Articles | Volume 29, issue 20
https://doi.org/10.5194/hess-29-5575-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-5575-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A study of the dependence between soil moisture and precipitation in different ecoregions of the Northern Hemisphere
Shouye Xue
State Key Laboratory of Earth Surface Processes and Disaster Risk Reduction, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
State Key Laboratory of Earth Surface Processes and Disaster Risk Reduction, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
Related authors
No articles found.
Haobo Cui, Hongyong Yu, Xingshuo Zuo, and Guocan Wu
EGUsphere, https://doi.org/10.5194/egusphere-2025-4746, https://doi.org/10.5194/egusphere-2025-4746, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
Numerical simulation is important in enhancing our understanding of hydrological processes. This study evaluated the effects of topography and land use on an extreme precipitation event, from several comparative schemes in a forecast model. It showed that, the topography and urban surfaces reshaped the spatiotemporal distribution of the extreme precipitation. As extreme precipitation events could be frequent, this can help with prevention and the response to similar events in the future.
Hongfei Hao, Kaicun Wang, Guocan Wu, Jianbao Liu, and Jing Li
Earth Syst. Sci. Data, 16, 4051–4076, https://doi.org/10.5194/essd-16-4051-2024, https://doi.org/10.5194/essd-16-4051-2024, 2024
Short summary
Short summary
In this study, daily PM2.5 concentrations are estimated from 1959 to 2022 using a machine learning method at more than 5000 terrestrial sites in the Northern Hemisphere based on hourly atmospheric visibility data, which are extracted from the Meteorological Terminal Aviation Routine Weather Report (METAR).
Hongfei Hao, Kaicun Wang, Chuanfeng Zhao, Guocan Wu, and Jing Li
Earth Syst. Sci. Data, 16, 3233–3260, https://doi.org/10.5194/essd-16-3233-2024, https://doi.org/10.5194/essd-16-3233-2024, 2024
Short summary
Short summary
In this study, we employed a machine learning technique to derive daily aerosol optical depth from hourly visibility observations collected at more than 5000 airports worldwide from 1959 to 2021 combined with reanalysis meteorological parameters.
Bo Dan, Xiaogu Zheng, Guocan Wu, and Tao Li
Hydrol. Earth Syst. Sci., 24, 5187–5201, https://doi.org/10.5194/hess-24-5187-2020, https://doi.org/10.5194/hess-24-5187-2020, 2020
Short summary
Short summary
Data assimilation is a procedure to generate an optimal combination of the state variable in geoscience, based on the model outputs and observations. The ensemble Kalman filter (EnKF) scheme is a widely used assimilation method in soil moisture estimation. This study proposed several modifications of EnKF for improving this assimilation. The study shows that the quality of the assimilation result is improved, while the degree of water budget imbalance is reduced.
Cited articles
Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P. P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind, J., Arkin, P., and Nelkin, E.: The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–Present), Journal of Hydrometeorology, 4, 1147–1167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2, 2003.
Adler, R., Wang, J.-J., Sapiano, M., Huffman, G., Bolvin, D., Nelkin, E., and NOAA CDR Program: Global Precipitation Climatology Project (GPCP) Climate Data Record (CDR), Version 1.3 (Daily), NOAA National Centers for Environmental Information [data set], https://doi.org/10.7289/V5RX998Z (last access: 11 March 2024), 2017.
Berauer, B. J., Wilfahrt, P. A., Arfin Khan, M. A. S., Eibes, P., Von Heßberg, A., Ingrisch, J., Schloter, M., Schuchardt, M. A., and Jentsch, A.: Low resistance of montane and alpine grasslands to abrupt changes in temperature and precipitation regimes, Arctic, Antarctic, and Alpine Research, 51, 215–231, https://doi.org/10.1080/15230430.2019.1618116, 2019.
Browne, W. J. and Draper, D.: A comparison of Bayesian and likelihood-based methods for fitting multilevel models, Bayesian Analysis, 1, 473–514, https://doi.org/10.1214/06-BA117, 2006.
Bürkner, P. C.: brms: An R Package for Bayesian Multilevel Models Using Stan, Journal of Statistical Software, 80, 1–28, https://doi.org/10.18637/jss.v080.i01, 2017.
Buxbaum, C. A. Z. and Vanderbilt, K.: Soil heterogeneity and the distribution of desert and steppe plant species across a desert-grassland ecotone, Journal of Arid Environments, 69, 617–632, https://doi.org/10.1016/j.jaridenv.2006.11.017, 2007.
Cammalleri, C., De Michele, C., and Toreti, A.: Exploring the joint probability of precipitation and soil moisture over Europe using copulas, Hydrol. Earth Syst. Sci., 28, 103–115, https://doi.org/10.5194/hess-28-103-2024, 2024.
Chen, G., Wang, Q., and Chen, T.: Dominant effect and threshold response of soil moisture on global vegetation greening in the 21st century, CATENA, 254, 109008, https://doi.org/10.1016/j.catena.2025.109008, 2025.
Cook, B. I., Bonan, G. B., and Levis, S.: Soil Moisture Feedbacks to Precipitation in Southern Africa, Journal of Climate, 19, 4198–4206, https://doi.org/10.1175/JCLI3856.1, 2006.
Drager, A. J., Grant, L. D., and van den Heever, S. C.: A Nonmonotonic Precipitation Response to Changes in Soil Moisture in the Presence of Vegetation, Journal of Hydrometeorology, 23, 1095–1111, https://doi.org/10.1175/JHM-D-21-0109.1, 2022.
Durante, F., Fuchs, S., and Pappada, R.: Clustering of compound events based on multivariate comonotonicity, Spatial Statistics, 66, 100881, https://doi.org/10.1016/j.spasta.2025.100881, 2025.
Feldman, A. F., Konings, A. G., Gentine, P., Cattry, M., Wang, L., Smith, W. K., Biederman, J. A., Chatterjee, A., Joiner, J., and Poulter, B.: Large global-scale vegetation sensitivity to daily rainfall variability, Nature, 636, 380–384, https://doi.org/10.1038/s41586-024-08232-z, 2024.
Gamage, D. N. V., Biswas, A., and Strachan, I. B.: Scale and location dependent time stability of soil water storage in a maize cropped field, CATENA, 188, 104420, https://doi.org/10.1016/j.catena.2019.104420, 2020.
Gerken, T., Ruddell, B. L., Yu, R., Stoy, P. C., and Drewry, D. T.: Robust observations of land-to-atmosphere feedbacks using the information flows of FLUXNET, npj Climate and Atmospheric Science, 2, 37, https://doi.org/10.1038/s41612-019-0094-4, 2019.
Graham, E. B., Garayburu-Caruso, V. A., Wu, R. N., Zheng, J. Q., McClure, R., and Jones, G. D.: Genomic fingerprints of the world’s soil ecosystems, mSystems, 9, e01112–01123, 2024.
Gu, C., Tang, Q., Zhu, G., Ma, J., Gu, C., Zhang, K., Sun, S., Yu, Q., and Niu, S.: Discrepant responses between evapotranspiration- and transpiration-based ecosystem water use efficiency to interannual precipitation fluctuations, Agricultural and Forest Meteorology, 303, 108385, https://doi.org/10.1016/j.agrformet.2021.108385, 2021.
Haghighi, E., Short Gianotti, D. J., Akbar, R., Salvucci, G. D., and Entekhabi, D.: Soil and Atmospheric Controls on the Land Surface Energy Balance: A Generalized Framework for Distinguishing Moisture-Limited and Energy-Limited Evaporation Regimes, Water Resources Research, 54, 1831–1851, https://doi.org/10.1002/2017WR021729, 2018.
Harris, I., Osborn, T. J., Jones, P., and Lister, D.: Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset, Scientific Data, 7, 109, https://doi.org/10.1038/s41597-020-0453-3, 2020.
He, L., Guo, J., Yang, W., Jiang, Q., Chen, L., and Tang, K.: Multifaceted responses of vegetation to average and extreme climate change over global drylands, Science of The Total Environment, 858, 159942, https://doi.org/10.1016/j.scitotenv.2022.159942, 2023.
Hollmann, R., Merchant, C. J., Saunders, R., Downy, C., Buchwitz, M., Cazenave, A., Chuvieco, E., Defourny, P., de Leeuw, G., Forsberg, R., Holzer-Popp, T., Paul, F., Sandven, S., Sathyendranath, S., van Roozendael, M., and Wagner, W.: The ESA Climate Change Initiative: Satellite Data Records for Essential Climate Variables, Bulletin of the American Meteorological Society, 94, 1541–1552, https://doi.org/10.1175/BAMS-D-11-00254.1, 2013.
Huffman, G. J. and Bolvin, D. T.: Version 1.2 GPCP one-degree daily precipitation data set documentation, NASA Goddard Space Flight Center Rep, 2013.
Jarvis, N. J.: Simple physics-based models of compensatory plant water uptake: concepts and eco-hydrological consequences, Hydrol. Earth Syst. Sci., 15, 3431–3446, https://doi.org/10.5194/hess-15-3431-2011, 2011.
Jimenez, C. and Prigent, C.: ESA Land Surface Temperature Climate Change Initiative (LST_cci): All-weather MicroWave Land Surface Temperature (MW-LST) global data record (1996–2020), v2.33, NERC EDS Centre for Environmental Data Analysis [data set], https://doi.org/10.5285/a7e811fe11d34df5abac6f18c920bbeb (last access: 27 August 2024), 2023.
Knapp, A. K., Beier, C., Briske, D. D., Classen, A. T., Luo, Y., Reichstein, M., Smith, M. D., Smith, S. D., Bell, J. E., and Fay, P. A.: Consequences of more extreme precipitation regimes for terrestrial ecosystems, Bioscience, 58, 811–821, https://doi.org/10.1641/B580908, 2008.
Koster, R. D., Guo, Z. C., Yang, R. Q., Dirmeyer, P. A., Mitchell, K., and Puma, M. J.: On the Nature of Soil Moisture in Land Surface Models, Journal of Climate, 22, 4322–4335, https://doi.org/10.1175/2009jcli2832.1, 2009.
Koukoula, M., Schwartz, C. S., Nikolopoulos, E. I., and Anagnostou, E. N.: Understanding the Impact of Soil Moisture on Precipitation Under Different Climate and Meteorological Conditions: A Numerical Sensitivity Study Over the CONUS, J. Geophys. Res.-Atmos., 126, e2021JD035096, https://doi.org/10.1029/2021JD035096, 2021.
Kozii, N., Haahti, K., Tor-ngern, P., Chi, J., Hasselquist, E. M., Laudon, H., Launiainen, S., Oren, R., Peichl, M., Wallerman, J., and Hasselquist, N. J.: Partitioning growing season water balance within a forested boreal catchment using sap flux, eddy covariance, and a process-based model, Hydrol. Earth Syst. Sci., 24, 2999–3014, https://doi.org/10.5194/hess-24-2999-2020, 2020.
Lamprecht, A., Semenchuk, P. R., Steinbauer, K., Winkler, M., and Pauli, H.: Climate change leads to accelerated transformation of high-elevation vegetation in the central Alps, New Phytologist, 220, 447–459, https://doi.org/10.1111/nph.15290, 2018.
Li, W., Migliavacca, M., Forkel, M., Denissen, J. M. C., Reichstein, M., Yang, H., Duveiller, G., Weber, U., and Orth, R.: Widespread increasing vegetation sensitivity to soil moisture, Nature Communications, 13, https://doi.org/10.1038/s41467-022-31667-9, 2022.
Lockwood, M., Worboys, G., and Kothari, A. (Eds.): Managing Protected Areas: A Global Guide, 1st Edn., Routledge, ISBN: 9781849771900, https://doi.org/10.4324/9781849771900, 2006.
Lv, P., Hao, H., and Wu, G.: Differences in Global Precipitation Regimes between Land and Ocean Areas Based on the GPM IMERG Product, Remote Sensing, 15, https://doi.org/10.3390/rs15174179, 2023.
Ma, S., Zhou, T., Dai, A., and Han, Z.: Observed Changes in the Distributions of Daily Precipitation Frequency and Amount over China from 1960 to 2013, Journal of Climate, 28, 6960–6978, https://doi.org/10.1175/JCLI-D-15-0011.1, 2015.
Mao, Y., Wu, G., Xu, G., and Wang, K.: Reduction in Precipitation Seasonality in China from 1960 to 2018, Journal of Climate, 35, 227–248, https://doi.org/10.1175/JCLI-D-21-0324.1, 2022.
Martens, B., Miralles, D. G., Lievens, H., van der Schalie, R., de Jeu, R. A. M., Fernández-Prieto, D., Beck, H. E., Dorigo, W. A., and Verhoest, N. E. C.: GLEAM v3: satellite-based land evaporation and root-zone soil moisture, Geosci. Model Dev., 10, 1903–1925, https://doi.org/10.5194/gmd-10-1903-2017, 2017.
McColl, K. A., Alemohammad, S. H., Akbar, R., Konings, A. G., Yueh, S., and Entekhabi, D.: The global distribution and dynamics of surface soil moisture, Nature Geoscience, 10, https://doi.org/10.1038/ngeo2868, 2017.
McDonald, G. C.: Ridge regression, WIREs Computational Statistics, 1, 93–100, https://doi.org/10.1002/wics.14, 2009.
Miralles, D. G., Holmes, T. R. H., De Jeu, R. A. M., Gash, J. H., Meesters, A. G. C. A., and Dolman, A. J.: Global land-surface evaporation estimated from satellite-based observations, Hydrol. Earth Syst. Sci., 15, 453–469, https://doi.org/10.5194/hess-15-453-2011, 2011.
Muñoz-Sabater, J.: ERA5-Land hourly data from 1950 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.e2161bac, 2019.
Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández N. J., Zsoter, E., Buontempo, C., and Thépaut J. N.: ERA5-Land: a state-of-the-art global reanalysis dataset for land applications, Earth Syst. Sci. Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021, 2021.
Myhre, G., Alterskjær, K., Stjern, C. W., Hodnebrog, Ø., Marelle, L., Samset, B. H., Sillmann, J., Schaller, N., Fischer, E., Schulz, M., and Stohl, A.: Frequency of extreme precipitation increases extensively with event rareness under global warming, Scientific Reports, 9, 16063, https://doi.org/10.1038/s41598-019-52277-4, 2019.
Nelsen, R. B.: 14 – Copulas and quasi-copulas: An introduction to their properties and applications, in: Logical, Algebraic, Analytic and Probabilistic Aspects of Triangular Norms, edited by: Klement, E. P., and Mesiar, R., Elsevier Science B.V., Amsterdam, 391–413, https://doi.org/10.1016/B978-044451814-9/50014-8, 2005.
Neumeyer, N., Omelka, M., and Hudecová, Š.: A copula approach for dependence modeling in multivariate nonparametric time series, Journal of Multivariate Analysis, 171, 139–162, 2019.
Olson, D. and Dinerstein, E.: The Global 200: A Representation Approach to Conserving the Earth's Most Biologically Valuable Ecoregions, Conservation Biology, 12, 502–515, https://doi.org/10.1046/j.1523-1739.1998.012003502.x, 1998.
Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, E. C., D'Amico, J. A., Itoua, I., Strand, H. E., Morrison, J. C., Loucks, C. J., Allnutt, T. F., Ricketts, T. H., Kura, Y., Lamoreux, J. F., Wettengel, W. W., Hedao, P., and Kassem, K. R.: Terrestrial Ecoregions of the World: A New Map of Life on Earth: A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity, BioScience, 51, 933–938, https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2, 2001.
Pepin, N. C., Arnone, E., Gobiet, A., Haslinger, K., Kotlarski, S., Notarnicola, C., Palazzi, E., Seibert, P., Serafin, S., Schöner, W., Terzago, S., Thornton, J. M., Vuille, M., and Adler, C.: Climate Changes and Their Elevational Patterns in the Mountains of the World, Reviews of Geophysics, 60, e2020RG000730, https://doi.org/10.1029/2020RG000730, 2022.
Prior, L. D., Eamus, D., and Duff, G. A.: Seasonal and Diurnal Patterns of Carbon Assimilation, Stomatal Conductance and Leaf Water Potential in Eucalyptus tetrodonta Saplings in a Wet-Dry Savanna in Northern Australia, Australian Journal of Botany, 45, 241–258, https://doi.org/10.1071/BT96017, 1997.
Qiao, L., Zuo, Z., Zhang, R., Piao, S., Xiao, D., and Zhang, K.: Soil moisture-atmosphere coupling accelerates global warming, Nature Communications, 14, 4908–4908, https://doi.org/10.1038/s41467-023-40641-y, 2023.
Qing, Y., Wang, S., Yang, Z.-L., and Gentine, P.: Soil moisture-atmosphere feedbacks have triggered the shifts from drought to pluvial conditions since 1980, Commun. Earth Environ., 4, 254, https://doi.org/10.1038/s43247-023-00922-2, 2023.
Sala, O. E. and Lauenroth, W. K.: Root Profiles and the Ecological Effect of Light Rainshowers in Arid and Semiarid Regions, The American Midland Naturalist, 114, 406–408, https://doi.org/10.2307/2425617, 1985.
Sehler, R., Li, J., Reager, J. T., and Ye, H.: Investigating Relationship Between Soil Moisture and Precipitation Globally Using Remote Sensing Observations, Journal of Contemporary Water Research & Education, 168, 106–118, https://doi.org/10.1111/j.1936-704X.2019.03324.x, 2019.
Shen, S., Ye, S., Cheng, C., Song, C., Gao, J., Yang, J., Ning, L., Su, K., and Zhang, T.: Persistence and Corresponding Time Scales of Soil Moisture Dynamics During Summer in the Babao River Basin, Northwest China, J. Geophys. Res.-Atmos., 123, 8936–8948, https://doi.org/10.1029/2018JD028414, 2018.
Shen, Z., Hua, M., Lu, J., Zhang, C., and Fang, J.: Response of soil moisture to precipitation in the valley mountain Lhasa, Tibet, China Rural. Water Hydropower, 10, 104–107, 2016.
Siebielec, S., Siebielec, G., Klimkowicz-Pawlas, A., Gałązka, A., Grządziel, J., and Stuczyński, T.: Impact of water stress on microbial community and activity in sandy and loamy soils, Agronomy, 10, 1429, https://doi.org/10.3390/agronomy10091429, 2020.
Stocker, B. D., Tumber-Dávila, S. J., Konings, A. G., Anderson, M. C., Hain, C., and Jackson, R. B.: Global patterns of water storage in the rooting zones of vegetation, Nature Geoscience, 16, 250–256, https://doi.org/10.1038/s41561-023-01125-2, 2023.
Straffelini, E., Luo, J., and Tarolli, P.: Climate change is threatening mountain grasslands and their cultural ecosystem services, CATENA, 237, 107802, https://doi.org/10.1016/j.catena.2023.107802, 2024.
Szutu, D. J. and Papuga, S. A.: Year-Round Transpiration Dynamics Linked With Deep Soil Moisture in a Warm Desert Shrubland, Water Resources Research, 55, 5679–5695, https://doi.org/10.1029/2018WR023990, 2019.
Taylor, C. M., de Jeu, R. A. M., Guichard, F., Harris, P. P., and Dorigo, W. A.: Afternoon rain more likely over drier soils, Nature, 489, 423–426, https://doi.org/10.1038/nature11377, 2012.
Taylor, H. M. and Klepper, B.: The Role of Rooting Characteristics in the Supply of Water to Plants11Journal Paper J-8906 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa, Project No. 1941, and Technical Paper 4673 of the Oregon State University Agricultural Experiment Station, Pendleton, Oregon, in: Advances in Agronomy, edited by: Brady, N. C., Academic Press, 99–128, https://doi.org/10.1016/S0065-2113(08)60704-X, 1979.
Thompson, S. E., Harman, C. J., Heine, P., and Katul, G. G.: Vegetation-infiltration relationships across climatic and soil type gradients, J. Geophys. Res.-Biogeo., 115, https://doi.org/10.1029/2009JG001134, 2010.
Tomlinson, K. W., Poorter, L., Sterck, F. J., Borghetti, F., Ward, D., de Bie, S., and van Langevelde, F.: Leaf adaptations of evergreen and deciduous trees of semi-arid and humid savannas on three continents, Journal of Ecology, 101, 430–440, https://doi.org/10.1111/1365-2745.12056, 2013.
Vereecken, H., Huisman, J. A., Bogena, H., Vanderborght, J., Vrugt, J. A., and Hopmans, J. W.: On the value of soil moisture measurements in vadose zone hydrology: A review, Water Resources Research, 44, https://doi.org/10.1029/2008WR006829, 2008.
Wang, G., Li, Y., Hu, H., and Wang, Y.: Synergistic effect of vegetation and air temperature changes on soil water content in alpine frost meadow soil in the permafrost region of Qinghai-Tibet, Hydrological Processes, 22, 3310–3320, https://doi.org/10.1002/hyp.6913, 2008.
Wang, J., Liu, D., Ciais, P., and Penuelas, J.: Decreasing rainfall frequency contributes to earlier leaf onset in northern ecosystems, Nature Climate Change, 12, 386–392, https://doi.org/10.1038/s41558-022-01285-w, 2022.
Wei, J., Dickinson, R. E., and Chen, H.: A Negative Soil Moisture–Precipitation Relationship and Its Causes, Journal of Hydrometeorology, 9, 1364–1376, https://doi.org/10.1175/2008JHM955.1, 2008.
Wild, B., Teubner, I., Moesinger, L., Zotta, R.-M., Forkel, M., van der Schalie, R., Sitch, S., and Dorigo, W.: VODCA2GPP – a new, global, long-term (1988–2020) gross primary production dataset from microwave remote sensing, Earth Syst. Sci. Data, 14, 1063–1085, https://doi.org/10.5194/essd-14-1063-2022, 2022.
Wu, G., Li, Y., Qin, S., Mao, Y., and Wang, K.: Precipitation unevenness in gauge observations and eight reanalyses from 1979 to 2018 over China, Journal of Climate, 34, 9797–9810, https://doi.org/10.1175/JCLI-D-21-0316.1, 2021.
Wullschleger, S. and Hanson, P.: Sensitivity of canopy transpiration to altered precipitation in an upland oak forest: evidence from a long-term field manipulation study, Global Change Biology, 12, 97–109, https://doi.org/10.1111/j.1365-2486.2005.001082.x, 2006.
Xiao, T., Li, P., Fei, W., and Wang, J.: Effects of vegetation roots on the structure and hydraulic properties of soils: A perspective review, Science of The Total Environment, 906, 167524, https://doi.org/10.1016/j.scitotenv.2023.167524, 2024.
Xue, S. and Wu, G.: Sensitivities of Vegetation Gross Primary Production to Precipitation Frequency in the Northern Hemisphere from 1982 to 2015, Remote Sensing, 16, 21, https://doi.org/10.3390/rs16010021, 2023.
Xue, S. and Wu, G.: Causal inference of root zone soil moisture performance in drought, Agricultural Water Management, 305, 109123, https://doi.org/10.1016/j.agwat.2024.109123, 2024.
Xue, S., Xu, H., Mu, C., Wu, T., Li, W., Zhang, W., Streletskaya, I., Grebenets, V., Sokratov, S., Kizyakov, A., and Wu, X.: Changes in different land cover areas and NDVI values in northern latitudes from 1982 to 2015, Advances in Climate Change Research, 12, 456–465, https://doi.org/10.1016/j.accre.2021.04.003, 2021.
Yadav Brijesh, K., Mathur, S., and Siebel Maarten, A.: Soil Moisture Dynamics Modeling Considering the Root Compensation Mechanism for Water Uptake by Plants, Journal of Hydrologic Engineering, 14, 913–922, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000066, 2009.
Yang, L., Sun, G., Zhi, L., and Zhao, J.: Negative soil moisture-precipitation feedback in dry and wet regions, Scientific Reports, 8, 4026, https://doi.org/10.1038/s41598-018-22394-7, 2018.
Zhang, P., Xiao, P., Yao, W., Liu, G., and Sun, W.: Profile distribution of soil moisture response to precipitation on the Pisha sandstone hillslopes of China, Scientific Reports, 10, 9136, https://doi.org/10.1038/s41598-020-65829-w, 2020.
Zhang, W., Zhou, T., and Wu, P.: Anthropogenic amplification of precipitation variability over the past century, Science, 385, 427–432, https://doi.org/10.1126/science.adp0212, 2024.
Zhong, F., Jiang, S., van Dijk, A. I. J. M., Ren, L., Schellekens, J., and Miralles, D. G.: Revisiting large-scale interception patterns constrained by a synthesis of global experimental data, Hydrol. Earth Syst. Sci., 26, 5647–5667, https://doi.org/10.5194/hess-26-5647-2022, 2022.
Zhou, S., Williams, A. P., Lintner, B. R., Berg, A. M., Zhang, Y., Keenan, T. F., Cook, B. I., Hagemann, S., Seneviratne, S. I., and Gentine, P.: Soil moisture-atmosphere feedbacks mitigate declining water availability in drylands, Nature Climate Change, 11, 274–274, https://doi.org/10.1038/s41558-021-00988-w, 2021.
Zhu, Q., Nie, X., Zhou, X., Liao, K., and Li, H.: Soil moisture response to rainfall at different topographic positions along a mixed land-use hillslope, Catena, 119, 61–70, https://doi.org/10.1016/j.catena.2014.03.010, 2014.
Short summary
Soil moisture is influenced by both precipitation and evapotranspiration, with spatial heterogeneities and seasonal variations across different ecological zones. In this study, the joint distributions of precipitation and soil moisture were analyzed at monthly and annual scales. The negative dependences between soil moisture and precipitation were found, due to soil property changes induced by land–surface interactions. The results can enhance our understandings in drought and hydrometeorology.
Soil moisture is influenced by both precipitation and evapotranspiration, with spatial...