Articles | Volume 29, issue 20
https://doi.org/10.5194/hess-29-5299-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-5299-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Dynamic assessment of rainfall erosivity in Europe: evaluation of EURADCLIM ground-radar data
Francis Matthews
Department of Science, Roma Tre University, Rome, Italy
KU Leuven, Department of Earth and Environmental Sciences, Celestijnenlaan 200e, Leuven 3001, Belgium
Pasquale Borrelli
Department of Science, Roma Tre University, Rome, Italy
Department of Environmental Sciences, Environmental Geosciences, University of Basel, Basel, Switzerland
Panos Panagos
European Commission, Joint Research Centre (JRC), Ispra, Italy
Faculty of Civil and Geodetic Engineering, University of Ljubljana, Ljubljana, 1000, Slovenia
Related authors
No articles found.
Nejc Bezak, Panos Panagos, Leonidas Liakos, and Matjaž Mikoš
Nat. Hazards Earth Syst. Sci., 23, 3885–3893, https://doi.org/10.5194/nhess-23-3885-2023, https://doi.org/10.5194/nhess-23-3885-2023, 2023
Short summary
Short summary
Extreme flooding occurred in Slovenia in August 2023. This brief communication examines the main causes, mechanisms and effects of this event. The flood disaster of August 2023 can be described as relatively extreme and was probably the most extreme flood event in Slovenia in recent decades. The economic damage was large and could amount to well over 5 % of Slovenia's annual gross domestic product; the event also claimed three lives.
Francis Matthews, Panos Panagos, Arthur Fendrich, and Gert Verstraeten
EGUsphere, https://doi.org/10.5194/egusphere-2023-2693, https://doi.org/10.5194/egusphere-2023-2693, 2023
Preprint withdrawn
Short summary
Short summary
We assess if a simplistic model can simulate the timing of soil erosion and sediment transport (delivery) in several small agricultural catchments in North-West Europe. The findings show that the loss of soil in fields and the delivery of sediment to streams are related in complex (non-linear) ways through time which impact our knowledge of soil redistribution. Furthermore, we show how adaptations of simplistic models can be used to reveal the missing processes which require future developments.
Marcos Julien Alexopoulos, Hannes Müller-Thomy, Patrick Nistahl, Mojca Šraj, and Nejc Bezak
Hydrol. Earth Syst. Sci., 27, 2559–2578, https://doi.org/10.5194/hess-27-2559-2023, https://doi.org/10.5194/hess-27-2559-2023, 2023
Short summary
Short summary
For rainfall-runoff simulation of a certain area, hydrological models are used, which requires precipitation data and temperature data as input. Since these are often not available as observations, we have tested simulation results from atmospheric models. ERA5-Land and COSMO-REA6 were tested for Slovenian catchments. Both lead to good simulations results. Their usage enables the use of rainfall-runoff simulation in unobserved catchments as a requisite for, e.g., flood protection measures.
Arthur Nicolaus Fendrich, Philippe Ciais, Emanuele Lugato, Marco Carozzi, Bertrand Guenet, Pasquale Borrelli, Victoria Naipal, Matthew McGrath, Philippe Martin, and Panos Panagos
Geosci. Model Dev., 15, 7835–7857, https://doi.org/10.5194/gmd-15-7835-2022, https://doi.org/10.5194/gmd-15-7835-2022, 2022
Short summary
Short summary
Currently, spatially explicit models for soil carbon stock can simulate the impacts of several changes. However, they do not incorporate the erosion, lateral transport, and deposition (ETD) of soil material. The present work developed ETD formulation, illustrated model calibration and validation for Europe, and presented the results for a depositional site. We expect that our work advances ETD models' description and facilitates their reproduction and incorporation in land surface models.
Ross Pidoto, Nejc Bezak, Hannes Müller-Thomy, Bora Shehu, Ana Claudia Callau-Beyer, Katarina Zabret, and Uwe Haberlandt
Earth Surf. Dynam., 10, 851–863, https://doi.org/10.5194/esurf-10-851-2022, https://doi.org/10.5194/esurf-10-851-2022, 2022
Short summary
Short summary
Erosion is a threat for soils with rainfall as the driving force. The annual rainfall erosivity factor quantifies rainfall impact by analysing high-resolution rainfall time series (~ 5 min). Due to a lack of measuring stations, alternatives for its estimation are analysed in this study. The best results are obtained for regionalisation of the erosivity factor itself. However, the identified minimum of 60-year time series length suggests using rainfall generators as in this study as well.
Nejc Bezak, Pasquale Borrelli, and Panos Panagos
Hydrol. Earth Syst. Sci., 26, 1907–1924, https://doi.org/10.5194/hess-26-1907-2022, https://doi.org/10.5194/hess-26-1907-2022, 2022
Short summary
Short summary
Rainfall erosivity is one of the main factors in soil erosion. A satellite-based global map of rainfall erosivity was constructed using data with a 30 min time interval. It was shown that the satellite-based precipitation products are an interesting option for estimating rainfall erosivity, especially in regions with limited ground data. However, ground-based high-frequency precipitation measurements are (still) essential for accurate estimates of rainfall erosivity.
Cited articles
Auerswald, K., Fischer, F. K., Winterrath, T., and Brandhuber, R.: Rain erosivity map for Germany derived from contiguous radar rain data, Hydrol. Earth Syst. Sci., 23, 1819–1832, https://doi.org/10.5194/hess-23-1819-2019, 2019.
Ballabio, C., Borrelli, P., Spinoni, J., Meusburger, K., Michaelides, S., Beguería, S., Klik, A., Petan, S., Janeček, M., Olsen, P., Aalto, J., Lakatos, M., Rymszewicz, A., Dumitrescu, A., Tadić, M. P., Diodato, N., Kostalova, J., Rousseva, S., Banasik, K., Alewell, C., and Panagos, P.: Mapping monthly rainfall erosivity in Europe, Science of The Total Environment, 579, 1298–1315, https://doi.org/10.1016/J.SCITOTENV.2016.11.123, 2017.
Bezak, N., Borrelli, P., and Panagos, P.: A first assessment of rainfall erosivity synchrony scale at pan-European scale, Catena, 198, 105060, https://doi.org/10.1016/j.catena.2020.105060, 2021a.
Bezak, N., Petan, S., and Mikoš, M.: Spatial and Temporal Variability in Rainfall Erosivity Under Alpine Climate: A Slovenian Case Study Using Optical Disdrometer Data, Front Environ. Sci., 9, 1–16, https://doi.org/10.3389/fenvs.2021.735492, 2021b.
Bezak, N., Borrelli, P., and Panagos, P.: Exploring the possible role of satellite-based rainfall data in estimating inter- and intra-annual global rainfall erosivity, Hydrol. Earth Syst. Sci., 26, 1907–1924, https://doi.org/10.5194/hess-26-1907-2022, 2022.
Boardman, J. and Favis-Mortlock, D. T.: The significance of drilling date and crop cover with reference to soil erosion by water, with implications for mitigating erosion on agricultural land in South East England, Soil Use Manag., 30, 40–47, https://doi.org/10.1111/sum.12095, 2014.
Borrelli, P., Ballabio, C., Yang, J. E., Robinson, D. A., and Panagos, P.: GloSEM: High-resolution global estimates of present and future soil displacement in croplands by water erosion, Sci. Data, 9, 406, https://doi.org/10.1038/s41597-022-01489-x, 2022.
Breinl, K., Müller-Thomy, H., and Blöschl, G.: Space–Time Characteristics of Areal Reduction Factors and Rainfall Processes, J. Hydrometeorol., 21, 671–689, https://doi.org/10.1175/JHM-D-19-0228.1, 2020.
Brown, L. C. and Foster, G. R.: Storm erosivity using idealised intensity distribution, Transactions of the ASAE, 30, 379–386, https://doi.org/10.13031/2013.31957, 1987.
Chen, Y., Xu, M., Wang, Z., Gao, P., and Lai, C.: Applicability of two satellite-based precipitation products for assessing rainfall erosivity in China, Science of the Total Environment, 757, https://doi.org/10.1016/j.scitotenv.2020.143975, 2021.
Copernicus Climate Change Service: Storm Alex: https://climate.copernicus.eu/esotc/2020/storm-alex, last access: 25 October 2024.
Das, S., Jain, M. K., Gupta, V., McGehee, R. P., Yin, S., de Mello, C. R., Azari, M., Borrelli, P., and Panagos, P.: GloRESatE: A dataset for global rainfall erosivity derived from multi-source data, Sci. Data, 11, 926, https://doi.org/10.1038/s41597-024-03756-5, 2024.
Delgado, D., Sadaoui, M., Ludwig, W., and Méndez, W.: Spatio-temporal assessment of rainfall erosivity in Ecuador based on RUSLE using satellite-based high frequency GPM-IMERG precipitation data, Catena, 219, 106597, https://doi.org/10.1016/j.catena.2022.106597, 2022.
Dolšak, D., Bezak, N., Šraj, M., Dolsak, D., Bezak, N., and Sraj, M.: Temporal characteristics of rainfall events under three climate types in Slovenia, J. Hydrol., 541, 1395–1405, https://doi.org/10.1016/j.jhydrol.2016.08.047, 2016.
Emberson, R. A.: Dynamic rainfall erosivity estimates derived from IMERG data, Hydrol. Earth Syst. Sci., 27, 3547–3563, https://doi.org/10.5194/hess-27-3547-2023, 2023.
EURADCLIM web-page: https://www.knmi.nl/research/observations-data-technology/projects/euradclim-the-european-climatological-high-resolution-gauge-adjusted-radar-rainfall-dataset, last access: 16 September 2025.
Fenta, A. A., Tsunekawa, A., Haregeweyn, N., Yasuda, H., Tsubo, M., Borrelli, P., Kawai, T., Sewale Belay, A., Ebabu, K., Liyew Berihun, M., Sultan, D., Asamin Setargie, T., Elnashar, A., and Panagos, P.: Improving satellite-based global rainfall erosivity estimates through merging with gauge data, J. Hydrol., 620, 129555, https://doi.org/10.1016/j.jhydrol.2023.129555, 2023.
Gelder, B., Sklenar, T., James, D., Herzmann, D., Cruse, R., Gesch, K., and Laflen, J.: The Daily Erosion Project – daily estimates of water runoff, soil detachment, and erosion, Earth Surf. Process. Landf., 43, 1105–1117, https://doi.org/10.1002/esp.4286, 2018.
Gupta, H. V. and Kling, H.: On typical range, sensitivity, and normalization of Mean Squared Error and Nash-Sutcliffe Efficiency type metrics, Water Resour. Res., 47, https://doi.org/10.1029/2011WR010962, 2011.
Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling, J. Hydrol., 377, 80–91, https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009.
Hosseinzadehtalaei, P., Tabari, H., and Willems, P.: Climate change impact on short-duration extreme precipitation and intensity–duration–frequency curves over Europe, J. Hydrol., 590, https://doi.org/10.1016/j.jhydrol.2020.125249, 2020.
Kim, J., Han, H., Kim, B., Chen, H., and Lee, J.-H.: Use of a high-resolution-satellite-based precipitation product in mapping continental-scale rainfall erosivity: A case study of the United States, Catena, 193, https://doi.org/10.1016/j.catena.2020.104602, 2020.
KNMI Koninklijk Nederlands Meteorologisch Instituut: EURADCLIM: The European climatological gauge-adjusted radar precipitation dataset (1-h accumulations), KNMI Data Platform [data set], https://doi.org/10.21944/ymrk-mr24, 2024.
Kreklow, J., Steinhoff-Knopp, B., Friedrich, K., and Tetzlaff, B.: Comparing Rainfall Erosivity Estimation Methods Using Weather Radar Data for the State of Hesse (Germany), Water, 12, https://doi.org/10.3390/w12051424, 2020.
Majhi, A., Shaw, R., Mallick, K., and Patel, P. P.: Towards improved USLE-based soil erosion modelling in India: A review of prevalent pitfalls and implementation of exemplar methods, Earth Sci. Rev., 221, https://doi.org/10.1016/j.earscirev.2021.103786, 2021.
Matthews, F., Panagos, P., and Verstraeten, G.: Simulating event-scale rainfall erosivity across European climatic regions, Catena, 213, 106157, https://doi.org/10.1016/j.catena.2022.106157, 2022.
Matthews, F., Medved, A., Borrelli, P., Liakos, L., Verstraeten, G., Panagos, P., and Bezak, N.: Towards the development of bias-corrected rainfall erosivity time series for Europe, J. Hydrol., 651, 132460, https://doi.org/10.1016/j.jhydrol.2024.132460, 2025.
McGehee, R. P., Flanagan, D. C., Srivastava, P., and Nearing, M. A.: Chapter 16 – Rainfall erosivity: essential historical, conceptual, and practical perspectives for continued application, in: Precipitation, edited by: Rodrigo-Comino, J., Elsevier, 373–394, https://doi.org/10.1016/B978-0-12-822699-5.00014-8, 2021.
Mohr, S., Wilhelm, J., Wandel, J., Kunz, M., Portmann, R., Punge, H. J., Schmidberger, M., Quinting, J. F., and Grams, C. M.: The role of large-scale dynamics in an exceptional sequence of severe thunderstorms in Europe May–June 2018, Weather Clim. Dynam., 1, 325–348, https://doi.org/10.5194/wcd-1-325-2020, 2020.
Nearing, M. A., Yin, S.-Q., Borrelli, P., and Polyakov, V. O.: Rainfall erosivity: An historical review, Catena, 157, 357–362, https://doi.org/10.1016/j.catena.2017.06.004, 2017.
Overeem, A.: EURADCLIM-tools, Zenodo [code], https://doi.org/10.5281/zenodo.7473816, December 2022.
Overeem, A., van den Besselaar, E., van der Schrier, G., Meirink, J. F., van der Plas, E., and Leijnse, H.: EURADCLIM: the European climatological high-resolution gauge-adjusted radar precipitation dataset, Earth Syst. Sci. Data, 15, 1441–1464, https://doi.org/10.5194/essd-15-1441-2023, 2023.
Overeem, A., Leijnse, H., van der Schrier, G., van den Besselaar, E., Garcia-Marti, I., and de Vos, L. W.: Merging with crowdsourced rain gauge data improves pan-European radar precipitation estimates, Hydrol. Earth Syst. Sci., 28, 649–668, https://doi.org/10.5194/hess-28-649-2024, 2024.
Panagos, P., Ballabio, C., Borrelli, P., Meusburger, K., Klik, A., Rousseva, S., Tadić, M. P., Michaelides, S., Hrabalíková, M., Olsen, P., Beguería, S., and Alewell, C.: Rainfall erosivity in Europe, Science of the Total Environment, 511, 801–814, https://doi.org/10.1016/j.scitotenv.2015.01.008, 2015.
Panagos, P., Borrelli, P., Spinoni, J., Ballabio, C., Meusburger, K., Beguería, S., Klik, A., Michaelides, S., Petan, S., Hrabalíková, M., Banasik, K., and Alewell, C.: Monthly rainfall erosivity: Conversion factors for different time resolutions and regional assessments, Water, 8, https://doi.org/10.3390/w8040119, 2016a.
Panagos, P., Ballabio, C., Borrelli, P., and Meusburger, K.: Spatio-temporal analysis of rainfall erosivity and erosivity density in Greece, Catena, 137, 161–172, https://doi.org/10.1016/j.catena.2015.09.015, 2016b.
Panagos, P., Borrelli, P., Meusburger, K., Yu, B., Klik, A., Jae Lim, K., Yang, J. E., Ni, J., Miao, C., Chattopadhyay, N., Sadeghi, S. H., Hazbavi, Z., Zabihi, M., Larionov, G. A., Krasnov, S. F., Gorobets, A. V, Levi, Y., Erpul, G., Birkel, C., Hoyos, N., Naipal, V., Oliveira, P. T. S., Bonilla, C. A., Meddi, M., Nel, W., Al Dashti, H., Boni, M., Diodato, N., Van Oost, K., Nearing, M., and Ballabio, C.: Global rainfall erosivity assessment based on high-temporal resolution rainfall records, Sci. Rep., 7, 4175, https://doi.org/10.1038/s41598-017-04282-8, 2017.
Panagos, P., Borrelli, P., Matthews, F., Liakos, L., Bezak, N., Diodato, N., and Ballabio, C.: Global rainfall erosivity projections for 2050 and 2070, J. Hydrol., 610, 127865, https://doi.org/10.1016/j.jhydrol.2022.127865, 2022.
Panagos, P., Hengl, T., Wheeler, I., Marcinkowski, P., Rukeza, M. B., Yu, B., Yang, J. E., Miao, C., Chattopadhyay, N., Sadeghi, S. H., Levi, Y., Erpul, G., Birkel, C., Hoyos, N., Oliveira, P. T. S., Bonilla, C. A., Nel, W., Al Dashti, H., Bezak, N., Van Oost, K., Petan, S., Fenta, A. A., Haregeweyn, N., Pérez-Bidegain, M., Liakos, L., Ballabio, C., and Borrelli, P.: Global rainfall erosivity database (GloREDa) and monthly R-factor data at 1 km spatial resolution, Data Brief, 50, 109482, https://doi.org/10.1016/j.dib.2023.109482, 2023.
Pidoto, R., Bezak, N., Müller-Thomy, H., Shehu, B., Callau-Beyer, A. C., Zabret, K., and Haberlandt, U.: Comparison of rainfall generators with regionalisation for the estimation of rainfall erosivity at ungauged sites, Earth Surf. Dynam., 10, 851–863, https://doi.org/10.5194/esurf-10-851-2022, 2022.
Reder, A., Raffa, M., Padulano, R., Rianna, G., and Mercogliano, P.: Characterizing extreme values of precipitation at very high resolution: An experiment over twenty European cities, Weather and Climate Extremes, 35, 100407, https://doi.org/10.1016/j.wace.2022.100407, 2022.
Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D. K., and Yoder, D. C.: Predicting Soil Erosion byWater: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE) (Agricultural Handbook 703), https://www.tucson.ars.ag.gov/unit/publications/PDFfiles/717.pdf (last access: 16 September 2025), 1997.
Rusjan, S., Kobold, M., and Mikoš, M.: Characteristics of the extreme rainfall event and consequent flash floods in W Slovenia in September 2007, Nat. Hazards Earth Syst. Sci., 9, 947–956, https://doi.org/10.5194/nhess-9-947-2009, 2009.
Saltikoff, E., Haase, G., Delobbe, L., Gaussiat, N., Martet, M., Idziorek, D., Leijnse, H., Novák, P., Lukach, M., and Stephan, K.: OPERA the Radar Project, Atmosphere, 10, https://doi.org/10.3390/atmos10060320, 2019.
Sefton, C., Muchan, K., Parry, S., Matthews, B., Barker, L. J., Turner, S., and Hannaford, J.: The 2019/2020 floods in the UK: a hydrological appraisal, Weather, 76, 378–384, https://doi.org/10.1002/wea.3993, 2021.
Shmilovitz, Y., Marra, F., Wei, H., Argaman, E., Goodrich, D., Assouline, S., and Morin, E.: Assessing the controlling factors on watershed soil erosion during intense rainstorm events using radar rainfall and process-based modeling, Catena, 231, 107282, https://doi.org/10.1016/j.catena.2023.107282, 2023.
Sun, Q., Miao, C., Duan, Q., Ashouri, H., Sorooshian, S., and Hsu, K.-L.: A Review of Global Precipitation Data Sets: Data Sources, Estimation, and Intercomparisons, Reviews of Geophysics, 56, 79–107, https://doi.org/10.1002/2017RG000574, 2018.
Thieken, A. H., Bessel, T., Kienzler, S., Kreibich, H., Müller, M., Pisi, S., and Schröter, K.: The flood of June 2013 in Germany: how much do we know about its impacts?, Nat. Hazards Earth Syst. Sci., 16, 1519–1540, https://doi.org/10.5194/nhess-16-1519-2016, 2016.
Tozer, C. R., Kiem, A. S., and Verdon-Kidd, D. C.: On the uncertainties associated with using gridded rainfall data as a proxy for observed, Hydrol. Earth Syst. Sci., 16, 1481–1499, https://doi.org/10.5194/hess-16-1481-2012, 2012.
Wischmeier, W. H. and Smith, D. D.: Predicting rainfall erosion losses: a guide to conservation planning: Agricultural Handbook No. 537, https://naldc.nal.usda.gov/download/CAT79706928/PDF (last access: 16 September 2025), 1978.
Yin, S., Nearing, M. A., Borrelli, P., and Xue, X.: Rainfall erosivity: An overview of methodologies and applications, Vadose Zone Journal, 16, https://doi.org/10.2136/vzj2017.06.0131, 2017.
Short summary
Rainfall erosivity is the main driver of water-induced soil erosion. A ground radar-based data was used to prepare a rainfall erosivity map of Europe. This study shows that the radar-based data products are a valuable solution for estimating large-scale rainfall erosivity, especially in regions with limited station-based precipitation data. A rainfall erosivity ensemble was derived to give first insights into a future avenue for updatable pan-European rainfall erosivity predictions.
Rainfall erosivity is the main driver of water-induced soil erosion. A ground radar-based data...