295, 2024.
Luo, Y., Wu, L., Wang, R., Wang, X., Du, B., and Pang, S.: Will vegetation restoration affect the supply-demand relationship of water yield in an arid and semi-arid watershed?, Sci. Total Environ., 959, 178292, https://doi.org/10.1016/j.scitotenv.2024.178292, 2025.
Ma, S., Wang, L. J., Chu, L., and Jiang, J.: Determination of ecological restoration patterns based on water security and food security in arid regions, Agr. Water Manage., 278, 108171, https://doi.org/10.1016/j.agwat.2023.108171, 2023.
Ma, X., Zhang, P., Yang, L., Qi, Y., Liu, J., Liu, L., Fan, X., and Hou, K.: Assessing the relative contributions, combined effects and multiscale uncertainty of future land use and climate change on water-related ecosystem services in Southwest China using a novel integrated modelling framework, Sustain. Cities Soc., 106, 105400, https://doi.org/10.1016/j.scs.2024.105400, 2024.
Maron, M., Mitchell, M. G. E., Runting, R. K., Rhodes, J. R., Mace, G. M., Keith, D. A., and Watson, J. E. M.: Towards a threat assessment framework for ecosystem services, Trends Ecol. Evol., 32, 240–248, https://doi.org/10.1016/j.tree.2016.12.011, 2017.
McArthur, J. W. and McCord, G. C.: Fertilizing growth: Agricultural inputs and their effects in economic development, J. Dev. Econ., 127, 133–152, https://doi.org/10.1016/j.jdeveco.2017.02.007, 2017.
Mukherji, A.: Climate Change 2023 Synthesis Report, https://www.ipcc.ch/report/sixth-assessment-report-cycle/ (last access: 20 June 2025), 2023.
Nourou, A. I. M., Garba, M., Grimsby, L. K., and Aune, J. B.: Manual or Motorized Postharvest Operations of Pearl Millet in Maradi, Niger: Effects on Time and Energy Use, Profitability, and Farmers' Perceptions, Food Energy Secur., 14, e70054, https://doi.org/10.1002/fes3.70054, 2025.
Nuñez, J. A., Aguiar, S., Jobbágy, E. G., Jiménez, Y. G., and Baldassini, P.: Climate change and land cover effects on water yield in a subtropical watershed spanning the yungas-chaco transition of Argentina. J Environ Manage., 358, 120808, https://doi.org/10.1016/j.jenvman.2024.120808, 2024.
O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and Sanderson, B. M.: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6, Geosci. Model Dev., 9, 3461–3482, https://doi.org/10.5194/gmd-9-3461-2016, 2016.
O'Neill, B. C., Kriegler, E., Ebi, K. L., Kemp-Benedict, E., Riahi, K., Rothman, D. S., van Ruijven, B. J., van Vuuren, D. P., Birkmann, J., Kok, K., Levy, M., and Solecki, W.: The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century, Global Environ. Chang., 42, 169–180, https://doi.org/10.1016/j.gloenvcha.2015.01.004, 2017.
Ouyang, Y.: Comparative analysis of evapotranspiration and water yield in basins of the Northern Gulf of America between the past and next 40 years, J. Environ Manage., 381, 125157, https://doi.org/10.1016/j.jenvman.2025.125157, 2025.
Perez, N., Singh, V., Ringler, C., Xie, H., Zhu, T., Sutanudjaja, E. H., and Villholth, K. G.: Ending groundwater overdraft without affecting food security, Nat. Sustain., 7, 1007–1017, https://doi.org/10.1038/s41893-024-01376-w, 2024.
Piao, S., Friedlingstein, P., Ciais, P., de Noblet-Ducoudré, N., Labat, D., and Zaehle, S.: Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends, P. Natl. Acad. Sci. USA, 104, 15242–15247, https://doi.org/10.1073/pnas.0707213104, 2007.
Qi, P., Li, B., Zhang, D., Xu, H., and Zhang, G.: Supply and demand of agricultural water resources under future saline-alkali land improvement, Agr. Water Manage., 314, 109503, https://doi.org/10.1016/j.agwat.2025.109503, 2025.
Sharofiddinov, H., Islam, M., and Kotani, K.: How does the number of water users in a land reform matter for water availability in agriculture?, Agr. Water Manage., 293, 108677, https://doi.org/10.1016/j.agwat.2024.108677, 2024.
Shi, Q., Gu, C. J., and Xiao, C.: Multiple scenarios analysis on land use simulation by coupling socioeconomic and ecological sustainability in Shanghai, China, Sustain. Cities Soc., 95, 104578, https://doi.org/10.1016/j.scs.2023.104578, 2023.
Shirmohammadi, B., Malekian, A., Salajegheh, A., Taheri, B., Azarnivand, H., Malek, Z., and Verburg, P. H.: Impacts of future climate and land use change on water yield in a semiarid basin in Iran, Land Degrad. Dev., 31, 1252–1264, https://doi.org/10.1002/ldr.3554, 2020.
Song, K., Cheng, W., Wang, B., and Xu, H.: Impact of landform on Spatial-Temporal distribution and Scenario-Based prediction of carbon stocks in arid Regions: A Case study of Xinjiang, Catena, 250, 108781, https://doi.org/10.1016/j.catena.2025.108781, 2025.
Strokal, M., Bai, Z., Franssen, W., Hofstra, N., Koelmans, A., Ludwig, F., Ma, L., Puijenbroek, P., Spanier, J., Vermeulen, L., Vliet, M., Wijnen, J., and Kroeze, C.: Urbanization: an increasing source of multiple pollutants to rivers in the 21st century, npj Urban Sustain., 1, 24, https://doi.org/10.1038/s42949-021-00026-w, 2021.
Sun, J., Yang, Y., Qi, P., Zhang, G., and Wu, Y.: Development and application of a new water-carbon-economy coupling model (WCECM) for optimal allocation of agricultural water and land resources, Agr. Water Manage., 291, 108608, https://doi.org/10.1016/j.agwat.2023.108608, 2024.
Tan, X., Liu, B., Tan, X., Huang, Z., and Fu, J.: Combined impacts of climate change and human activities on blue and green water resources in a high-intensity development watershed, Hydrol. Earth Syst. Sci., 29, 427–445, https://doi.org/10.5194/hess-29-427-2025, 2025.
Taylor, C., Blair, D., Keith, H., and Lindenmayer, D.: Modelling water yields in response to logging and representative climate futures, Sci. Total Environ., 688, 890–902, https://doi.org/10.1016/j.scitotenv.2019.06.298,2019.
Tian, S., Wu, W., Chen, S., Li, Z., and Li, K.: Global Mismatch between Ecosystem Service Supply and Demand Driven by Climate Change and Human Activity, Environ. Sci. Ecotechnol., 100573, https://doi.org/10.1016/j.ese.2025.100573, 2025.
Wang, M., Jiang, S., Ren, L., Cui, H., Yuan, S., Xu, J., and Xu, C. Y.: Attribution of streamflow and its seasonal variation to dual nature-society drivers using CMIP6 data and hydrological models, J. Hydrol., 659, 133314, https://doi.org/10.1016/j.jhydrol.2025.133314, 2025.
Wang, Y., Hu, W., Sun, H., Zhao, Y., Zhang, P., Li, Z., and An, Z.: Soil moisture decline in China's monsoon loess critical zone: More a result of land-use conversion than climate change, P. Natl. Acad. Sci. USA, 121, e2322127121, https://doi.org/10.1073/pnas.2322127121, 2024a.
Wang, Y., Li, M., and Jin, G.: Optimizing spatial patterns of ecosystem services in the Chang-Ji-Tu region (China) through Bayesian Belief Network and multi-scenario land use simulation, Sci. Total Environ., 917, 170424, https://doi.org/10.1016/j.scitotenv.2024.170424, 2024b.
Wen, R. and Liu, Z.: Exploring trade-offs and synergies between economy development and ecosystem sustainability of the eco-fragile regions in the context of food security, J. Clean. Prod., 510, 145604, https://doi.org/10.1016/j.jclepro.2025.145604, 2025.
Wu, F., Tang, Q., Cui, J., Tian, L., Guo, R., Wang, L., Zheng, Z., Zhang, N., Zhang, Y., Lin, T.: Deficit irrigation combined with a high planting density optimizes root and soil water-nitrogen distribution to enhance cotton productivity in arid regions, Field Crop Res., 317, 109524, https://doi.org/10.1016/j.fcr.2024.109524 2024
Yan, F., Shangguan, W., Zhang, J., and Hu, B.: Depth-to-bedrock map of China at a spatial resolution of 100 meters, Sci. Data, 7, 2, https://doi.org/10.1038/s41597-019-0345-6, 2020.
Yan, H., Xie, Z., Jia, B., Li, R., Wang, L., Tian, Y., and You, Y.: Impact of groundwater overextraction and agricultural irrigation on hydrological processes in an inland arid basin, J. Hydrol., 653, 132770, https://doi.org/10.1016/j.jhydrol.2025.132770, 2025.
Yao, J., Chen, Y., Guan, X., Zhao, Y., Chen, J., and Mao, W.: Recent climate and hydrological changes in a mountain–basin system in Xinjiang, China, Earth-Sci. Rev., 226, 103957, https://doi.org/10.1016/j.earscirev.2022.103957, 2022.
Zeng, F., He, Q., Li, Y., Shi, W., Yang, R., Ma, M., Huang, W., Xiao, J., Yang, X., and Di, D.: Reduced runoff in the upper Yangtze River due to comparable contribution of anthropogenic and climate changes, Earth's Future, 12, e2023EF004028, https://doi.org/10.1029/2023EF004028, 2024.
Zhang, Q., Peng, J., Singh, V. P., Li, J., and Chen, Y.: Spatio-temporal variations of precipitation in arid and semiarid regions of China: the Yellow River basin as a case study, Global Planet. Change, 114, 38–49, https://doi.org/10.1016/j.gloplacha.2014.01.005, 2014.
Zhang, H., Li, X., Luo, Y., Chen, L., and Wang, M.: Spatial heterogeneity and driving mechanisms of carbon storage in the urban agglomeration within complex terrain: Multi-scale analyses under localized SSP-RCP narratives, Sustain. Cities Soc., 109, 105520, https://doi.org/10.1016/j.scs.2024.105520, 2024.
Zhang, L., Hickel, K., Dawes, W. R., Chiew, F. H. S., Western, A. W., and Briggs, P. R.: A rational function approach for estimating mean annual evapotranspiration, Water Resour. Res., 40, W02502, https://doi.org/10.1029/2003WR002710, 2004.
Zhang, M., Gao, Y., and Ge, J.: Different responses of extreme and mean precipitation to land use and land cover changes, npj Clim. Atmos. Sci., 8, 1–9, https://doi.org/10.1038/s41612-025-01049-1, 2025a.
Zhang, Q., Singh, V. P., Sun, P., Chen, X., Zhang, Z., and Li, J.: Precipitation and streamflow changes in China: changing patterns, causes and implications, J. Hydrol., 410, 204–216, https://doi.org/10.1016/j.jhydrol.2011.09.017, 2011.
Zhang, T., Shao, Q., and Huang, H.: Understanding the efficiency and uncertainty of water supply service assessment based on the Budyko framework: A case study of the Yellow River Basin, China, Ecol. Indic., 173, 113395, https://doi.org/10.1016/j.ecolind.2025.113395, 2025b.
Zhou, W., Liu, G., Pan, J., and Feng, X.: Distribution of available soil water capacity in China, J. Geogr. Sci., 15, 3–12, https://doi.org/10.1007/BF02873101, 2005.
Zhu, G., Qiu, D., Zhang, Z., Sang, L., Liu, Y., Wang, L., Zhao, K., Ma, H., Xu, Y., and Wan, Q.: Land-use changes lead to a decrease in carbon storage in arid region China, Ecol. Indic., 127, 107770, https://doi.org/10.1016/j.ecolind.2021.107770, 2021.
Zhu, Y., Zheng, Z., Zhao, G., Zhu, J., Zhao, B., Sun, Y., Gao, J., and Zhang, Y.: Evapotranspiration increase is more sensitive to vegetation greening than to vegetation type conversion in arid and semi-arid regions of China, Global Planet. Change, 244, 104634, https://doi.org/10.1016/j.gloplacha.2024.104634, 2025.
Zhuang, D., Liu, J., and Liu, M.: Research activities on land-use/cover change in the past ten years in China using space technology, Chin. Geograph. Sc., 9, 330–334, https://doi.org/10.1007/s11769-999-0006-3, 1999.
Short summary
By coupling PLUS-InVEST models under 24 climate-land scenarios, we constructed a water supply-demand risk (WSDR) assessment framework to quantify impacts of climate change and anthropogenic activities on water resource allocation patterns and associated risks. Results demonstrate that significant cultivated land expansion drives a surge in water demand. The root cause lies in frequent anthropogenic perturbations (land use change), which intensify conflicts between water demand-supply capacity.
By coupling PLUS-InVEST models under 24 climate-land scenarios, we constructed a water...