Articles | Volume 29, issue 20
https://doi.org/10.5194/hess-29-5405-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-5405-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Can we reliably estimate precipitation with high resolution during disastrously large floods?
Institute of Meteorology and Water Management – National Research Institute, Centre of the Weather Forecasting Service, Warszawa, Poland
Anna Jurczyk
CORRESPONDING AUTHOR
Institute of Meteorology and Water Management – National Research Institute, Centre of the Weather Forecasting Service, Warszawa, Poland
Katarzyna Ośródka
Institute of Meteorology and Water Management – National Research Institute, Centre of the Weather Forecasting Service, Warszawa, Poland
Agnieszka Kurcz
Institute of Meteorology and Water Management – National Research Institute, Centre of the Weather Forecasting Service, Warszawa, Poland
Magdalena Szaton
Institute of Meteorology and Water Management – National Research Institute, Centre of the Weather Forecasting Service, Warszawa, Poland
Mariusz Figurski
Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Geodesy, Gdańsk, Poland
Robert Pyrc
Institute of Meteorology and Water Management – National Research Institute, Hydrological and Meteorological Measurement and Observation Network Centre, Warszawa, Poland
Related authors
Katarzyna Ośródka, Jan Szturc, Anna Jurczyk, and Agnieszka Kurcz
Atmos. Meas. Tech., 18, 3229–3245, https://doi.org/10.5194/amt-18-3229-2025, https://doi.org/10.5194/amt-18-3229-2025, 2025
Short summary
Short summary
This paper describes a modified RainGaugeQC system for real-time quality control of rain gauge measurements made every 10 min. It has been significantly modified to control data from non-professional and private measurement networks of lower quality than professional data. The modifications went in the direction of performing more sophisticated data control, applying weather radar data, and taking into account various aspects such as consistency analysis of data time series and bias detection.
Anna Jurczyk, Katarzyna Ośródka, Jan Szturc, Magdalena Pasierb, and Agnieszka Kurcz
Atmos. Meas. Tech., 16, 4067–4079, https://doi.org/10.5194/amt-16-4067-2023, https://doi.org/10.5194/amt-16-4067-2023, 2023
Short summary
Short summary
A data-processing algorithm, RainGRS Clim, has been developed to work on precipitation accumulations such as daily or monthly totals. The algorithm makes the most of additional opportunities: access to high-quality data that are not operationally available and greater efficiency of the algorithms for data quality control and merging for longer accumulations. Monthly accumulations estimated by RainGRS Clim were found to be significantly more reliable than accumulations generated operationally.
Katarzyna Ośródka, Irena Otop, and Jan Szturc
Atmos. Meas. Tech., 15, 5581–5597, https://doi.org/10.5194/amt-15-5581-2022, https://doi.org/10.5194/amt-15-5581-2022, 2022
Short summary
Short summary
The quality control of sub-hourly rain gauge data is a challenging task due to the high variability and low spatial consistency of the data. We developed an innovative approach to the quality control of telemetric rain gauge data focused on assessing the reliability of individual observations. Our scheme employs weather radar data to detect erroneous rain gauge measurements and to assess the data reliability. The scheme is used operationally by the Polish meteorological and hydrological service.
Katarzyna Ośródka and Jan Szturc
Atmos. Meas. Tech., 15, 261–277, https://doi.org/10.5194/amt-15-261-2022, https://doi.org/10.5194/amt-15-261-2022, 2022
Short summary
Short summary
Weather radar data are used in weather monitoring and forecasting, but they are affected by numerous errors and require advanced corrections. Different systems are designed and implemented to suit specific local conditions, like the RADVOL-QC system. The radar errors are divided into several groups: disturbance by non-meteorological echoes (from the mountains, RLAN signals, wind turbines, etc.), beam blockage, attenuation, etc. Each of them has different properties and is corrected differently.
Katarzyna Ośródka, Jan Szturc, Anna Jurczyk, and Agnieszka Kurcz
Atmos. Meas. Tech., 18, 3229–3245, https://doi.org/10.5194/amt-18-3229-2025, https://doi.org/10.5194/amt-18-3229-2025, 2025
Short summary
Short summary
This paper describes a modified RainGaugeQC system for real-time quality control of rain gauge measurements made every 10 min. It has been significantly modified to control data from non-professional and private measurement networks of lower quality than professional data. The modifications went in the direction of performing more sophisticated data control, applying weather radar data, and taking into account various aspects such as consistency analysis of data time series and bias detection.
Anna Jurczyk, Katarzyna Ośródka, Jan Szturc, Magdalena Pasierb, and Agnieszka Kurcz
Atmos. Meas. Tech., 16, 4067–4079, https://doi.org/10.5194/amt-16-4067-2023, https://doi.org/10.5194/amt-16-4067-2023, 2023
Short summary
Short summary
A data-processing algorithm, RainGRS Clim, has been developed to work on precipitation accumulations such as daily or monthly totals. The algorithm makes the most of additional opportunities: access to high-quality data that are not operationally available and greater efficiency of the algorithms for data quality control and merging for longer accumulations. Monthly accumulations estimated by RainGRS Clim were found to be significantly more reliable than accumulations generated operationally.
Katarzyna Ośródka, Irena Otop, and Jan Szturc
Atmos. Meas. Tech., 15, 5581–5597, https://doi.org/10.5194/amt-15-5581-2022, https://doi.org/10.5194/amt-15-5581-2022, 2022
Short summary
Short summary
The quality control of sub-hourly rain gauge data is a challenging task due to the high variability and low spatial consistency of the data. We developed an innovative approach to the quality control of telemetric rain gauge data focused on assessing the reliability of individual observations. Our scheme employs weather radar data to detect erroneous rain gauge measurements and to assess the data reliability. The scheme is used operationally by the Polish meteorological and hydrological service.
Katarzyna Ośródka and Jan Szturc
Atmos. Meas. Tech., 15, 261–277, https://doi.org/10.5194/amt-15-261-2022, https://doi.org/10.5194/amt-15-261-2022, 2022
Short summary
Short summary
Weather radar data are used in weather monitoring and forecasting, but they are affected by numerous errors and require advanced corrections. Different systems are designed and implemented to suit specific local conditions, like the RADVOL-QC system. The radar errors are divided into several groups: disturbance by non-meteorological echoes (from the mountains, RLAN signals, wind turbines, etc.), beam blockage, attenuation, etc. Each of them has different properties and is corrected differently.
Cited articles
Afzali Gorooh, V., Shearer, E. J., Nguyen, P., Hsu, K., Sorooshian, S., Cannon, F., and Ralph, M.: Performance of new near-real-time PERSIANN product (PDIR-Now) for Atmospheric River Events over the Russian River Basin, California, J. Hydrometeorol., 23, 1899–1911, https://doi.org/10.1175/JHM-D-22-0066.1, 2022.
Berthomier, L. and Perier, L.: Espresso: A global deep learning model to estimate precipitation from satellite observations, Meteorology, 2, 421–444, https://doi.org/10.3390/meteorology2040025, 2023.
Bissolli, P., Friedrich, K., Rapp, J., and Ziese, M.: Flooding in eastern central Europe in May 2010 – reasons, evolution and climatological assessment, Weather, 66, 147–153, https://doi.org/10.1002/wea.759, 2011.
Bližňák, V., Kašpar, M., Müller, M., and Zacharov, P.: Sub-daily temporal reconstruction of extreme precipitation events using NWP model simulations, Atmos. Res., 224, 65–80, https://doi.org/10.1016/j.atmosres.2019.03.019, 2019.
Bližňák, V., Pokorná, L., and Rulfová, Z.: Assessment of the capability of modern reanalyses to simulate precipitation in warm months using adjusted radar precipitation, J. Hydrol.: Reg. Stu., 42, 101121, https://doi.org/10.1016/j.ejrh.2022.101121, 2022.
Bogerd, L., Overeem, A., Leijnse, H., and Uijlenhoet, R.: A comprehensive five-year evaluation of IMERG Late Run precipitation estimates over the Netherlands, J. Hydrometeorol., 22, 1855–1868, https://doi.org/10.1175/JHM-D-21-0002.1, 2021.
Bojinski, S., Blaauboer, D., Calbet, X., de Coning, E., Debie, F., Montmerle, T., Nietosvaara, V., Norman, K., Bañón Peregrín, L., Schmid, F., Strelec Mahović, N., and Wapler, K.: Towards nowcasting in Europe in 2030, Meteorol. Appl., 30, e2124, https://doi.org/10.1002/met.2124, 2023.
CHRS: Data portal, https://chrsdata.eng.uci.edu/ (last access: 29 July 2025), 2025.
DWD: ICON (Icosahedral Nonhydrostatic) Model, https://www.dwd.de/EN/research/weatherforecasting/num_modelling/01_num_weather_prediction_modells/icon_description.html (last access: 29 July 2025), 2025.
ECMWF: ERA5 hourly data on single levels from 1940 to present, ECMWF [data set], https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels (last access: 29 July 2025), 2025.
Ensor, L. A. and Robeson, S. M.: Statistical characteristics of daily precipitation: comparisons of gridded and point datasets, J. Appl. Meteorol. Clim., 47, 2468–2476, https://doi.org/10.1175/2008JAMC1757.1, 2008.
EUMETSAT: H SAF: Algorithm Theoretical Baseline Document (ATBD) for product H61 P-AC-SEVIRI-PMW and H90 P-AC-SEVIRI_E. Accumulated precipitation at ground by blended MW and IR, https://hsaf.meteoam.it/CaseStudy/GetDocumentUserDocument?fileName=saf_hsaf_atbd-61b-90b_1_0.pdf&tipo=ATBD (last access: 17 April 2025), 2020.
EUMETSAT: NWC SAF: Algorithm Theoretical Basis Document for the Precipitation Product Processors of the NWC/GEO, https://www.nwcsaf.org/Downloads/GEO/2021/Documents/Scientific_Docs/NWC-CDOP3-GEO-AEMET-SCI-ATBD-Precipitation_v1.0.1.pdf (last access: 17 April 2025), 2021.
Fischer, J., Groenemeijer, P., Holzer, A., Feldmann, M., Schröer, K., Battaglioli, F., Schielicke, L., Púčik, T., Antonescu, B., Gatzen, C., and TIM Partners: Invited perspectives: Thunderstorm intensification from mountains to plains, Nat. Hazards Earth Syst. Sci., 25, 2629–2656, https://doi.org/10.5194/nhess-25-2629-2025, 2025.
Garcia-Marti, I., Overeem, A., Noteboom, J. W., de Vos, L., de Haij, M., and Whan, K.: From proof-of-concept to proof-of-value: Approaching third-party data to operational workflows of national meteorological services. Int. J. Climatol., 43, 275–292, https://doi.org/10.1002/joc.7757, 2023.
Goudenhoofdt, E. and Delobbe, L.: Evaluation of radar-gauge merging methods for quantitative precipitation estimates, Hydrol. Earth Syst. Sci., 13, 195–203, https://doi.org/10.5194/hess-13-195-2009, 2009.
Graf, M., Chwala, C., Polz, J., and Kunstmann, H.: Rainfall estimation from a German-wide commercial microwave link network: optimised processing and validation for 1 year of data, Hydrol. Earth Syst. Sci., 24, 2931–2950, https://doi.org/10.5194/hess-24-2931-2020, 2020.
Graf, M., Wagner, A., Polz, J., Lliso, L., Lahuerta, J. A., Kunstmann, H., and Chwala, C.: Improved rain event detection in commercial microwave link time series via combination with MSG SEVIRI data, Atmos. Meas. Tech., 17, 2165–2182, https://doi.org/10.5194/amt-17-2165-2024, 2024.
Henn, B., Newman, A. J., Livneh, B., Daly, C., and Lundquist, J. D.: An assessment of differences in gridded precipitation datasets in complex terrain, J. Hydrol., 556, 1205–1219, https://doi.org/10.1016/j.jhydrol.2017.03.008, 2018.
Herrera, S., Kotlarski, S., Soares, P. M. M., Cardoso, R. M., Jaczewski, A., Gutiérrez, J. M., and Maraun, D.: Uncertainty in gridded precipitation products: Influence of station density, interpolation method and grid resolution, Int.J. Climatol., 39, 3717–3729, https://doi.org/10.1002/joc.5878, 2019.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hoffmann, M., Schwartengräber, R., Wessolek, W., and Peters, A.: Comparison of simple rain gauge measurements with precision lysimeter data, Atmos. Res., 174–175, 120–123, https://doi.org/10.1016/j.atmosres.2016.01.016, 2016.
Hohmann, C., Kirchengast, G., O, S., Rieger, W., and Foelsche, U.: Small catchment runoff sensitivity to station density and spatial interpolation: hydrological modeling of heavy rainfall using a dense rain gauge network, Water, 13, 1381, https://doi.org/10.3390/w13101381, 2021.
Huffman, G. J., Bolvin, D. T., Braithwaite, D., Hsu, K.-L., Joyce, R. J., Kidd, C., Nelkin, E. J., Sorooshian, S., Stocker, E. F., Tan, J., Wolff, D. B., and Xie, P.: Integrated Multi-satellite Retrievals for the Global Precipitation Measurement (GPM) Mission (IMERG), in: vol. 1., Satellite Precipitation Measurement, Advances in Global Change Research, vol. 67, edited by: Levizzani, V., Kidd, C., Kirschbaum, D. B., Kummerow, C. D., Nakamura, K., and Turk, F. J., Springer, Cham, 343–353, https://doi.org/10.1007/978-3-030-24568-9_19, 2020.
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., and Collins, W. D.: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models, J. Geophys. Res.-Atmos., 113, D13103, https://doi.org/10.1029/2008JD009944, 2008.
Jarvis, P. G.: The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field, Philos. T. Roy. Soc. B, 273, 593–610, https://doi.org/10.1098/rstb.1976.0035, 1976.
Jiang, Q., Li, W., Wen, J., Fan, Z., Chen, Y., Scaioni, M., and Wang, J.: Evaluation of satellite-based products for extreme rainfall estimations in the eastern coastal areas of China, J. Integrat. Environ. Sci., 16, 191–207, https://doi.org/10.1080/1943815X.2019.1707233, 2019.
Jurczyk, A., Szturc, J., and Ośródka, K.: Quality-based compositing of weather radar QPE estimates, Meteorol. Appl., 27, e1812, https://doi.org/10.1002/met.1812, 2020a.
Jurczyk, A., Szturc, J., Otop, I., Ośródka, K., and Struzik, P.: Quality-based combination of multi-source precipitation data, Remote Sens., 12, 1709, https://doi.org/10.3390/rs12111709, 2020b.
Jurczyk, A., Ośródka, K., Szturc, J., Pasierb, M., and Kurcz, A.: Long-term multi-source precipitation estimation with high resolution (RainGRS Clim), Atmos. Meas. Tech., 16, 4067–4079, https://doi.org/10.5194/amt-16-4067-2023, 2023.
Kimutai, J., Vautard, R., Zachariah, M., Tolasz, R., Šustková, V., Cassou, C., Skalák, P., Clarke, B., Haslinger, K., Vahlberg, M., Singh, R., Stephens, E., Cloke, H., Raju, E., Baumgart, N., Thalheimer, L., Chojnicki, B., Otto, F., Koren, G., Philip, S., Kew, S., Haro, P., Vibert, J., and Von Weissenberg, A.: Climate change and high exposure increased costs and disruption to lives and livelihoods from flooding associated with exceptionally heavy rainfall in Central Europe, Report, IMPERIAL, p. 36, https://doi.org/10.25561/114694, 2024.
Kundzewicz, Z. W.: Adapting flood preparedness tools to changing flood risk conditions: the situation in Poland, Oceanologia, 56, 385–407, https://doi.org/10.5697/oc.56-2.385, 2014.
Kundzewicz, Z. W., Januchta-Szostak, A., Nachlik, E., Pińskwar, I., and Zaleski, J.: Challenges for flood risk reduction in Poland's changing climate, Water, 15, 2912, https://doi.org/10.3390/w15162912, 2023.
Ligenza, P., Tokarczyk, T., and Adynkiewicz-Piragas, M. (Eds.): Przebieg i skutki wybranych powodzi w dorzeczu Odry od XIX wieku do czasów współczesnych (The course and impacts of selected floods in the Oder river basin from the XIXth century to the present day), Instytut Meteorologii i Gospodarki Wodnej – Państwowy Instytut Badawczy, Warszawa, 132 pp., ISBN 978-83-64979-45-3, 2021.
Loritz, R., Hrachowitz, M., Neuper, M., and Zehe, E.: The role and value of distributed precipitation data in hydrological models, Hydrol. Earth Syst. Sci., 25, 147–167, https://doi.org/10.5194/hess-25-147-2021, 2021.
Mahmoud, M. T., Mohammed, S. A., Hamouda, M. A., Dal Maso, M., and Mohamed, M. M.: Performance of the IMERG precipitation products over high-latitudes region of Finland, Remote Sens., 13, 2073, https://doi.org/10.3390/rs13112073, 2021.
Mai, X., Zhong, H., and Li, L.: Combination of XGBoost and PPLK method for improving the precipitation nowcasting, MATEC Web Conf., 355, 03039, https://doi.org/10.1051/matecconf/202235503039, 2022.
Méri, L., Gaál, L., Bartok, J., Gažák, M., Gera, M., Jurašek, M., and Kelemen, M.: Improved radar composites and enhanced value of meteorological radar data using different quality indices, Sustainability, 13, 5285, https://doi.org/10.3390/su13095285, 2021.
Merino, A., García-Ortega, E., Navarro, A., Fernández-González, S., Tapiador, F. J., and Sánchez, J. L.: Evaluation of gridded rain-gauge-based precipitation datasets: Impact of station density, spatial resolution, altitude gradient and climate, Int. J. Climatol., 41, 3027–3043, https://doi.org/10.1002/joc.7003, 2021.
Mikołajewski, K., Stach, A., Ruman, M., Kosek, K., Kundzewicz, Z. W., and Licznar, P.: Heavy rainfalls in Poland and their hyetographs, Ambio, 54, 86–104, hhttps://doi.org/10.1007/s13280-024-02069-6, 2025.
Militino, A. F., Ugarte, M. D., and Pérez-Goya, U.: Improving the quality of satellite imagery based on ground-truth data from rain gauge stations, Remote Sens., 10, 398, https://doi.org/10.3390/rs10030398, 2018.
Mudelsee, M., Börngen, M., Tetzlaff, G., and Grünewald, U.: Extreme floods in central Europe over the past 500 years: Role of cyclone pathway “Zugstrasse Vb”, J. Geophys. Res., 109, D23101, https://doi.org/10.1029/2004JD005034, 2004.
Nakanishi, M. and Niino, H.: An improved Mellor–Yamada level-3 model: its numerical stability and application to a regional prediction of advection fog, Bound.-Lay. Meteorol., 119, 397–407, https://doi.org/10.1007/s10546-005-9030-8, 2006.
Nakanishi, M. and Niino, H.: Development of an improved turbulence closure model for the atmospheric boundary layer, J. Meteorol. Soc. Jpn. Ser. II, 87, 895–912, https://doi.org/10.2151/jmsj.87.895, 2009.
NASA: GPM IMERG Final Precipitation L3 Half Hourly 0.1 degree × 0.1 degree V07 (GPM_3IMERGHH), NASA [data set], https://doi.org/10.5067/GPM/IMERG/3B-HH/07 (last access: 29 July 2025), 2025.
Navarro, A., García-Ortega, E., Merino, A., Sánchez, J. L., and Tapiador, F. J.: Orographic biases in IMERG precipitation estimates in the Ebro River basin (Spain): The effects of rain gauge density and altitude, Atmos. Res., 244, 105068, https://doi.org/10.1016/j.atmosres.2020.105068, 2020.
NCAR: Weather Research and Forecasting model WRF, https://ncar.ucar.edu/what-we-offer/models/weather-research-and-forecasting-model-wrf (last access: 29 July 2025), 2025.
Nguyen, P., Ombadi, M., Gorooh, V. A., Shearer, E. J., Sadeghi, M., Sorooshian, S., Hsu, K., Bolvin, D., and Ralph, M. F.: PERSIANN Dynamic Infrared–Rain Rate (PDIR-Now): A near-real-time, quasi-global satellite precipitation dataset, J. Hydrometeorol., 21, 2893–2906, https://doi.org/10.1175/JHM-D-20-0177.1, 2020a.
Nguyen, P., Shearer, E. J., Ombadi, M., Gorooh, V. A., Hsu, K., Sorooshian, S., Logan, W. S., and Ralph, M.: PERSIANN Dynamic Infrared–Rain Rate model (PDIR) for high-resolution, real-time satellite precipitation estimation, B. Am. Meteorol. Soc., 101, E286–E302m, https://doi.org/10.1175/BAMS-D-19-0118.1, 2020b.
Nielsen, J. M., van de Beek, C. Z. R., Thorndahl, S., Olsson, J., Andersen, C. B., Andersson, J. C. M., Rasmussen, M. R., and Nielsen, J. E.: Merging weather radar data and opportunistic rainfall sensor data to enhance rainfall estimates, Atmos. Res., 300, 107228, https://doi.org/10.1016/j.atmosres.2024.107228, 2024.
Niu, G.-Y., Yang, Z.-L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., Kumar, A., Manning, K., Niyogi, D., Rosero, E., Tewari, M., and Xia, Y.: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements, J. Geophys. Res.-Atmos., 116, D12109, https://doi.org/10.1029/2010JD015139, 2011.
Ochoa-Rodriguez, S., Wang, L.-P., Willems, P., and Onof, C.: A review of radar-rain gauge data merging methods and their potential for urban hydrological applications, Water Resour. Res., 55, 6356–6391, https://doi.org/10.1029/2018WR023332, 2019.
Olsson, J., Horváth-Varga. L., van de Beek, R., Graf, M., Overeem, A., Szaton, M., Bares, V., Bezak, N., Chwala, C., De Michele, C., Fencl, M., Seidel, J., and Todorovic, A.: How close are opportunistic rainfall observations to providing societal benefits?, J. Hydrometeorol., https://doi.org/10.1175/JHM-D-25-0043.1, in press, 2025.
Ośródka, K. and Szturc, J.: Improvement in algorithms for quality control of weather radar data (RADVOL-QC system), Atmos. Meas. Tech., 15, 261–277, https://doi.org/10.5194/amt-15-261-2022, 2022.
Ośródka, K., Szturc, J., and Jurczyk, A.: Chain of data quality algorithms for 3-D single-polarisation radar reflectivity (RADVOL-QC system), Meteorol. Appl., 21, 256–270, https://doi.org/10.1002/met.1323, 2014.
Ośródka, K., Otop, I., and Szturc, J.: Automatic quality control of telemetric rain gauge data providing quantitative quality information (RainGaugeQC), Atmos. Meas. Tech., 15, 5581–5597, https://doi.org/10.5194/amt-15-5581-2022, 2022.
Ośródka, K., Szturc, J., Jurczyk, A., and Kurcz, A.: Adaptation of RainGaugeQC algorithms for quality control of rain gauge data from professional and non-professional measurement networks, Atmos. Meas. Tech., 18, 3229–3245, https://doi.org/10.5194/amt-18-3229-2025, 2025.
Ouyang, L., Lu, H., Yang, K., Leung, L. R., Wang, Y., Zhao, L., Zhou, X., Lazhu, Chen, Y., Jiang, Y., and Yao, X.: Characterising uncertainties in ground “truth” of precipitation over complex terrain through high-resolution numerical modeling, Geophys. Res. Lett., 48, e2020GL091950, https://doi.org/10.1029/2020GL091950, 2021.
Overeem, A., Leijnse, H., and Uijlenhoet, R.: Two and a half years of country-wide rainfall maps using radio links from commercial cellular telecommunication networks. Water Resour. Res., 52, 8039–8065, https://doi.org/10.1002/2016WR019412, 2016.
Overeem, A., Leijnse, H., van der Schrier, G., van den Besselaar, E., Garcia-Marti, I., and de Vos, L.: Merging with crowdsourced rain gauge data improves pan-European radar precipitation estimates, Hydrol. Earth Syst. Sci., 28, 649–668, https://doi.org/10.5194/hess-28-649-2024, 2024.
Pasierb, M., Bałdysz, Z., Szturc, J., Nykiel, G., Jurczyk, A., Ośródka, K., Figurski, M., Wojtczak, M., and Wojtkowski, C.: Application of commercial microwave links (CMLs) attenuation for quantitative estimation of precipitation, Meteorol. Appl., 31, e2218, https://doi.org/10.1002/met.2218, 2024.
Peinó, E., Petracca, M., Polls, F., Udina, M., and Bech, J.: Intercomparison of H SAF and IMERG heavy rainfall retrievals over a Mediterranean coastal region, Atmos. Res., https://doi.org/10.2139/ssrn.5079222, in press, 2025.
Perz, A., Wrzesiński, D., Budner, W. W., and Sobkowiak, L.: Flood-triggering rainfall and potential losses – the copula-based approach on the example of the Upper Nysa Kłodzka River, Water, 15, 1958, https://doi.org/10.3390/w15101958, 2023.
Putra, M., Rosid, M. S., and Handoko, D.: High-resolution rainfall estimation using ensemble learning techniques and multisensor data integration, Sensors, 24, 5030, https://doi.org/10.3390/s24155030, 2024.
Rodwell, M. J., Haiden, T., and Richardson, D. S.: Developments in precipitation verification, ECMWF Newsletter, 128, 12–16, https://doi.org/10.21957/x49qpn1o, 2011.
Schellart, A. N. A., Wang, L, and Onof, C.: High resolution rainfall measurement and analysis in a small urban catchment, in: 9th International Workshop on Precipitation in Urban Areas: Urban Challenges in Rainfall Analysis, UrbanRain 2012, ETH Zurich, 115–120, ISBN 978-390603121-7, 2017.
Sideris, I. V., Gabella, M., Erdin, R., and Germann, U.: Real-time radar–rain-gauge merging using spatio-temporal co-kriging with external drift in the alpine terrain of Switzerland, Q. J. Roy. Meteorol. Soc., 140, 1097–1111, https://doi.org/10.1002/qj.2188, 2014.
Sinclair, S. and Pegram, G.: Combining radar and rain gauge rainfall estimates using conditional merging, Atmos. Sci. Lett., 6, 19–22, https://doi.org/10.1002/asl.85, 2005.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Liu, Z., Berner, J., Wang, W., Powers, J. G., Duda, M. G., Barker, D. M., and Huang, X.-Y.: A description of the Advanced Research WRF version 4, NCAR Tech. Note NCAR/TN-556+STR, NCAR, 145 pp., https://doi.org/10.5065/1dfh-6p97, 2019.
Skok, G.: A new spatial distance metric for verification of precipitation, Appl. Sci., 12, 4048, https://doi.org/10.3390/app12084048, 2022.
Sokol, Z., Szturc, J., Orellana-Alvear, J., Popová, J., Jurczyk, A., and Célleri, R.: The role of weather radar in rainfall estimation and its application in meteorological and hydrological modelling – A review, Remote Sens., 13, 351, https://doi.org/10.3390/rs13030351, 2021.
Subba, S., Ma, Y.-M., Ma, W.-Q., and Han, C.-B.: Extreme precipitation detection ability of four high-resolution precipitation product datasets in hilly area: a case study in Nepal, Adv. Clim. Change Res., 15, 390–405, https://doi.org/10.1016/j.accre.2024.05.005, 2024.
Sun, Q., Miao, C., Duan, Q., Ashouri, H., Sorooshian, S., and Hsu, K.-L.: A review of global precipitation data sets: Data sources, estimation, and intercomparisons, Rev. Geophys., 56, 79–107, https://doi.org/10.1002/2017RG000574, 2018.
Szalińska, W., Otop, I., and Tokarczyk, T.: Precipitation extremes during flooding in the Odra River Basin in May–June 2010, Meteorol. Hydrol. Water Manage., 2, 13–21, https://doi.org/10.26491/mhwm/22918, 2014.
Szturc, J., Ośródka, K., Jurczyk, A., Otop, I., Linkowska, J., Bochenek, B., and Pasierb, M.: Quality control and verification of precipitation observations, estimates, and forecasts, in: Precipitation Science. Measurement, Remote Sensing, Microphysics and Modeling, edited by: Michaelides, S., Elsevier, 91–133, https://doi.org/10.1016/B978-0-12-822973-6.00002-0, 2022.
Tanessong, R. S., Vondou, D. A., Djomou, Z. Y., and Igri, P. M.: WRF high resolution simulation of an extreme rainfall event over Douala (Cameroon): a case study, Model. Earth Syst. Environ., 3, 927–942, https://doi.org/10.1007/s40808-017-0343-7, 2017.
Tapiador, F. J., Navarro, A., García-Ortega, E., Merino, A., Sánchez, J. L., Marcos, C., and Kummerow, C.: The contribution of rain gauges in the calibration of the IMERG product: Results from the first validation over Spain, J. Hydrometeorol., 21, 161–182, https://doi.org/10.1175/JHM-D-19-0116.1, 2020.
Tarek, M., Brissette, F., and Arsenault, R.: Uncertainty of gridded precipitation and temperature reference datasets in climate change impact studies, Hydrol. Earth Syst. Sci., 25, 3331–3350, https://doi.org/10.5194/hess-25-3331-2021, 2021.
Thompson, G., Rasmussen, R. M., and Manning, K.: Explicit forecasts of winter precipitation using an improve bulk microphysics scheme. Part I: Description and sensitivity analysis, Mon. Weather Rev., 132, 519–542, https://doi.org/10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2, 2004.
van der Valk, L. D., Coenders-Gerrits, M., Hut, R. W., Overeem, A., Walraven, B., and Uijlenhoet, R.: Measuring rainfall using microwave links: the influence of temporal sampling, Atmos. Meas. Tech., 17, 2811–2832, https://doi.org/10.5194/amt-17-2811-2024, 2024.
Velásquez, N., Krajewski, W. F., and Seo, B.: Assessing the impact of radar-rainfall uncertainty on streamflow simulation, J. Hydrometeorol., 26, 169–184, https://doi.org/10.1175/JHM-D-24-0047.1, 2025.
Wijayarathne, D., Coulibaly, P., Boodoo, S., and Sills, D.: Evaluation of radar-gauge merging techniques to be used in operational flood forecasting in urban watersheds, Water, 12, 1494, https://doi.org/10.3390/w12051494, 2020.
WMO: No. 1257: Guide to Operational Weather Radar Best Practices, in: Volume VI: Weather Radar Data Processing, World Meteorological Organization, Geneva, 156 pp., https://library.wmo.int/records/item/69563-guide-to-operational-weather-radar-best-practices (last access: 17 July 2025), 2025.
Yu, J., Li, X.-F., Lewis, E., Blenkinsop, S., and Fowler, H. J.: UKGrsHP: a UK high-resolution gauge–radar–satellite merged hourly precipitation analysis dataset, Clim. Dynam., 54, 2919–2940, https://doi.org/10.1007/s00382-020-05144-2, 2020.
Zhang, J., Howard, K., Langston, C., Kaney, B., Qi, Y., Tang, L., Grams, H., Wang, Y., Cocks, S., Martinaitis, S., Arthur, A., Cooper, K., Brogden, J., and Kitzmiller, D.: Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimation: Initial operating capabilities, B. Am. Meteorol. Soc., 97, 621–638, https://doi.org/10.1175/BAMS-D-14-00174.1, 2016.
Zhang, Y., Wang, L., Li, Y., Wang, Y., Yao, F., and Chen, Y.: Impacts of reference precipitation on the assessment of global precipitation measurement precipitation products, Remote Sens., 17, 624, https://doi.org/10.3390/rs17040624, 2025.
Short summary
During the flooding of the Odra River in September 2024, daily rainfall exceeded 200 mm. The reliability of high-resolution rainfall estimates available in real time was assessed: rain gauges, radars, satellites, unconventional, and multi-source, and also reanalyses. Rain gauges, adjusted radar, and multi-source estimates showed the highest accuracy, with unconventional methods slightly lower. Numerical weather prediction models still offered reasonable reliability, but satellite estimates were less effective.
During the flooding of the Odra River in September 2024, daily rainfall exceeded 200 mm. The...