Articles | Volume 29, issue 21 
            
                
                    
            
            
            https://doi.org/10.5194/hess-29-5931-2025
                    © Author(s) 2025. This work is distributed under 
the Creative Commons Attribution 4.0 License.
                the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-5931-2025
                    © Author(s) 2025. This work is distributed under 
the Creative Commons Attribution 4.0 License.
                the Creative Commons Attribution 4.0 License.
Multi-fidelity model assessment of climate change impacts on river water temperatures and thermal extremes and potential effects on cold-water fish in Switzerland
Love Råman Vinnå
                                            Applied and Environmental Geology, Hydrogeology, Department of Environmental Sciences, University of Basel, 4056 Basel, Switzerland
                                        
                                    Vidushi Bigler
                                            Bern University of Applied Sciences, Engineering and Computer Science (BFH-TI), Institute for Optimization and Data Analysis (IODA), 2501 Biel, Switzerland
                                        
                                    Oliver S. Schilling
                                            Hydrogeology, Department of Environmental Sciences, University of Basel, 4056 Basel, Switzerland
                                        
                                    
                                            Department Water Resources and Drinking Water, Eawag – Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
                                        
                                    
                                            Applied and Environmental Geology, Hydrogeology, Department of Environmental Sciences, University of Basel, 4056 Basel, Switzerland
                                        
                                    Related authors
No articles found.
Friederike Currle, René Therrien, and Oliver S. Schilling
                                    Hydrol. Earth Syst. Sci., 29, 5383–5403, https://doi.org/10.5194/hess-29-5383-2025, https://doi.org/10.5194/hess-29-5383-2025, 2025
                                    Short summary
                                    Short summary
                                            
                                                We present a new approach to simulate the transport of microbes in river–aquifer systems in the integrated hydrological model HydroGeoSphere. Compared to existing models, the advantage of the new implementation lies in the consideration of all relevant parts of the water budget and the flexibility to simulate in parallel the reactive transport of several microbial species and solutes. The new developed tool enables us to improve our understanding of pathogen transport in river–groundwater systems.
                                            
                                            
                                        Friederike Currle, René Therrien, and Oliver S. Schilling
                                        EGUsphere, https://doi.org/10.5194/egusphere-2024-3787, https://doi.org/10.5194/egusphere-2024-3787, 2024
                                    Preprint withdrawn 
                                    Short summary
                                    Short summary
                                            
                                                We present a new approach to simulate the transport of microbes in river-aquifer systems in the integrated hydrological model HydroGeoSphere. Compared to existing models, the advantage of the new implementation lies in the consideration of all relevant parts of the water budget and the flexibility to simulate in parallel the reactive transport of several microbial species and solutes. The new developed tool enables to improve our understanding of pathogen transport in river-groundwater systems.
                                            
                                            
                                        Qi Tang, Hugo Delottier, Wolfgang Kurtz, Lars Nerger, Oliver S. Schilling, and Philip Brunner
                                    Geosci. Model Dev., 17, 3559–3578, https://doi.org/10.5194/gmd-17-3559-2024, https://doi.org/10.5194/gmd-17-3559-2024, 2024
                                    Short summary
                                    Short summary
                                            
                                                We have developed a new data assimilation framework by coupling an integrated hydrological model HydroGeoSphere with the data assimilation software PDAF. Compared to existing hydrological data assimilation systems, the advantage of our newly developed framework lies in its consideration of the physically based model; its large selection of different assimilation algorithms; and its modularity with respect to the combination of different types of observations, states and parameters.
                                            
                                            
                                        Cited articles
                        
                        Alp, A., Erer, M., and Kamalak, A.: Eggs Incubation, Early Development and growth in Frys of Brown Trout (Salmo trutta macrostigma) and Black Sea Trout (Salmo trutta labrax), Turkish Journal of Fisheries and Aquatic Sciences, 10, https://doi.org/10.4194/trjfas.2010.0312, 2010. 
                    
                
                        
                        Barbarossa, V., Bosmans, J., Wanders, N., King, H., Bierkens, M. F. P., Huijbregts, M. A. J., and Schipper, A. M.: Threats of global warming to the world's freshwater fishes, Nature Communications, 12, 1701, https://doi.org/10.1038/s41467-021-21655-w, 2021. 
                    
                
                        
                        Benyahya, L., Caissie, D., St-Hilaire, A., Ouarda, T. B. M. J., and Bobée, B.: A Review of Statistical Water Temperature Models, Canadian Water Resources Journal, 32, 179–192, https://doi.org/10.4296/cwrj3203179, 2007. 
                    
                
                        
                        Birsan, M.-V., Molnar, P., Burlando, P., and Pfaundler, M.: Streamflow trends in Switzerland, Journal of Hydrology, 314, 312–329, https://doi.org/10.1016/j.jhydrol.2005.06.008, 2005. 
                    
                
                        
                        Bögli, R.: Time Series Clustering with Water Temperature Data, University of applied sciences and arts Northwestern Switzerland (FHNW), https://romanboegli.ch/assets/pdf/Boegli_2020_TimeSeriesClustering.pdf (last access: 16 October 2025), 2020. 
                    
                
                        
                        Brodersen, J., Hellmann, J., and Seehausen, O.: Erhebung der Fischbiodiversität in Schweizer Fliessgewässern, Progetto Fiumi Schlussbericht, Eawag – Swiss Federal Institute of Aquatic Science and Technology, https://doi.org/10.55408/eawag:30020, 2023. 
                    
                
                        
                        Brunner, M. I., Farinotti, D., Zekollari, H., Huss, M., and Zappa, M.: Future shifts in extreme flow regimes in Alpine regions, Hydrol. Earth Syst. Sci., 23, 4471–4489, https://doi.org/10.5194/hess-23-4471-2019, 2019. 
                    
                
                        
                        Brunner, M. I., Björnsen Gurung, A., Zappa, M., Zekollari, H., Farinotti, D., and Stähli, M.: Present and future water scarcity in Switzerland – Potential for alleviation through reservoirs and lakes, Science of The Total Environment, 666, 1033–1047, https://doi.org/10.1016/j.scitotenv.2019.02.169, 2019. 
                    
                
                        
                        CH2018: CH2018 – Climate Scenarios for Switzerland, Technical Report, National Centre for Climate Services, Zurich, ISBN 978-3-9525031-4-0, 2018. 
                    
                
                        
                        CH2018 Project Team: CH2018 – Climate Scenarios for Switzerland, National Centre for Climate Services [data set], https://doi.org/10.18751/Climate/Scenarios/CH2018/1.0, 2018. 
                    
                
                        
                        Chilmonczyk, S., Monge, D., and De Kinkelin, P.: Proliferative kidney disease – cellular aspects of the rainbow trout, Oncorhynchus mykiss (Walbaum), response to parasitic infection, Journal of Fish Diseases, 25, 217–226, https://doi.org/10.1046/j.1365-2761.2002.00362.x, 2002. 
                    
                
                        
                        Crank, J. and Nicolson, P.: A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type, Mathematical Proceedings of the Cambridge Philosophical Society, 43, 50–67, https://doi.org/10.1017/S0305004100023197, 1947. 
                    
                
                        
                        Diaz-Nieto, J. and Wilby, R. L.: A comparison of statistical downscaling and climate change factor methods – impacts on low flows in the River Thames, United Kingdom, Climatic Change, 69, 245–268, https://doi.org/10.1007/s10584-005-1157-6, 2005. 
                    
                
                        
                        Duan, H., Zhang, G., Wang, S., and Fan, Y.: Robust climate change research – a review on multi-model analysis, Environmental Research Letters, 14, 033001, https://doi.org/10.1088/1748-9326/aaf8f9, 2019. 
                    
                
                        
                        Elliott, J. M.: Some aspects of thermal stress on fresh-water teleosts, Stress Fish, 209–245, Freshwater Biological Association, Far Sawrey, Nr. Ambleside, Cumbria, England, https://api.semanticscholar.org/CorpusID:82108577 (last access: 16 October 2025), 1981. 
                    
                
                        
                        Elliott, J. M.: Quantitative Ecology and the Brown Trout, Oxford series in ecology and evolution, Band 7, Oxford University Press, 286, https://doi.org/10.1093/oso/9780198546788.001.0001, 1994. 
                    
                
                        
                        Epting, J., Råman Vinnå, L., Annette, A., Stefan, S., and Schilling, O. S.: Climate change adaptation and mitigation measures for alluvial aquifers – Solution approaches based on the thermal exploitation of managed aquifer (MAR) and surface water recharge (MSWR), Water Research, 238, 119988, https://doi.org/10.1016/j.watres.2023.119988, 2023. 
                    
                
                        
                        Fernández-Godino, M. G.: Review of multi-fidelity models, Advances in Computational Science and Engineering, 1, 351–400, https://doi.org/10.3934/acse.2023015, 2023. 
                    
                
                        
                        Ficklin, D. L., Hannah, D. M., Wanders, N., Dugdale, S. J., England, J., Klaus, J., Kelleher, C., Khamis, K., and Charlton, M. B.: Rethinking river water temperature in a changing, human-dominated world, Nature Water, 1, 125–128, https://doi.org/10.1038/s44221-023-00027-2, 2023. 
                    
                
                        
                        FOEN (Ed.): Effects of climate change on Swiss water bodies, Hydrology, water ecology and water management, Federal Office for the Environment FOEN, Bern, Environmental Studies No. 2101: 125 pp., https://www.bafu.admin.ch/uw-2101-e (last access: 16 October 2025), 2021. 
                    
                
                        
                        FOEN: Catch statistics of Switzerland, Swiss Federal Office of Environment FOEN, Bern, Switzerland, https://www.fischereistatistik.ch/ (last access: 28 August 2025), 2024. 
                    
                
                        
                        Freudiger, D., Vis, M., and Seibert, J.: Quantifying the contributions to discharge of snow and glacier melt, Hydro-CH2018 project, Commissioned by the Federal Office for the Environment (FOEN), Bern, Switzerland, 49 pp., https://www.bafu.admin.ch/dam/bafu/en/dokumente/hydrologie/externe-studien-berichte/quantifying-the-contributions-to-discharge-of-snow-and-glacier-melt.pdf.download.pdf/Quantifying-discharge-snow-glacier-melt.pdf (last access: 15 October 2025), 2021. 
                    
                
                        
                        Gharari, S. and Razavi, S.: A review and synthesis of hysteresis in hydrology and hydrological modeling – Memory, path-dependency, or missing physics?, Journal of Hydrology, 566, 500–519, https://doi.org/10.1016/j.jhydrol.2018.06.037, 2018. 
                    
                
                        
                        Guse, B., Fatichi, S., Gharari, S., and Melsen, L. A.: Advancing Process Representation in Hydrological Models – Integrating New Concepts, Knowledge, and Data, Water Resources Research, 57, https://doi.org/10.1029/2021wr030661, 2021. 
                    
                
                        
                        Hari, R. and Güttinger, H.: Temperaturverlauf in Schweizer Flüssen 1978 bis 2002–Auswertungen und grafische Darstellungen fischrelevanter Parameter (No. Teilprojekt 01/08), Fischnetz-Publikation, Eawag, Dübendorf, Switzerland, https://www.bafu.admin.ch/dam/bafu/de/dokumente/hydrologie/fachinfo-daten/temperaturverlaufinschweizerfluessen1978-2002.pdf.download.pdf/temperaturverlaufinschweizerfluessen1978-2002.pdf (last access: 16 October 2025), 2004. 
                    
                
                        
                        Hari, R. E., Livingstone, D. M., Siber, R., Burkhardt-Holm, P., and Guettinger, H.: Consequences of climatic change for water temperature and brown trout populations in Alpine rivers and streams, Global Change Biology, 12, 10–26, https://doi.org/10.1111/j.1365-2486.2005.001051.x, 2006. 
                    
                
                        
                        IPCC: Climate Change 2014 – Synthesis Report, Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Core Writing Team, Pachauri, R. K. and Meyer, L. A., IPCC, Geneva, Switzerland, 151 pp., ISBN 978-92-9169-143-2, 2014. 
                    
                
                        
                        Junker, J., Heimann, F. U. M., Hauer, C., Turowski, J. M., Rickenmann, D., Zappa, M., and Peter, A.: Assessing the impact of climate change on brown trout (Salmo trutta fario) recruitment, Hydrobiologia, 751, 1–21, https://doi.org/10.1007/s10750-014-2073-4, 2015. 
                    
                
                        
                        Kennedy, J. and Eberhart, R.: Particle swarm optimization, In Proceedings of ICNN'95 – International Conference on Neural Networks, Vol. 4, Perth, WA, Australia – IEEE, 1942–1948, https://doi.org/10.1109/ICNN.1995.488968, 1995. 
                    
                
                        
                        La Fuente, S., Jennings, E., Gal, G., Kirillin, G., Shatwell, T., Ladwig, R., Moore, T., Couture, R.-M., Côté, M., Råman Vinnå, L., and Woolway, R. I.: Multi-model projections of future evaporation in a sub-tropical lake, Journal of Hydrology, 128729, https://doi.org/10.1016/j.jhydrol.2022.128729, 2022. 
                    
                
                        
                        Leach, J. A. and Moore, R. D.: Empirical Stream Thermal Sensitivities May Underestimate Stream Temperature Response to Climate Warming, Water Resources Research, 55, 5453–5467, https://doi.org/10.1029/2018WR024236, 2019. 
                    
                
                        
                        Meehl, G. A., Stocker, T. F., Collins, W., Friedlingstein, P., Gaye, A. T., Gregory, J., Kitoh, A., Knutti, R., Murphy, J., Noda, A., Raper, S., Watterson, I., Weaver, A., and Zhao, Z.-C.: Global Climate Projections, In: Climate Change 2007 – The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, https://archive.ipcc.ch/publications_and_data/ar4/wg1/en/ch10.html (last access: 16 October 2025), 2007. 
                    
                
                        
                        Michel, A., Brauchli, T., Lehning, M., Schaefli, B., and Huwald, H.: Stream temperature and discharge evolution in Switzerland over the last 50 years: annual and seasonal behaviour, Hydrol. Earth Syst. Sci., 24, 115–142, https://doi.org/10.5194/hess-24-115-2020, 2020. 
                    
                
                        
                        Michel, A., Schaefli, B., Wever, N., Zekollari, H., Lehning, M., and Huwald, H.: Future water temperature of rivers in Switzerland under climate change investigated with physics-based models, Hydrol. Earth Syst. Sci., 26, 1063–1087, https://doi.org/10.5194/hess-26-1063-2022, 2022. 
                    
                
                        
                        Minville, M., Brissette, F., and Leconte, R.: Uncertainty of the impact of climate change on the hydrology of a nordic watershed, Journal of Hydrology, 358, 70–83, https://doi.org/10.1016/j.jhydrol.2008.05.033, 2008. 
                    
                
                        
                        Misset, C., Recking, A., Legout, C., Poirel, A., Cazilhac, M., Esteves, M., and Bertrand, M.: An attempt to link suspended load hysteresis patterns and sediment sources configuration in alpine catchments, Journal of Hydrology, 576, 72–84, https://doi.org/10.1016/j.jhydrol.2019.06.039, 2019. 
                    
                
                        
                        Muelchi, R., Schwanbeck, J., Rössler, O., Weingartner, R., and Martius, O.: Hydro-CH2018-Runoff ensemble (Version v1), Zenodo [data set], https://doi.org/10.5281/zenodo.3937485, 2020. 
                    
                
                        
                        Muelchi, R., Rössler, O., Schwanbeck, J., Weingartner, R., and Martius, O.: An ensemble of daily simulated runoff data (1981–2099) under climate change conditions for 93 catchments in Switzerland (Hydro-CH2018-Runoff ensemble), Geoscience Data Journal, gdj3.117, https://doi.org/10.1002/gdj3.117, 2021. 
                    
                
                        
                        Nicolle, P., Besson, F., Delaigue, O., Etchevers, P., François, D., Le Lay, M., Perrin, C., Rousset, F., Thiéry, D., Tilmant, F., Magand, C., Leurent, T., and Jacob, E,: PREMHYCE – An operational tool for low-flow forecasting, Proceedings of the International Association of Hydrological Sciences, 383, 381–389, https://doi.org/10.5194/piahs-383-381-2020, 2020. 
                    
                
                        
                        Palmer, M. A., Reidy Liermann, C. A., Nilsson, C., Flörke, M., Alcamo, J., Lake, P. S., and Bond, N.: Climate change and the world's river basins – anticipating management options, Frontiers in Ecology and the Environment, 6, 81–89, https://doi.org/10.1890/060148, 2008. 
                    
                
                        
                        Payne, J. T., Wood, A. W., Hamlet, A. F., Palmer, R. N., and Lettenmaier, D. P.: Mitigating the Effects of Climate Change on the Water Resources of the Columbia River Basin, Climatic Change, 62, 233–256, https://doi.org/10.1023/B:CLIM.0000013694.18154.d6, 2004. 
                    
                
                        
                        Piccolroaz, S.: Prediction of lake surface temperature using the air2water model: guidelines, challenges, and future perspectives, Advances in Oceanography and Limnology, 7, https://doi.org/10.4081/aiol.2016.5791, 2016a. 
                    
                
                        
                        Piccolroaz, S.: air2stream, V2, Github, [code], https://github.com/spiccolroaz/air2stream (last access: 1 September 2025), 2016b. 
                    
                
                        
                        Piccolroaz, S., Toffolon, M., and Majone, B.: A simple lumped model to convert air temperature into surface water temperature in lakes, Hydrol. Earth Syst. Sci., 17, 3323–3338, https://doi.org/10.5194/hess-17-3323-2013, 2013. 
                    
                
                        
                        Piccolroaz, S., Calamita, E., Majone, B., Gallice, A., Siviglia, A., and Toffolon, M.: Prediction of river water temperature – a comparison between a new family of hybrid models and statistical approaches, Hydrological Processes, 30, 3901–3917, https://doi.org/10.1002/hyp.10913, 2016. 
                    
                
                        
                        Råman Vinnå, L., Wüest, A., Zappa, M., Fink, G., and Bouffard, D.: Tributaries affect the thermal response of lakes to climate change, Hydrol. Earth Syst. Sci., 22, 31–51, https://doi.org/10.5194/hess-22-31-2018, 2018. 
                    
                
                        
                        Råman Vinnå, L., Medhaug, I., Schmid, M., and Bouffard, D.: The vulnerability of lakes to climate change along an altitudinal gradient, Communications Earth & Environment, 2, 35, https://doi.org/10.1038/s43247-021-00106-w, 2021. 
                    
                
                        
                        Råman Vinnå, L., Bigler, V., Epting, J., and Schilling, O. S.:. Future river water temperatures in Switzerland – SwissFuRiTe, Zenodo [data set], https://doi.org/10.5281/zenodo.16967946, 2025. 
                    
                
                        
                        Schewe, J., Heinke, J., Gerten, D., Haddeland, I., Arnell, N. W., Clark, D. B., Dankers, R., Eisner, S., Fekete, B. M., Colón-González, F. J., Gosling, S. N., Kim, H., Liu, X., Masaki, Y., Portmann, F. T., Satoh, Y., Stacke, T., Tang, Q., Wada, Y., Wisser, D., Albrecht, T., Frieler, K., Piontek, F., Warszawski, L., and Kabat, P.: Multimodel assessment of water scarcity under climate change, Proceedings of the National Academy of Sciences, 111, 3245–3250, https://doi.org/10.1073/pnas.1222460110, 2014. 
                    
                
                        
                        Shen, H., Tolson, B. A., and Mai, J.: Time to Update the Split-Sample Approach in Hydrological Model Calibration, Water Resources Research, 58, https://doi.org/10.1029/2021WR031523, 2022. 
                    
                
                        
                        Stephenson, D. B.: Definition, diagnosis, and origin of extreme weather and climate events, in: Diaz, H. F. and Murnane, R. J., Climate Extremes and Society, 1st ed., Cambridge University Press, 11–23, https://doi.org/10.1017/CBO9780511535840.004, 2008. 
                    
                
                        
                        Strepparava, N., Segner, H., Ros, A., Hartikainen, H., Schmidt-Posthaus, H., and Wahli, T.: Temperature-related parasite infection dynamics – the case of proliferative kidney disease of brown trout, Parasitology, 145, 281–291, https://doi.org/10.1017/S0031182017001482, 2018.  
                    
                
                        
                        Tananaev, N. I.: Hysteresis effect in the seasonal variations in the relationship between water discharge and suspended load in rivers of permafrost zone in Siberia and Far East, Water Resources, 39, 648–656, https://doi.org/10.1134/S0097807812060073, 2012. 
                    
                
                        
                        Toffolon, M. and Piccolroaz, S.: A hybrid model for river water temperature as a function of air temperature and discharge, Environmental Research Letters, 10, 114011, https://doi.org/10.1088/1748-9326/10/11/114011, 2015. 
                    
                
                        
                        Toffolon, M., Piccolroaz, S., Majone, B., Soja, A.-M., Peeters, F., Schmid, M., and Wüest, A.: Prediction of surface temperature in lakes with different morphology using air temperature, Limnology and Oceanography, 59, 2185–2202, https://doi.org/10.4319/lo.2014.59.6.2185, 2014. 
                    
                
                        
                        Toffolon, M. and Piccolroaz, S.: air2water, Github, [code], https://github.com/marcotoffolon/air2water (last access: 1 September 2025), 2016a. 
                    
                
                        
                        Toffolon, M. and Piccolroaz, S.: air2stream, V1, Github, [code], https://github.com/marcotoffolon/air2stream (last access: 1 September 2025), 2016b. 
                    
                
                        
                        Trimmel, H., Weihs, P., Leidinger, D., Formayer, H., Kalny, G., and Melcher, A.: Can riparian vegetation shade mitigate the expected rise in stream temperatures due to climate change during heat waves in a human-impacted pre-alpine river?, Hydrol. Earth Syst. Sci., 22, 437–461, https://doi.org/10.5194/hess-22-437-2018, 2018. 
                    
                
                        
                        Van Vliet, M. T. H., Ludwig, F., Zwolsman, J. J. G., Weedon, G. P., and Kabat, P.: Global river temperatures and sensitivity to atmospheric warming and changes in river flow, Water Resources Research, 47, 2010WR009198, https://doi.org/10.1029/2010WR009198, 2011. 
                    
                
                        
                        Van Vliet, M. T. H., Thorslund, J., Strokal, M., Hofstra, N., Flörke, M., Ehalt Macedo, H., Nkwasa, A., Tang, T., Kaushal, S. S., Kumar, R., van Griensven, A., Bouwman, L., and Mosley, L. M.: Global river water quality under climate change and hydroclimatic extremes, Nature Reviews Earth and Environment, 4, 687–702, https://doi.org/10.1038/s43017-023-00472-3, 2023. 
                    
                
                        
                        Van Vliet, M. T. H., Franssen, W. H. P., Yearsley, J. R., Ludwig, F., Haddeland, I., Lettenmaier, D. P., and Kabat, P.: Global river discharge and water temperature under climate change, Global Environmental Change, 23, 450–464, https://doi.org/10.1016/j.gloenvcha.2012.11.002, 2013. 
                    
                
                        
                        Webb, B. W. and Nobilis, F.: Water temperature behaviour in the River Danube during the twentieth century, Hydrobiologia, 291, 105–113, https://doi.org/10.1007/BF00044439, 1994. 
                    
                
                        
                        Wehrly, K. E., Wang, L., and Mitro, M.: Field-Based Estimates of Thermal Tolerance Limits for Trout – Incorporating Exposure Time and Temperature Fluctuation, Transactions of the American Fisheries Society, 136, 365–374, https://doi.org/10.1577/T06-163.1, 2007. 
                    
                
                        
                        WMO: WMO Guidelines on the Calculation of Climate Normals, WMO-No. 1203, ISBN 978-92-63-11203-3 2017. 
                    
                
                        
                        Zuecco, G., Penna, D., Borga, M., and Van Meerveld, H. J.: A versatile index to characterize hysteresis between hydrological variables at the runoff event timescale, Hydrological Processes, 30, 1449–1466, https://doi.org/10.1002/hyp.10681, 2016. 
                    
                Short summary
            River water temperature is a key factor for water quality. Under climate change, inland water temperatures have increased, putting pressure on aquatic life and reducing the potential for human use. Here, future river water temperatures for Switzerland are studied. Results show that, towards the end of the 21st century, average river water temperatures will likely increase by 3.1 ± 0.7 °C. This is likely to increases the thermal stress on sensitive aquatic species such as the brown trout.
            River water temperature is a key factor for water quality. Under climate change, inland water...