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Abstract. Soil moisture plays a critical role in the land–
atmosphere coupling system. It is replenished by precipita-
tion and transported back to the atmosphere through land
surface evaporation and vegetation transpiration. Soil mois-
ture is, therefore, influenced by both precipitation and evapo-
transpiration, with spatial heterogeneities and seasonal vari-
ations across different ecological zones. The relationship be-
tween soil moisture and precipitation was found to be nonlin-
ear and negative in Northern Hemisphere ecosystems. How-
ever, the driving mechanisms of these negative correlations,
especially how soil moisture is influenced by precipitation
and evapotranspiration, still remain unclear. This study quan-
tified the spatiotemporal distribution of the nonlinear de-
pendence of soil moisture to precipitation, and identify the
dominant factors in different ecoregions to explore the driv-
ing mechanisms and regional patterns. The joint distribu-
tions of precipitation and soil moisture were analyzed at
monthly and annual scales, using soil moisture and precipita-
tion data from ERA5-Land and Global Precipitation Clima-
tology Project, respectively. The nonlinear negative depen-
dences reached to 19.2 %, 0.7 %, and 2.3 % at monthly scale,
while were 3.0 %, 4.0 %, and 8.6 % at annual scale, respec-
tively, for the three soil layers. These negative dependences
were shown to be most prominent in temperate grasslands,
savannas, shrublands, deserts, xeric shrublands, and tundra
regions, where driven by the land surface temperature and
by the air temperature–gross primary production relationship
at the monthly scale based on Ridge regression models and
Bayesian models. Additionally, the negative dependence is
also linked to freeze–thaw cycles, precipitation seasonality,
and temperature fluctuations, which lead to asynchronous
changes between soil moisture and precipitation at the sea-

sonal scale. At the annual scale, the negative dependence was
associated with long-term changes in precipitation and tem-
perature that affect vegetation and surface properties, by al-
tering soil water capacity. These findings enhance the under-
standing of land–atmosphere interactions providing a valu-
able basis for future research on drought, hydrometeorology,
and ecological conservation.

1 Introduction

Soil moisture is a critical source of water for vegetation
growth, replenished by precipitation and groundwater, and
returned to the atmosphere through evapotranspiration. It
plays a key role in weather conditions, vegetation dynamics,
and groundwater storage (Vereecken et al., 2008; Qiao et al.,
2023; Li et al., 2022; Zhou et al., 2021), with significant im-
plications for the global climate. Surface soil moisture reg-
ulates the distribution of available energy at the land sur-
face and exchanges energy with the near-surface atmosphere
through sensible and latent heat fluxes, thereby controlling
the surface energy balance (Haghighi et al., 2018; McColl
et al., 2017). In contrast, deep soil moisture is more directly
influenced by vegetation growth, particularly by the develop-
ment of plant roots, which play a crucial role in the vertical
infiltration of precipitation into deeper soil layers (Xiao et al.,
2024; Szutu and Papuga, 2019; Xue and Wu, 2024).

Precipitation variability, which refers to the amplitude of
precipitation fluctuations over different times, influences soil
moisture and thereby land surface coupling (Taylor et al.,
2012; Koster et al., 2009). Precipitation patterns are reported
to have undergone significant changes in recent decades
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(Mao et al., 2022; Wu et al., 2021; Lv et al., 2023), mainly
manifested as anthropogenic amplification of precipitation
variability (Zhang et al., 2024). The increase in the frequency
of extreme precipitation events (Wang et al., 2022; Myhre et
al., 2019) and decrease in the frequency of smaller precip-
itation events (Ma et al., 2015) amplify soil moisture fluc-
tuations and prolong the moisture stress periods between
consecutive precipitation events (Knapp et al., 2008). This
can directly affect vegetation growth and soil moisture re-
sponses (He et al., 2023; Feldman et al., 2024), particularly
through changes in the duration and intensity of soil evapo-
ration and plant transpiration (Gu et al., 2021; Wullschleger
and Hanson, 2006). Soil moisture has been shown to be neg-
atively correlated with precipitation in certain regions, based
on Pearson correlation analyses (Cook et al., 2006; Yang et
al., 2018). The changes in soil moisture at different depths
also show notable discrepancies (Zhu et al., 2014; Shen et
al., 2016). Surface soil moisture has been shown to respond
to precipitation approximately a month earlier than deeper
soil moisture, with a more pronounced positive correlation
between precipitation and soil moisture occurring at depths
greater than 50 cm (Zhang et al., 2020).

Most current analyses of the relationship between soil
moisture and precipitation assume a linear relationship
(Sehler et al., 2019; Yang et al., 2018). In reality, the response
of soil moisture to precipitation is extremely complex and
often nonlinear (Drager et al., 2022). This kind of nonlinear
and asymmetric correlation is generally referred to as “de-
pendence”. Existing studies have not fully addressed some
issues in the nonlinear dependence of soil moisture to pre-
cipitation, including the heterogeneity in different ecoregions
and soil layers, as well as inadequate identification of tail de-
pendence. Moreover, the factors driving this negative depen-
dence between soil moisture and precipitation remain poorly
understood due to the complicated land atmosphere coupling
processes, particularly in the Northern Hemisphere where
different types of vegetation coverage are present. Among
the methods used to explore nonlinear relationships, the cop-
ula function is one of the most widely applied approaches
for modeling the joint distributions of precipitation and soil
moisture (Cammalleri et al., 2024). The copula is a stochas-
tic model that can reveal nonlinear and asymmetric depen-
dence structures, which are difficult to capture using tradi-
tional linear methods. It provides a flexible framework for
modeling joint distributions of multiple variables, allowing
for a more precise understanding of the evolving dependence
of soil moisture on precipitation than that offered by tradi-
tional linear regression and correlation methods.

In terms of the water cycle, soil moisture is replenished
by precipitation and groundwater, while also being absorbed
by plant roots and lost through evapotranspiration. There-
fore, the change of soil moisture is actually simultaneously
influenced by precipitation volume, frequency, and evapo-
transpiration. However, the response of soil moisture to pre-
cipitation and evapotranspiration varies across different time

scales, presented as nonlinear and asymmetric. The long-
term effects of changes in evapotranspiration and precipita-
tion on soil moisture are further shaped by seasonal transi-
tions, with significant differences observed at different soil
depths (Szutu and Papuga, 2019). These differences are in-
fluenced by factors such as soil freeze–thaw processes and
vegetation community structure. Therefore, the relative con-
tributions of evapotranspiration, precipitation volume, and
frequency to soil moisture changes should be quantified at
different time scales.

Although previous studies have identified the mechanisms
of soil moisture variation across different time scales (Gam-
age et al., 2020; Shen et al., 2018), the interaction among
precipitation, evapotranspiration and soil water under cli-
mate change may have changed over different time scales.
In particular, although the negative dependence has been re-
ported, its dominant drivers and their relative contributions
across different timescales and soil layers still remain un-
clear. The dependence of soil moisture to precipitation and its
interactions with evapotranspiration under conditions of cli-
mate change require further investigation. Accordingly, the
ridge regression models for precipitation amount, precipita-
tion frequency, evapotranspiration, and soil moisture can be
used to quantify the relative influence of precipitation and
evapotranspiration on soil moisture. As an improvement of
the least squares estimation method, it can handle the multi-
collinearity problems of the covariates, although it is usually
biased.

This study targets the nonlinear dependence of soil mois-
ture to precipitation across Northern Hemisphere at monthly
and annual scales from 2000 to 2019. A copula function
was applied to describe the joint distribution of precipita-
tion and soil moisture. It can capture the asymmetric and tail-
dependent relationship, as well as the varying influences of
precipitation volume, frequency, and evapotranspiration on
soil moisture at monthly and seasonal scales. A Bayesian
attribution framework involved gross primary productivity
(GPP), land surface temperature (LST), and near-surface air
temperature (Ta) were selected to identify the key driving
factors, since the dependence between precipitation and soil
moisture is influenced by factors such as vegetation growth,
temperature, and soil properties. The driving factors and re-
gional characteristics of the negative correlation observed be-
tween precipitation and soil moisture in different ecoregions
were also compared. This study enhances the understanding
of complex interactions between key meteorological factors
such as precipitation, evapotranspiration, and soil moisture
under climate change, and provides a basis for future land–
atmosphere coupling system modeling.
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2 Material and method

2.1 Material

2.1.1 Soil moisture

The soil moisture data used in this study were obtained from
the fifth generation of reanalysis from the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF), us-
ing atmospheric forcing to control the simulated land field
variables and provide the land components (ERA5-Land)
(Muñoz-Sabater, 2019). ERA5-Land provides a consistent
description of the evolution of the energy and water cycles
over land, and therefore, has been widely used in various
land surface applications such as flood or drought forecasting
(Muñoz-Sabater et al., 2021). The ERA5-Land soil moisture
data are available for four layers, 0 to 7, 7 to 28, 28 to 100,
and 100 to 289 cm, at a 0.1°× 0.1° spatial and hourly tempo-
ral resolution from 1950 to present. The soil moisture from
the first three soil layers during 2000 to 2019 were used. They
were resampled to a 0.25°× 0.25° spatial resolution and av-
eraged to daily, monthly, and yearly scales to be consistent
with other variables in this study.

2.1.2 Precipitation

The Global Precipitation Climatology Project (GPCP) is a
global precipitation project that integrates infrared and mi-
crowave data from multiple geostationary and polar-orbiting
satellites, and corrected by many meteorological station ob-
servations (Adler et al., 2003; Huffman and Bolvin, 2013).
It is an important component of the Global Energy and Wa-
ter Cycle Experiment (GEWEX) in the World Climate Re-
search Programme (WCRP). A daily precipitation field with
a 1°× 1° resolution since 1996 was generated by integrating
the satellite products and then adjusting the daily precipita-
tion by monthly data observed from the ground to make it
consistent with the meteorological observations. Daily pre-
cipitation was resampled to a 0.25°× 0.25° spatial resolution
and then used to calculate the total precipitation volume and
precipitation frequency at the monthly, seasonal, and annual
scale from 2000 to 2019.

2.1.3 Covariate variables

Gross primary production

The gross primary production (GPP) dataset was from the
Vegetation Optical Depth Climate Archive v2, which used
microwave remote sensing estimates of vegetation optical
depth to estimate the GPP at the global scale for the pe-
riod 1988 to 2020 (Wild et al., 2022). These GPP data were
trained and evaluated against FLUXNET in-situ observations
and compared with largely independent state-of-the-art GPP
datasets from the Moderate Resolution Imaging Spectrora-
diometer (MODIS). The Vegetation Optical Depth Climate

Archive v2 GPP dataset has a 0.25°× 0.25° spatial and half-
monthly temporal resolution, covered from 2000 to 2019.

Near surface air temperature

The air temperature data (Ta) were obtained from the Cli-
matic Research Unit gridded Time Series (CRU TS), which
is one of the most widely used climate datasets and is pro-
duced by the National Centre for Atmospheric Sciences in
the United Kingdom. CRU TS v4.07 was derived by the in-
terpolation of monthly climate anomalies from extensive net-
works of weather station observations (Harris et al., 2020). It
provides monthly land surface data from 1901 to 2020 at a
0.5°× 0.5° resolution worldwide. The mean temperatures at
the monthly, seasonal, and annual scales during 2000 to 2019
were calculated and resampled to a 0.25°× 0.25° spatial res-
olution.

Land surface temperature

Land surface temperature (LST) data were accessed from the
European Space Agency Climate Change Initiative (CCI),
which is funded by the European Space Agency as part of the
Agency’s CCI Program (Jimenez and Prigent, 2023). It aims
to significantly improve current satellite LST data records to
meet the challenging Global Climate Observing System re-
quirements for climate applications and realize the full po-
tential of long-term LST data for climate science (Hollmann
et al., 2013). These data were the first global LST climate
data records of over 25 years at a 0.25°× 0.25° resolution
and with an expected error within 1 K. The LST dataset in-
cluded ascending and descending orbit data, which were used
to calculate the mean value of separate annual and monthly
averages during 2000 to 2019.

Evapotranspiration

Evapotranspiration data were accessed from the Global Land
Evaporation Amsterdam Model (GLEAM) v3.8a, which pro-
vides data of the different components of land evapotranspi-
ration, including transpiration, bare-soil evaporation, inter-
ception loss, open-water evaporation, and sublimation, in ad-
dition to other related variables such as surface and root-zone
soil moisture, sensible heat flux, potential evaporation, and
evaporative stress conditions (Martens et al., 2017; Miralles
et al., 2011). The monthly, seasonal, and annual averages dur-
ing 2000 to 2019 were calculated based on a 0.25°× 0.25°
spatial resolution.

Terrestrial ecoregions

Data on terrestrial ecoregions around the globe were ac-
cessed from the Conservation Biology Institute (Olson et al.,
2001). These ecoregions are relatively large units of land
containing distinct assemblages of natural communities and
species, with boundaries that approximate the original ex-
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tent of natural communities prior to major land-use changes.
The delineations were completed based on hundreds of pre-
vious biogeographical studies and were refined and synthe-
sized using existing information in regional workshops over
the course of 10 years to assemble the global dataset (Olson
et al., 2001). An ecological layer file encompassing 16 major
categories was downloaded.

Although the Köppen climate classification provides a
standardized framework based on temperature and precip-
itation, it may perform not well in accounting for critical
biophysical factors, particularly for vegetation. Alternatively,
the ecoregion divisions integrate both climatic and ecolog-
ical factors, offering a more comprehensive understanding
of the spatial heterogeneity in vegetation types and hydro-
logical processes (Olson et al., 2001; Gerken et al., 2019).
This makes it particularly advantageous for studying land–
atmosphere interactions, since vegetation plays a central role
in regulating energy and water fluxes. Therefore, this study
adopts ecoregion boundaries to better capture the vegeta-
tion related variability in precipitation–soil moisture relation-
ship. Since soil moisture dynamics and their feedbacks with
precipitation are strongly influenced by vegetation structure,
root systems, and edaphic properties, the ecoregions can pro-
vide a more mechanistic and spatially relevant framework for
our analysis. All of the Ta, LST, GPP, soil moisture, and pre-
cipitation datasets were masked by these 16 terrestrial ecore-
gions (Fig. 1) in a 0.25° grid, and monthly, seasonal, or an-
nual mean values in the regions were calculated separately.

2.2 Method

2.2.1 Joint distribution

In this study, the joint distribution between precipitation and
soil moisture from depths of 0 to 7, 7 to 28 cm, and 28 to
100 cm, using the copula function at both the monthly and
annual scales was established. A copula function links mul-
tivariate distribution functions with their one-dimensional
marginal distributions, and is used for the examination of de-
pendences between multiple variables. It captures nonlinear
dependence structures through joint and marginal probabil-
ities of a pair of variables in complex multivariate systems
(Nelsen, 2005). In this study, the copula function was used to
explore the nonlinear dependence between precipitation and
soil moisture (Eq. 1):

FP,SM (x,y)= C (FP (x) ,FSM (y)) (1)

where FP(x) and FSM(y) denote the marginal distribution of
precipitation and soil moisture, respectively, and C(u,v) is
the copula function linking these two variables. The process
for establishing the joint distribution was as follows: (1) The
marginal distributions of precipitation and soil moisture were
fitted using an automatic optimization function. (2) The most
suitable copula function was selected based on the Akaike In-
formation Criterion (AIC) values at the grid level, including

Gaussian copula, Student’s t copula, Clayton copula, and 37
other copula functions. Different copula functions may be se-
lected for different grid cells. (3) The chosen copula function
was then used to compute the corresponding Kendall’s tau
(τ ), upper tail dependence (λU), and lower tail dependence
(λL).

The statistic τ measures the correlation between two vari-
ables to determine the presence of a monotonic relationship.
λU and λL represent the likelihood that, when one variable
reaches extreme high or low values, the other variable also
reaches extreme values. The calculations of τ , λU, and λL
are based on the dependence parameters of the joint distri-
bution of precipitation and soil moisture, and depends on the
selected copula function using the AIC method. Taking the
Tawn copula function as an example, the calculation of τ ,
λU, and λL are based on the following equations.

τ = 1−
2δ
θ + 1

+
2δ2

2θ + 1
, (2)

λU = (1− δ) ·
(

2− 2
1
θ

)
, (3)

and

λL = δ ·
(

2− 2
1
θ

)
, (4)

where θ is the dependence parameter of the Tawn copula,
and δ represents the asymmetry parameter. For some copula
functions, such as Clayton copula, the Kendall’s τ values get
the priority over the upper and lower tail dependences in the
estimation process. All the calculations were performed us-
ing R v4.3.3 with the VineCopula and copula packages, for
which detailed calculation methods for τ , λU, and λL for all
copulas are provided. To address the potential delayed re-
sponse of soil moisture to precipitation, lagged correlation
analysis was conducted. For each grid cell, the AIC value
was calculated to select copula function (Fig. S1), as shown
in the Supplement. Then the Kendall’s tau correlation was
calculated between precipitation and soil moisture with time
lags ranging from 0 to 12 months (Fig. S2). The lag corre-
sponding to the maximum absolute correlation was identified
as the optimal lag.

2.2.2 Ridge regression

Ridge regression is designed to address collinear data, al-
though it is a biased estimation method. It is an improved
least squares estimation used to generate more reliable re-
gression coefficients at the cost of unbiasedness. Ridge re-
gression outperforms the traditional least squares method
when fitting ill-conditioned data (McDonald, 2009). Due to
the large uncertainty in precipitation and soil moisture data,
ridge regression models were applied for three soil layers,
and for both monthly and seasonal scales. Spring was defined
as from March to May, summer from June to August, autumn
from September to November, and winter from December to
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Figure 1. The 16 Terrestrial Ecoregions of the Northern Hemisphere. The figure was produced using ArcGIS Pro 2.8.3.

February of the following year. Precipitation frequency, vol-
ume, and evapotranspiration were treated as predictor vari-
ables, with Ta as a control variable and soil moisture as the
response variable.

To clearly differentiate the influence of variables, the re-
gression coefficients for precipitation volume, frequency, and
evapotranspiration were normalized using Eq. (5) and then
assigned to the three primary colors. This approach resulted
in a gridded ternary phase diagram.

Wi = 1−
vi

3∑
i=1
vi

, (5)

where vi(v1,v2,v3) represent precipitation frequency, pre-
cipitation volume, and evapotranspiration (ET), respectively,
and Wi refers to the adjusted weight of vi .

2.2.3 Bayesian generalized non-linear multivariate
multilevel models

The Bayesian generalized non-linear multivariate multilevel
model integrates Bayesian inference, generalized linear mod-
els, non-linear modeling, multivariate analysis, and hierar-
chical structures, making it well-suited for complex hierar-
chical data. It can effectively capture non-linear dependences
among multiple response variables (Bürkner, 2017; Browne
and Draper, 2006). The model parameters are treated as ran-
dom variables with prior distributions under the Bayesian
framework. Posterior distributions of the parameters are ob-
tained by combining the likelihood function and prior dis-
tributions. The Markov Chain Monte Carlo (MCMC) algo-

rithm is then used to resample from the posterior distribution
and estimate the posterior means of the parameters to repre-
sent the optimal results. Given the hierarchical and multivari-
ate nature of the data, a multilevel structure and multivariate
analysis was introduced to model the mixed effects of vari-
ables and to capture the relationships among multiple related
response variables. Random effects were also incorporated to
account for heterogeneity among individuals and reflect the
varying effects of univariate or multivariate mixtures on the
response variables, thereby improving the accuracy of esti-
mates.

Since the impact approaches of GPP, LST, and Ta on pre-
cipitation (P ) and soil moisture (SM) are often unknown,
the Gaussian distribution was specified as the prior distribu-
tion for these variables in the Bayesian model. To investigate
how GPP, LST, and Ta influence the precipitation–soil mois-
ture coupling relationship, both precipitation and soil mois-
ture were treated as response variables. Bayesian non-linear
multivariate multilevel models were developed at both the
monthly and seasonal scales, with independent models for
16 ecological zones (Eq. 6):

Posterior estimates= bf(P ∼ Ta+GPP+LST

+ Ta : GPP+ Ta : LST
+GPP : LST+ Ta : GPP : LST)
+ bf(SM∼ Ta+GPP+LST
+ Ta : GPP+ Ta : LST+GPP : LST
+ Ta : GPP : LST), (6)
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where the colon represents multivariate mixed effects of
different variables; “bf” stands for Bayesian formula, used to
specify each part of the model for P and SM separately; and
the “+” combines P and SM into a multivariate model. The
model was implemented in R 4.3.3 using the brms package,
which performs diagnostic checks on the sampling results
using indicators such as the Gelman–Rubin diagnostic (Rhat
statistic) and the effective sample size. To ensure stability
and convergence, four MCMC chains were used for iterative
sampling, with each chain running 4000 iterations, including
2000 warm-up iterations. A maximum tree depth of 10 was
set. Estimate values of all ecoregions were classified into dif-
ferent clusters using the K-means method in R 4.3.3.

3 Results

3.1 Estimation from the copula function

The copula analysis of monthly average soil moisture and
total monthly precipitation volume revealed a clear negative
dependence at all three soil depths (Fig. 2a2, b2, c2). The per-
centages of grid cells exhibiting negative dependence at these
depths were 19.2 %, 0.7 %, and 2.3 %, respectively. The neg-
ative dependence between precipitation and soil moisture is
more prevalent in the surface soil layer, where the grid cells
exhibiting are more widespread. In contrast, at the middle
and deep soil layers, these negative dependence patterns are
primarily confined to the margins of the Sahara desert, the
montane grasslands and shrublands, and parts of the deserts
and xeric shrublands regions. In the surface layer, the neg-
atively dependent grid patches are more spatially scattered,
mainly distributed across the tundra, montane grasslands and
shrublands, deserts and xeric shrublands, as well as the trop-
ical and subtropical moist broadleaf forests.

Regions exhibiting high λL values were primarily located
in the deserts and xeric Shrublands, as well as in parts of
India, where λL reached values as high as 0.99 (Fig. 2a1,
b1, c1). With increasing soil depth, λL values gradually in-
creased across the Eurasian continent. Similarly, λU exhib-
ited a clear reduction in spatial extent with increasing soil
depth, with the majority of these regions located in the tem-
perate broadleaf and mixed forests and the southern margin
of the Sahara desert. With increasing soil depth, λU values
consistently decreased, resulting in a lack of clear correspon-
dence between these regions and specific ecological zones
(Fig. 2a3, b3, c3). This decreasing trend likely reflects the
weakening of extreme precipitation–soil moisture coupling
in deeper soil layers, except for arid regions where vegeta-
tion is sparse or absent.

From the annual scale copula results (Fig. 3), precipitation
and soil moisture generally exhibited positive dependences
across the entire soil profile. However, negative dependences
were observed in regions such as the southern Sahara Desert,
Mongolia, and the Elizabeth Islands, reaching 3.0 %, 4.0 %,

and 8.6 %, respectively (Fig. 3a2, b2, c2). It revealed that the
negative correlation was kept between precipitation and soil
moisture in long-term scale over arid regions. The negative
dependences in these areas expanded outward, primarily con-
centrated in the montane grasslands and shrublands region.
Both the λL and the λU displayed scattered, patchy distribu-
tions, with average values for each soil layer ranging from
0.4 to 0.6.

3.2 Control of soil moisture by precipitation and
evapotranspiration

On the monthly scale, precipitation exerted the strongest
control over soil moisture (Fig. 4), with regions most in-
fluenced by precipitation accounting for more than 40 %
of the variation. These areas were primarily located in the
boreal forest/taiga, temperate grasslands, savannas, shrub-
lands, and the eastern part of North America. In contrast,
regions where evapotranspiration predominated were found
in Alaska–Northwest Canada, the western United States, the
Sahara Desert, and the Middle East. High-latitude regions,
especially northern Canada, were primarily influenced by
precipitation frequency. Areas where precipitation volume,
frequency, and evapotranspiration had similar levels of con-
trol were mainly found in Eastern Europe and Russia.

The results from ridge regression revealed more distinct
patterns at the seasonal scale compared to the monthly scale
(Fig. 5). Soil moisture in spring and summer was mainly con-
trolled by evapotranspiration, which influenced over 40 %
of grid cells, particularly in the middle soil layers, where
it dominated nearly 80 %. In contrast, precipitation volume
had a greater influence during autumn and winter, particu-
larly in the continental United States, southern Sahara Desert,
coastal India, and eastern China. Additionally, as soil depth
increased, the influence of evapotranspiration and precipita-
tion frequency gradually intensified. However, in summer, as
soil depth increased, the area primarily controlled by precip-
itation volume expanded (indicated by an increase in the in-
tensity of magenta color in the figures) especially in the east-
ern United States, Europe, and South Asia. These regions
remained strongly influenced by precipitation volume even
as evapotranspiration control increased with increasing soil
depth during autumn. Northern Russia, Canada, Greenland,
and northern Alaska were notably influenced by both pre-
cipitation frequency and precipitation volume, with this ef-
fect being more pronounced during the non-growing season.
In winter, the area controlled by precipitation frequency was
larger than that in spring.

At the annual scale, precipitation amount exerts a domi-
nant influence across all three soil depth layers, accounting
for more than 40 % of the total area (Fig. 6). The spatial ex-
tent of areas dominated by precipitation amount, precipita-
tion frequency, and evapotranspiration remains largely con-
sistent with that observed at the monthly scale. The regions
dominated by precipitation frequency are still primarily lo-
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Figure 2. Spatial distribution of Kendall’s tau (τ ), the upper tail dependence (λU), and the lower tail dependence (λL) on the 0.25°× 0.25°
grids between monthly precipitation volume and soil moisture during 2000 to 2019. The three columns are for the soil moisture from depths
of 0 to 7, 7 to 28, and 28 to 100 cm, respectively.

Figure 3. Spatial distributions of the τ , λU, and λL on the 0.25°× 0.25° grids between annual precipitation volume and soil moisture during
2000 to 2019. The three columns are for the soil moisture from depths of 0 to 7, 7 to 28, and 28 to 100 cm, respectively.

cated in high-latitude areas, particularly in Greenland and
the northern parts of Canada, although no distinct ecological
zone patterns are observed in these areas. Regions dominated
by precipitation amount are mainly distributed across boreal
forests, temperate grasslands, savannas and shrublands, tem-
perate broadleaf and mixed forests, as well as tropical and
subtropical moist broadleaf forests. In temperate regions, soil
moisture is primarily controlled by precipitation amount due
to moderate temperatures and limited rainfall, making sub-
stantial precipitation is essential for soil moisture replenish-
ment. In contrast, tropical and subtropical regions experience

high temperatures and intense evapotranspiration, requiring
substantial precipitation to maintain a water balance.

3.3 Drivers of negative dependences between soil
moisture and precipitation

For each model in this study, four MCMC chains were used
for iterative sampling. The sampling results demonstrated
that the chains for both the monthly and annual scales were
well-distributed in the parameter space, with no noticeable
trends or drifts, indicating convergence to the target posterior
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Figure 4. Ternary map of factors controlling soil moisture, monthly, for the period 2000 to 2019. The bottom-left histogram in the subgraph
represents the proportion of grid cells where one variable exerts strong univariate control (with a regression coefficient greater than 75 % of
the total sum of the three variables), suggesting that soil moisture was predominantly controlled by that specific variable.

Figure 5. Ternary map of factors controlling soil moisture, seasonally, for the period 2000 to 2019. The bottom-left histogram in the subgraph
represents the proportion of the grid cells where one variable exerts strong univariate control (with a regression coefficient greater than 75 %
of the total sum of the three variables), suggesting that soil moisture was predominantly controlled by that specific variable.

distribution. The convergence was considered satisfactory,
with all models yielding a Rhat value below 1.05 (Figs. S3,
S4).

The negative dependence in the surface layer across the
Northern Hemisphere was primarily driven by the interac-
tions between GPP :LST and Ta :GPP (Fig. 7). It shows
that the regression trend line crosses quadrants II and IV.
The negative relationship driven by GPP :LST was predom-
inantly concentrated in quadrant IV, where increased precip-
itation lead to decreased soil moisture in the boreal forest,
tundra, temperate coniferous forest, and temperate broadleaf

mixed forest. The negative dependence driven by Ta :GPP
was mainly found in quadrant II, with distributions in deserts
and xeric shrublands, boreal forests, montane grasslands and
shrublands, temperate broadleaf mixed forests, and tundra.
For the middle soil layer, GPP :LST drove a negative de-
pendence in tropical and subtropical grasslands, savannas,
shrublands, and tropical and subtropical coniferous forests.
Ta and Ta :GPP drove in Mediterranean forests, woodlands,
and scrub, as well as in temperate grasslands, savannas, and
shrublands. The mixed effects of Ta :GPP :LST and Ta :LST
had minimal impact across all ecological zones, with all es-
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Figure 6. Ternary map of factors controlling soil moisture at annual scale, for the period 2000 to 2019. The bottom-left histogram in the
subgraph represents the proportion of grid cells where one variable exerts strong univariate control (with a regression coefficient greater than
75 % of the total sum of the three variables), suggesting that soil moisture was predominantly controlled by that specific variable.

timates concentrated near the origin and only two clusters
observed.

Interannual negative dependence was primarily observed
in the montane grasslands and shrublands region, where
GPP :LST drove this pattern across all three soil layers.
All other variables lead to positive dependence (Fig. 8).
The long-term trend in the annual-scale Bayesian model
revealed strong patterns, with the most significant differ-
ence compared to the monthly scale being the influence
of Ta :GPP :LST and Ta :LST, where different ecological
zones exhibited substantial variation. Among the multiple
variables, Ta drove the most negative dependence, with the
greatest differences observed between ecological zones. In
the surface layer, LST alone drove the negative dependence
in the mangrove, rock, and ice regions. Ta drove the negative
dependence in tropical and subtropical coniferous forests,
lakes, and rock and ice regions. In the middle soil lay-
ers, the negative dependence driven by Ta was in temperate
forests, arid shrublands, and flooded grasslands and savan-
nas, while it driven by Ta :GPP was in tropical and subtropi-
cal moist broadleaf forests. The negative dependence driven
by Ta :LST was fully distributed in quadrant IV. This pattern
was observed in regions such as the montane grasslands and
shrublands, tropical and subtropical coniferous forests, trop-
ical and subtropical grasslands, savannas, and shrublands;
and rock and ice regions. The strongest drivers of negative
dependence in the deep layers were GPP :LST and Ta. The
negative dependence driven by GPP :LST was found in the
rock and ice regions, Mediterranean forests, woodlands, and
scrub, as well as tundra and temperate coniferous forests in
quadrant II. The negative dependence driven by Ta was ob-
served in rock and ice regions, lakes, and temperate conifer-
ous forests in quadrant II, and flooded grasslands and savan-
nas in quadrant IV.

4 Discussion

4.1 Characteristics of negative dependence areas

In this study, joint distributions of precipitation and soil
moisture were constructed using Kendall’s τ to character-
ize the nonlinear relationship. Consistent with previous find-
ings, we observed a negative dependence between precipi-
tation and soil moisture, particularly in arid and semi-arid
regions (Yang et al., 2018; Qing et al., 2023). At the monthly
scale, τ values in surface layer were stronger, indicating that
seasonal dynamics – such as intermittent rainfall events fol-
lowed by rapid soil moisture loss through evapotranspiration
– likely drive the observed negative correlation. While neg-
ative dependence generally decreases with depth, the middle
layer shows an unexpectedly low percentage. This layer of-
ten corresponds to the main root zone, where stable plant wa-
ter uptake reduces soil moisture variability and weakens the
feedback signal, leading to a few grid cells with significant
negative dependence (Thompson et al., 2010). In contrast,
the deep soil layers may retain some long-term memory of
moisture deficits, especially under prolonged dry conditions,
which could contribute to stronger negative dependence than
in the more buffered middle layer. On the annual scale, the
negative dependence may instead reflect long-term climate
feedbacks. In high-latitude regions, for example, Arctic am-
plification and permafrost thawing can decouple precipita-
tion inputs from effective soil moisture retention, leading
to persistent moisture deficits despite increasing precipita-
tion trends. Regions showing negative dependence between
precipitation and soil moisture are primarily distributed in
arid, semi-arid and cold high-latitude climates. Representa-
tive ecosystems include deserts and xeric shrublands, mon-
tane grasslands and shrublands, and Arctic tundra. Despite
their climatic differences, these ecosystems share key ecohy-
drological traits, including limited precipitation input, strong
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Figure 7. Posterior estimates of the covariate variables of the Bayesian generalized non-linear multivariate multilevel model, built using
monthly data. The columns represent soil depths of 0 to 7, 7 to 28, and 28 to 100 cm. Red lines indicate linear regressions of precipitation
and soil moisture across all ecoregions, with cluster groups represented by three circles. The data point of each ecoregion belongs to a single
and non-overlapping cluster.

evapotranspiration demand, sparse vegetation cover, and low
soil moisture retention capacity.

Different from monthly scale, the negative dependence at
annual scale is primarily generated in regions such as deserts,
xeric shrublands, montane grasslands and shrublands. These
ecosystems are specifically characterized by arid conditions,

and particularly sensitive to environmental changes, mak-
ing them much responsive to long-term climatic variability.
In deserts and xeric shrublands, annual precipitation typi-
cally falls below 250 mm, while evaporation consistently ex-
ceeds rainfall (Lockwood et al., 2006). Vegetation in these
regions is dominated by shallow-rooted shrubs, which offer
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Figure 8. Posterior estimates of the covariate variables of the Bayesian generalized non-linear multivariate multilevel model, built using
annual data. The columns represent soil depths of 0 to 7, 7 to 28, and 28 to 100 cm. Red lines indicate linear regression of precipitation and
soil moisture across all ecoregions, with cluster groups represented by three circles. The data point of each ecoregion belongs to a single and
non-overlapping cluster.

minimal resistance to post-rainfall moisture loss. As a result,
soil moisture often declines rapidly following precipitation
events, leading to a counterintuitive negative relationship be-
tween rainfall and moisture storage. Montane grasslands and
shrublands, despite occurring in more topographically com-

plex terrains, also experience dry climatic conditions charac-
terized by low precipitation, high temperatures, and elevated
VPD (Olson and Dinerstein, 1998). These factors enhance
evapotranspiration, limiting the effectiveness of rainfall in
replenishing soil moisture. Consequently, increases in pre-
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cipitation may coincide with soil moisture decline due to en-
hanced moisture loss. In contrast, Arctic tundra ecosystems –
such as those found in northern North America and Eurasia
– are defined by cold temperatures, continuous permafrost,
and moderate but ineffective precipitation. Frozen soils im-
pede infiltration, causing much of the precipitation to be lost
as surface runoff rather than retained in the soil profile. Dom-
inant vegetation includes mosses, sedges, and dwarf shrubs
with shallow root systems, further limiting water uptake and
storage (Olson and Dinerstein, 1998; Xue et al., 2021).

4.2 Mechanism of negative dependence between
precipitation and soil moisture

4.2.1 Energy-Driven Mechanism: LST and Ta-Driven
ET Dominance

Negative dependence between precipitation and soil mois-
ture was observed across several dry and cold ecoregions, in-
cluding deserts and xeric shrublands, montane grasslands and
shrublands, tundra. These regions are generally characterized
by low precipitation and GPP, limiting vegetation’s ability
to retain or utilize moisture effectively (Olson and Diner-
stein, 1998; Xue and Wu, 2023). In arid ecosystems, shallow-
rooted vegetation and high temperatures result in rapid soil
moisture loss following rainfall. In montane environments,
stronger warming trends (Pepin et al., 2022) and shallow-
rooted vegetation (Stocker et al., 2023) further limit precip-
itation use, despite increased GPP under warming. Besides,
the surface soil induced upward movement of soil water from
the middle layer due to the osmotic and matric potential, fur-
ther contributing to moisture depletion. In semi-arid grass-
lands, the interaction between soil texture and precipitation
patterns further reinforces negative dependence. Brief rain-
fall events primarily moisten upper clay layers where grass
roots concentrate (Sala and Lauenroth, 1985), while well-
developed clay horizons restrict deep water percolation and
shrub root expansion (Buxbaum and Vanderbilt, 2007). This
physical confinement exacerbates water loss when increased
GPP and LST enhance evapotranspiration from the shallow
moistened zone, intensifying the precipitation-soil moisture
decoupling. High temperatures can lead to surface soil seal-
ing, preventing rainfall from effectively entering the root
zone. Model simulations confirm that in flat arid regions
(Koukoula et al., 2021), such soil barriers promote the “dry
soil advantage” – where precipitation triggers runoff rather
than infiltration.

The boreal forest and tundra ecosystems, often with per-
mafrost, are temperature-limited systems. Precipitation of-
ten falls as snow, which accumulates on the surface. Then,
a low LST can cause soil freezing, and the presence of sur-
face withered litter may further insulate the soil, preventing
timely moisture replenishment. Permafrost in these regions
can lead to surface runoff of some precipitation, preventing
effective infiltration into the soil. The geological conditions,

such as Karst landforms can also influence the relationship
between precipitation and soil moisture.

4.2.2 Biotic-Driven Mechanism: Vegetation Water Use
and GPP Dominance

High-altitude ecosystems, especially in the Arctic and
Qinghai–Tibetan Plateau, are increasingly affected by warm-
ing and variable precipitation (Lamprecht et al., 2018). These
changes lead to reduced species abundance and increased
GPP (Berauer et al., 2019). In montane grasslands and shrub-
lands, species abundance negatively correlates with soil nu-
trients and microbial functions (Graham et al., 2024). Ris-
ing LST and extreme precipitation reduce microbial biomass
and release soil minerals (Siebielec et al., 2020), intensifying
light competition and lowering ecosystem stability. Biodiver-
sity loss decreases soil water capacity, with some of these
regions at high risk of water erosion (Straffelini et al., 2024).

Soil moisture reduction in the surface and middle layer is
mainly driven by root water uptake under high LST and GPP.
Roots shift absorption to deeper layers during droughts (Ya-
dav Brijesh et al., 2009). In dry seasons, plants in grasslands
and shrublands retain leaves to support evaporative cooling
(Prior et al., 1997), this strategy also seen in deserts and xeric
shrublands, where winter precipitation and freezing reduce
surface moisture. Even during rainfall, soil moisture may
decline due to evapotranspiration, runoff, and plant uptake
(Tomlinson et al., 2013), creating a negative precipitation–
soil moisture relationship. Canopy interception also limits
infiltration (Zhong et al., 2022). However, in high-latitude
ecosystems like boreal forests and tundra, warming mitigates
cold limitations, allowing precipitation to increase soil mois-
ture, shifting the relationship to positive.

Negative dependence in mid-to-deep soil layers can occur
when a single factor dominates, limiting ecosystem compen-
sation (Jarvis, 2011; Taylor and Klepper, 1979). In contrast,
positive dependence may arise from synergistic interactions
between GPP and LST. Higher GPP can reflect deeper root
systems or improved water-use efficiency, while increased
LST may enhance soil moisture release and promote wa-
ter availability together (Wang et al., 2008). This interac-
tion may strengthen ecosystem feedbacks – e.g., higher GPP
can improve soil structure through biomass and organic mat-
ter, boosting water retention (Chen et al., 2025). Such syn-
ergy can offset LST-driven evapotranspiration and enhance
ecosystem resilience, particularly through freeze–thaw pro-
cesses in cold regions.

4.3 Data reliability

In this study, multiple observational datasets were employed
to reduce model-driven uncertainty and enhance data reliabil-
ity. CRU TS, ESA CCI, and GPCP were selected due to their
direct reliance on ground-based or satellite observations, in
contrast to the model-based ERA5-Land product. Although
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ERA5 does offer a wide range of meteorological variables,
it can introduce model uncertainties. Therefore, the datasets
used in this study have independent source, which can avoid
the potential false relationships between soil moisture and
precipitation that may be caused by the same model architec-
ture and input parameters. To investigate spatial heterogene-
ity, all data were spatially aggregated by ecoregion bound-
aries from the Conservation Biology Institute. These bound-
aries may introduce regional biases, which should be consid-
ered when interpreting the results.

The copula method can access the dependence between
different time series, after removing influences of the con-
ditional means and variances as well as marginal distribu-
tions (Neumeyer et al., 2019; Durante et al., 2025). In this
study, although precipitation–soil moisture dependence was
assessed across different time scales, the monthly series were
not de-seasonalized. As a result, the residual seasonal signals
may influence short-term dependence structures. This limita-
tion will be addressed in future work through seasonal ad-
justment. In the Bayesian modeling, GPP, LST, and air tem-
perature were examined as drivers of negative dependence.
Evapotranspiration was excluded due to its dependence on
both soil moisture and temperature. We acknowledge that ad-
ditional factors – such as wind, topography, and soil physi-
cal properties – may also modulate precipitation–soil mois-
ture coupling but were not in the scope of this analysis. Fu-
ture research incorporating these variables would provide a
more comprehensive understanding of the underlying mech-
anisms.

5 Conclusion

This study explored the dependence relationships between
precipitation and soil moisture at depths of 0 to 7, 7 to 28, and
28 to 100 cm from 2000 to 2019, by examining the control
effect of precipitation volume, precipitation frequency, and
evapotranspiration on soil moisture. Bayesian models were
used to analyze the driving factors and relative contribution
in the dependence of soil moisture to precipitation in differ-
ent time scales and ecoregions of the Northern Hemisphere.
The results showed that, the negative dependence proportion
reached 19.2 %, 0.7 %, and 2.3 % at monthly scale, while it
was 3.0 %, 4.0 %, and 8.6 % at annual scale, respectively,
for the three soil layers. Our studies have new insight for
the dependence of soil moisture to precipitation varying in
different ecoregions. We concluded that, precipitation vol-
ume predominantly controlled soil moisture in the Boreal
forest/taiga, temperate grasslands, savannas, and shrublands,
while precipitation frequency primarily controlled soil mois-
ture in the high-latitude regions of the Northern Hemisphere.
The combined influence of evapotranspiration and precipi-
tation exhibited clear seasonal patterns. While evapotranspi-
ration is known to dominate soil moisture dynamics during
the growing season (Kozii et al., 2020), this study quanti-

fied that this dominance are with regression coefficients more
than 75 % of the total sum of the three covariates. In con-
trast, precipitation volume played a more significant role in
the surface and middle layer of non-growing season, with ar-
eas under strong univariate control accounting for over 40 %
of the total area. Additionally, the influence of precipitation
frequency on soil moisture increased with latitude, the pro-
portion of the regression coefficient averaging from 36.5 %
to 91.3 %, highlighting a shift in controlling factors across
climatic gradients.

For the factor driving the dependence of soil moisture
to precipitation, this study found that the negative depen-
dences were distributed across temperate grasslands, savan-
nas, shrublands, deserts, xeric shrublands, and tundra, pri-
marily driven by LST and Ta :GPP interactions. These neg-
ative dependences were mainly attributed to the seasonality
of precipitation in arid and semi-arid areas and the freeze–
thaw processes in the soil, which hinder effective moisture
replenishment, especially during winter when soil freezing
prevents rainwater infiltration. In the intermediate and deep
soil layers, negative dependences were primarily driven by
single variables, whereas positive dependences resulted from
multivariate interactions, likely due to the lack of compen-
satory mechanisms when a single variable dominated, or the
enhancement of ecosystem feedbacks when both GPP and
LST interacted. Additionally, when the ecosystem is simul-
taneously driven by GPP and LST, greater resilience may be
exhibited.

At the annual scale, the negative dependences were mainly
in the montane grasslands and shrublands region (Wei et
al., 2008). This study further revealed that this negative de-
pendence increased with soil depth, and were driven by the
GPP :LST interaction across all three soil layers. A possi-
ble explanation is the long-term variability in precipitation
and temperature, which may have influenced geomorphol-
ogy, vegetation structure, and soil water retention capacity.

Data availability. The ERA5-Land soil moisture dataset
(https://doi.org/10.24381/cds.e2161bac; Muñoz-Sabater, 2019)
was obtained from the Copernicus Climate Data Store. The GPCP
precipitation dataset (https://doi.org/10.7289/V5RX998Z; Adler
et al., 2017) was obtained from the NOAA National Centers for
Environmental Information. The Gross primary production dataset
(Wild et al., 2022) was obtained from TU Wien Research Data
Repository (https://researchdata.tuwien.ac.at/records/1k7aj-bdz35,
last access: 23 October 2023). The CRU TS v4.07 air tem-
perature dataset (Harris et al., 2020) was obtained from the
Climatic Research Unit (https://crudata.uea.ac.uk/cru/data/
hrg/cru_ts_4.07/cruts.2304141047.v4.07/, last access: 20 Au-
gust 2023). The ESA CCI Land Surface Temperature dataset
(https://doi.org/10.5285/a7e811fe11d34df5abac6f18c920bbeb;
Jimenez and Prigent, 2023) was obtained from the Centre
for Environmental Data Analysis. GLEAM Evapotranspi-
ration data (Martens et al., 2017) was obtained from the
GLEAM project (https://www.gleam.eu/#downloads, last ac-
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cess: 19 March 2024). Terrestrial Ecoregions dataset (Olson et
al., 2001) was obtained from the World Wildlife Fund (https:
//databasin.org/datasets/68635d7c77f1475f9b6c1d1dbe0a4c4c/,
last access: 5 September 2024).
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