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Abstract. Heavy rainfall is the main driver of water-induced
soil erosion, necessitating accurate spatial and temporal pre-
dictions of rainfall erosivity to predict the soil erosion re-
sponse. This study evaluates the ground radar-based EU-
ropean RADar CLIMatology (EURADCLIM) precipitation
grids to quantify rainfall erosivity across European coun-
tries. Compared to Global Rainfall Erosivity Database (Glo-
REDa) gauge-based interpolations, EURADCLIM overpre-
dicts rainfall erosivity, principally due to residual artefacts in
some regions which inflate the instantaneous rainfall rates.
Overprediction is most pronounced in European regions
with lower radar antenna coverage and complex topogra-
phy, whereas flatter regions with lower erosivity and bet-
ter radar coverage are better predicted spatially but with a
tendency towards underprediction. Disagreement attributes
to the input radar quality in EURADCLIM (derived from
OPERA) and to a lesser extent the uncertainty in GloREDa
due to its limited gauge records in some regions. Event (El3g)
time series analysis showed reasonably good performance
(Kling-Gupta Efficiency (KGE) > 0.4) in 50 % of the evalu-
ated gauge locations, although significant overprediction by
EURADCLIM was evident in the upper quantiles in some
countries. To account for the propagation of these remaining
single-hour rainfall artefacts, which have a large impact on
the temporally-aggregated R-factor, applying a 80 mmh~!
threshold to limit the maximum I3q value (i.e., less than 0.1 %
of GloREDa events exceed this threshold) during the cal-
culation of rainfall erosivity significantly improves the per-
formance of the EURADCLIM dataset at annual, monthly

and event time scale. Following adjustment, EURADCLIM
best agrees with GloREDa across Europe in July and August,
while bigger differences were observed in June and winter
in general. Annually, the spatially aggregated rainfall erosiv-
ity per country had a percent bias below 10 %. While ap-
plying simple I3 thresholds is promising, radar artefacts re-
main significant in areas with lower quality rainfall retrievals.
In the absence of spatiotemporally continuous, high-quality
ground-radar retrievals across Europe, we show the value of
ensemble R-factor layers of EURADCLIM with three other
rainfall erosivity grids (e.g., satellite retrievals) and discuss
the possibility of ground radar to offer unique spatial detail
in such ensembles.

1 Introduction

Soil erosion is one of the major environmental problems that
is expected to increase in the future (Borrelli et al., 2022).
Rainfall magnitude, duration, frequency and timing charac-
teristics form the first order driver of water-driven soil ero-
sion (Majhi et al., 2021). The extensively utilised rainfall
erosivity index combines these rainfall characteristics into a
statistical index representing the hydrometeorological forc-
ings of rainfall and runoff on soil erosion, rendering it a crit-
ical data input for the Universal Soil Loss Equation (USLE)
and its Revised (RUSLE) version (Renard et al., 1997). In-
dependent of the chosen soil erosion model and the moti-
vations for its application, accurate rainfall data inputs are
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an indispensable prerequisite, particularly in model applica-
tions predicting the multitemporal variability of soil erosion
(Yin et al., 2017). The rainfall erosivity index (EI,: where x
is typically 30 reflecting the maximum rainfall depth mea-
sured in 30 min) is characterized by high spatial and tempo-
ral variability (Bezak et al., 2021a, 2022; Fenta et al., 2023;
Matthews et al., 2022; Panagos et al., 2022), which is a prod-
uct of the characteristics of rainstorm kinetic energy. At large
spatial scales, high-frequency rain gauge data (i.e., ideally
with 5 min time step) and adequate spatial density are needed
to derive reliable long-term annual average rainfall erosivity
(R-factor) estimates (Fenta et al., 2023; Pidoto et al., 2022).
However, rain gauges represent point (local) scale measure-
ments that are highly influenced by meteorological condi-
tions and topography, meaning a high density of rain gauges
is needed to ensure a proper sampling coverage. Overcom-
ing these scale limitations requires statistical interpolations
based on process theory and/or remotely sensed proxy infor-
mation, or stochastic rainfall generators. On top of these in-
escapable limitations on the quality of hydrometeorological
forcings for erosion studies, the availability of suitable high-
frequency rain gauge data is relatively low in many regions
(Panagos et al., 2017) and shows a globally decreasing trend
(Sun et al., 2018). Several alternative approaches are avail-
able to estimate rainfall erosivity in data sparse regions, such
as the erosivity density (ED) method to approximate the R-
factor from the long-term annual average rainfall (Nearing
et al., 2017; Panagos et al., 2016b; Yin et al., 2017), or re-
motely sensed precipitation datasets to estimate rainfall ero-
sivity from high-temporal and often coarse-spatial resolution
grids (Bezak et al., 2022; Chen et al., 2021; Delgado et al.,
2022; Emberson, 2023; Fenta et al., 2023; Kim et al., 2020).
In both cases, rain gauge measurements are needed to de-
rive reliable interpolations of ED or correct satellite-derived
estimates of rainfall depth. Moreover, the information limi-
tations within both approaches means that their accuracy can
be expected to decrease significantly at finer temporal scales.

As climate change impacts precipitation characteristics
around the globe (Hosseinzadehtalaei et al., 2020), rainfall
erosivity patterns will change in the future (Panagos et al.,
2022). Changing magnitude, frequency and intensity charac-
teristics in space and time will interact with landscape distur-
bances such as cropping and tillage practices or forest fires
to determine the spatial and temporal patterns of soil ero-
sion. To properly capture the erosion response, rainfall ero-
sivity maps need to be updated regularly with dynamic pre-
dictions of rainfall events. However, large-scale data collec-
tions (Panagos et al., 2017) are time-consuming when inter-
mittent repetitions are required to collate offline data from
national agencies. In recent years, satellite-based (Bezak et
al., 2022; Emberson, 2023; Kim et al., 2020) and reanalysis-
based (Matthews et al., 2022) estimates have shown potential
to move towards (near-)real time quantifications of the hy-
drological drivers of soil erosion. However, these alternative
rainfall erosivity mapping methods yielded statistical dispar-
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ities compared to gauge station quantifications (Emberson,
2023; Kim et al., 2020; Matthews et al., 2022). Smooth-
ing of variability, missing events, and seasonal and/or spa-
tial bias within the precipitation estimates are factors ex-
plaining these discrepancies. In the absence of high tem-
poral resolution rain gauge data (ideally 5 min), predicting
the relationship between rainfall depth and rainfall erosiv-
ity presents a further challenge due to the high sensitivity of
the latter to the sub-hourly rainstorm intensity (Matthews et
al., 2022). Therefore, better approaches need to be tested for
dynamic large-scale rainfall erosivity maps, which are rec-
oncilable with catchment-scale simulations of soil erosion.
In this respect, rainfall depth acquisitions from radar (RAdio
Detection And Ranging) show promise due to their potential
to resolve instantaneous rainstorm characteristics with high
spatiotemporal detail (Auerswald et al., 2019; Gelder et al.,
2018; Kreklow et al., 2020). Within Europe, the European
climatological high-resolution gauge-adjusted radar rainfall
dataset (EUropean RADar CLIMatology (EURADCLIM))
(Overeem, 2022; Overeem et al., 2023) may therefore show
promise for producing rainfall erosivity predictions.

The primary aim of this study is to evaluate the perfor-
mance of EURADCLIM ground-radar compilations to esti-
mate the large-scale rainfall erosivity patterns in Europe at
various timescales. Given the potential biases in EURAD-
CLIM associated with artefacts in its 1-hourly time steps,
this study further analysed the implications of imposing I3
threshold values to limit the influence of rainfall retrieval
errors in EURADCLIM which can strongly influence the
event-scale rainfall erosivity (El3p). The R-factor derived
from EURADCLIM was compared with global rainfall ero-
sivity products (Bezak et al., 2022; Das et al., 2024) to eval-
uate the dis(agreement) in their pan-European R-factor pat-
terns. Further insights are given into: (i) the advantages and
limitations of using EURADCLIM to estimate rainfall ero-
sivity from the event to long-term annual average time step,
and (ii) the potential of multinational ground-based RADAR
data with high spatial and temporal resolution to offer valu-
able information within ensemble rainfall erosivity predic-
tions, based on Intergovernmental Panel on Climate Change
(IPCC)-like principles, wherein differing precipitation re-
trieval methods (e.g., satellite-based, ground radar-based, re-
analysis) can be leveraged to indicate (dis)agreements in
rainfall erosivity at large-scales. To the best of the authors’
knowledge this is the first study that investigates ground
radar-based estimates of rainfall erosivity in Europe.

2 Data and methods
2.1 GIloREDa
To investigate the agreement between EURADCLIM and

other gauge-based estimations, we used the GloREDa 1.2
dataset (Panagos et al., 2023). The following GloREDa prod-

https://doi.org/10.5194/hess-29-5299-2025



F. Matthews et al.: Dynamic assessment of rainfall erosivity in Europe 5301

ucts and rain gauge measurement data were used (Panagos et
al., 2023):

— Gridded interpolations of the average monthly rainfall
erosivity (available in European Soil Data Centre (ES-
DAQC));

— Gridded interpolations of the average annual rainfall
erosivity (available in ESDAC);

— The European rain gauge data sample for more than
1300 stations in GloREDa containing information on
over 300 000 erosive rainfall events (El30) calculated us-
ing the (R)USLE methodology (Ballabio et al., 2017;
Panagos et al., 2015, 2023; Renard et al., 1997; Wis-
chmeier and Smith, 1978). The locations of GloREDa
stations are shown by Panagos et al. (2015, 2023).

From the available GloREDa event information derived from
gauge data, detailed time series information is available such
as event date, precipitation amount, kinetic energy, maxi-
mum 30 min rainfall intensity and rainfall erosivity (Pana-
gos et al., 2015). For event time series comparisons with EU-
RADCLIM, overlapping data in European countries cover-
ing the year 2013 was used (i.e., the first year of EURAD-
CLIM coverage and final year of data coverage in Panagos et
al., 2015), augmented with Slovenian stations for the period
2016-2020. It should be noted that monthly and annual aver-
age rainfall erosivity maps were used for spatially continuous
comparison against EURADCLIM and were made based on
interpolations of temporal aggregations of the erosive rainfall
events included in GloREDa (Panagos et al., 2023). Hence,
gauge data can be regarded as the ground-truth, point-scale
rainfall erosivity values, while annual and monthly maps are
based on the interpolation of gauge data through space (Pana-
gos et al., 2023).

2.2 EURADCLIM

EUropean RADar CLIMatology (EURADCLIM) is a clima-
tological dataset with ground radar rainfall accumulations
at 1 and 24h and a spatial grid resolution of two kilo-
meters (Overeem et al., 2023). Its second version was re-
cently released, with a temporal coverage from 2013 to 2022,
improved removal of non-meteorological echoes and better
rain gauge coverage (EURADCLIM web-page, 2024). EU-
RADCLIM is derived from the Operational Program on the
Exchange of Weather Radar Information (OPERA) gridded
composite radar dataset, which has a 15 min temporal res-
olution and is sourced from 138 European radar antennas
(Overeem et al., 2023). Saltikoff et al. (2019) show the loca-
tions of radars included in the OPERA. Ground radar offers
highly valuable information for rainfall retrieval, however
with numerous pitfalls, such as: (i) general underestimations
of rainfall of several percentage points due to technical dif-
ficulties (e.g., radar beam attenuation, changes in the reflec-
tivity profiles with distance from the antenna) and (ii) over-
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estimations during dry conditions due to artefacts (e.g., non-
meteorological echoes, hardware related issues such as cal-
ibration errors). For secondary applications, EURADCLIM
therefore implements numerous noise removal filters and
processing steps on OPERA and combines it with daily data
from 7700 rain gauges included in the European Climate As-
sessment & Dataset (used in E-OBS) (Overeem et al., 2023).

For this study, hourly rainfall accumulations for the pe-
riod 2016-2022 (i.e., prior to 2016 radar coverage was lower)
were used to calculate the El3g and derive average monthly
and average annual rainfall erosivity maps. These EURAD-
CLIM based R-factor layers were then compared to the in-
terpolated GloREDa maps (Sect. 2.1) to evaluate their spatial
performance. To evaluate the predictions of the El3g time se-
ries, grid-to-point comparisons were conducted between the
EURADCLIM and GloREDa gauge-based data for compara-
ble erosive events. EURADCLIM version 2.0 was used since
preliminary analysis indicated much smaller and more realis-
tic rainfall erosivity values compared to version 1.0. It should
be noted that 2013 was the only overlapping year between
the GloREDa (for Europe) and EURADCLIM due to 75 %
of the GloREDa data being collected before 2000, which is
one of the limitations of GloREDa (Panagos et al., 2023).
Hence, rain gauges covering the year 2013 were used for the
comparison at the event (Elzp) scale between GloREDa and
EURADCLIM for multiple countries in Europe. Addition-
ally, comparisons were performed over an extended period
for Slovenian stations which cover the period 2016-2020 in
GloREDa.

When evaluating the performance of EURADCLIM for
rainfall erosivity, the independence of the European Climate
Assessment & Dataset (ECA&D) rain gauge data used for
the adjustment of EURADCLIM and GloREDa is an im-
portant consideration for unbiased (i.e., without data leak-
age) evaluation. Firstly, not all daily ECA&D gauge mea-
surements are used in the final adjusted EURADCLIM prod-
uct (Overeem et al., 2023). Secondly, the overlap between
the GloREDa and ECA&D gauge-locations is around 25 %,
with both datasets having a relatively high station density in
Germany and Switzerland (i.e., higher potential overlap), but
significant differences in the spatial density and locations of
gauges (i.e., lower potential overlap) in a country such as
France (Overeem et al., 2023; Panagos et al., 2015). Con-
sidering the spatial predictions of the R-factor, the tempo-
ral separation between EURADCLIM (using post-2016 data)
and GloREDa (based predominantly on measurements prior
to 2013) means that the evaluations can be considered unbi-
ased and representative, although the relatively shorter EU-
RADCLIM measurement period may induce a higher spa-
tial variability within the R-factor. Regarding El3¢ time se-
ries evaluations, data leakage of the shared gauge data be-
tween GloREDa and the EURADCLIM adjustment process
(i.e., through the ECA&D contributing network) may cause
an overestimation of the representative accuracy compared
to ungauged locations. This, despite EURADCLIM integrat-
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ing gauge data at a significantly coarser temporal resolution
(i.e., daily) compared to the high frequency GloREDa input
data, may imply a reduction in the accuracy of El3g predic-
tions outside the evaluated events sample areas. Neverthe-
less, El3( time series evaluations remain valuable for under-
standing the predictive errors when applying temporally dis-
aggregated EURADCLIM for rainfall erosivity applications,
including their seasonality, geographic variability and statis-
tical characteristics.

2.3 Rainfall erosivity

To derive the 30 min rainfall needed to calculate the rain-
fall erosivity (methods in Supplement), the disaggregation of
hourly EURADCLIM data was conducted. Multiple options
to calculate rainfall erosivity (Elzg) through temporal dis-
aggregation of hourly EURADCLIM were evaluated using
time series data from the 62 Slovenian stations in GlIoREDa
1.2 (Panagos et al., 2023), covering the period 2010-2020.
Slovenia has large spatial and temporal variability in rainfall
erosivity, ranging from values below 1000 MJ mmha~!h~!
to more than 10000 MJ mmha~! h~! (Bezak et al., 2021b).
Moreover, the country’s climate spans Alpine, Mediterranean
and Temperate-continental zones (DolSak et al., 2016). Given
this climatological diversity, Slovenia was used as a case
study to evaluate the most appropriate method to disaggre-
gate hourly rainfall accumulation data to compute the event-
scale rainfall erosivity (Elzp).

The following approach was used. Firstly, the El3p was
calculated from 30 min rainfall data (GloREDa 1.2 dataset)
following the approach and equations described in Pana-
gos et al. (2023). These Elzp values were considered as
the ground-truth values for the 62 Slovenian stations. Sec-
ondly, the measured 30 min rainfall data was aggregated
to an hourly time step matching the EURADCLIM resolu-
tion. Thirdly, four rule-based rainfall disaggregation schemes
were tested: (i) 50 % of rainfall occurs in first 30 min and
50 % in second 30 min; (ii) 33.3 % of rainfall falls in the first
30 min and 66.6 % in second 30 min; (iii) 25 % of rainfall
falls in first 30 min and 75 % in second 30 min; (iv) 20 %
of rainfall occurs in first 30 min and 80 % in second 30 min.
Fourthly, EI3p was calculated using the disaggregated 30 min
rainfall data from each scheme. The following percent biases
were computed: (i) —37 %; (i1) —13 %; (iii) 1 %; (iv) 10 %.
Hence, scheme (iii) was used in further steps of the study
to disaggregate hourly data into 30 min resolution (Fig. S1
in the Supplement). Additionally, we evaluated the perfor-
mance of the conversion factors developed by (Panagos et
al., 2016a) for computing El3g based on the hourly rainfall
data (i.e., using Elgg). However, this approach overestimated
the rainfall erosivity by around 40 % compared to the 30 min
rainfall data for the 62 Slovenian stations from GloREDa.
Additionally, the original (R)USLE-based studies (Renard et
al., 1997) indicated that El3 is a better soil erosion predic-
tor compared to the Eljs or Elgg in the (R)USLE plot data.
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Hence, using Elgg in combination with conversion a factor
was less suitable than the selected disaggregation scheme
(i.e., (iii)). The limitations of transposing the method from
gauge measurements to ground-radar-based acquisitions are
later discussed. Relevant considerations include the persis-
tence of unfiltered artefacts in EURADCLIM, resulting in
high estimates of the total kinetic energy (£) and maximum
continuous 30 min rainfall (I3g). To investigate the influence
of the latter, the predictive skill of EURADCLIM-based El3g
was evaluated following the implementation of several I3
limits (20-300 mm).

3 Results and discussion
3.1 Annual average rainfall erosivity (R-factor)

Figure 1 compares the average annual rainfall erosivity, or
the R-factor, based on the EURADCLIM and GloREDa
datasets. EURADCLIM overestimates rainfall erosivity in
most of the comparable area in Europe (Figs. 1 and S2).
Specifically, the R-factor for the GloREDa dataset (for the
region shown in Fig. 1) is around 719 MI mmha~! h~! with
a standard deviation of around 537 MJmmha~!h~!, while
average annual rainfall erosivity for EURADCLIM is around
1470 MJmmha~!h~! with a very high standard deviation
of over 10000 MJ mmha~! h™!. In both cases, the analysis
was limited to countries with almost full EURADCLIM cov-
erage, omitting countries such as Italy, Greece and Lithua-
nia that have limited or no coverage. For most of the Euro-
pean countries, EURADCLIM yields higher or even much
higher R-factor values, especially in Croatia, Bosnia and
Herzegovina, Serbia, and Estonia (Fig. S2). The Pearson cor-
relation coefficient between EURADCLIM and GloREDa
country-averaged R-factor is modest (r = 0.24), with a per-
cent bias of 96 % (Table 1), indicating significant overesti-
mation by EURADCLIM and exaggerated spatial variability
(Fig. S2). Excluding countries with large R-factor disparities
(i.e., Croatia, Bosnia and Herzegovina, Serbia, and Estonia)
reduced percent bias to 50 % (Figs. 1 and S2). An impor-
tant factor in some regions is high topographical complexity,
which would ideally require high radar antenna coverage and
accompanying rain gauge measurements for reliable rainfall
acquisitions. Within this comparison, it should be noted that
some countries had a highly suboptimal rain gauge coverage
in GloREDa (Croatia and Estonia) or were completely inter-
polated (i.e., Bosnia and Herzegovina (BIH), Serbia) due to
an absence of gauging stations (Overeem et al., 2023; Pana-
gos et al., 2023).

Outside of the localised areas with large overpredictions
in the R-factor which strongly impact the national and Euro-
pean averages (Fig. S2), extensive areas exist where the EU-
RADCLIM R-factor is lower than GloREDa (Fig. 1). Com-
plex error structures in the predictions complicate the quan-
tification of regional scale bias (Fig. 1), however one poten-
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tial way to rectify this underestimation within the applied
method is to use a spatially variable rainfall disaggregation
scheme across Europe (Sect. 2.3). A further consideration is
the spatial nature of the two R-factor predictions, wherein
the 2 km gridded precipitation depth estimates by EURAD-
CLIM incur an areal reduction factor (ARF) relative to the
point scale R-factor quantifications constituting GloREDa.
Accommodating these ARFs, which can be large for intense
rainfall and have complex dynamic properties depending on
the processes (e.g., convective versus stratiform events) of
the rainstorm (Breinl et al., 2020), is likely important for im-
proving the comparability with GloREDa. While extending
the EURADCLIM analysis (e.g., over 20 years) may improve
the R-factor spatial patterns, potential bias correction may
provide a route to improve the convergence with gauge-based
interpolations (Matthews et al., 2025).

As discussed in Sect. 3.3, large differences between the
EURADCLIM and GloREDa R-factors are attributable to a
relatively small number of overpredicted extreme El3y val-
ues in EURADCLIM in some regions. Indeed, applying a
limit of 80 mmh~! to the I3y parameter brought the predic-
tion skill of the R-factor in Europe in line with other pre-
dictions such as GloRESatE, IMERG and COMRPH (Ta-
ble 1 and Sect. 3.4). With respect to GloREDa, the maxi-
mum 30 min rainfall is higher than the 80 mmh~" threshold
only for a relatively small number of events (i.e., less than
0.1 %). Although Overeem et al. (2023) indicated that EU-
RADCLIM can capture extreme precipitation events, strong
regionality remains in the predictions (Overeem et al., 2023).
For countries such as Finland, Norway or Slovenia, the R-
factor is better predicted (Figs. 1, S2), which corresponds to
a better agreement in the total precipitation by the EURAD-
CLIM and E-OBS datasets (Overeem et al., 2023). An addi-
tional spatial comparison for Austria and Poland is provided
(Figs. S3 and S4, respectively), which show relatively good
agreement in the spatially-aggregated average annual rainfall
erosivity (i.e., Austria: GloREDa R: 1,170 MJ mm ha=!h™!
and EURADCLIM R: 1,320MJ mmha~! h~!; Poland: Glo-
REDa R: 554MImmha~'h™' and EURADCLIM R:
744MJImmha~! h~1), but poor spatial distributions due to
remaining artefacts, giving unrealistic spatial patterns com-
pared to values from GloREDa and CMORPH (Fig. S5).
While the spatial patterns are slightly better preserved for
Poland (Fig. S4), in case of Austria (Fig. S3) there is a
clear impact of unfiltered radar echoes. Within this consid-
eration it should be noted that Austrian radars are not in-
cluded in the OPERA network data used by the EURAD-
CLIM (Overeem et al., 2023). Similarly, issues can be de-
tected in some other countries like Spain, Romania, and other
areas of South-Eastern Europe (Fig. 1), which are likely
caused by a high artefact presence due to beam blockage or
other errors (Overeem et al., 2023).

A multi-platform comparison was also made between the
GloREDa (Panagos et al., 2023) and GIoRESatE (Das et al.,
2024), IMERG (Das et al., 2024) and CMORPH (Bezak et

https://doi.org/10.5194/hess-29-5299-2025

5303

al., 2022) datasets (Table 1, Figs. S2, S5). The agreement
between CMORPH and IMERG and GloREDa was bet-
ter compared to EURADCLIM. Interestingly, slightly worse
performance was observed for GloRESatE, measured by
the percent bias and mean error, compared to CMORPH
and IMERG. This is despite GloRESatE being based on
the CMORPH, IMERG and ERAS5-Land (Das et al., 2024).
Thus, it seems that satellite-based products like CMORPH
(Bezak et al., 2022) or IMERG (Emberson, 2023) should be
preferred compared to ground radar-based compilations like
EURADCLIM for applications focussing on pan-European
coverage. However, it should be noted that Europe was the
continent where the best agreement was found between the
CMORPH and GloREDa (Bezak et al., 2022). Hence, differ-
ent results could be obtained in other regions.

3.2 Monthly rainfall erosivity

The monthly rainfall erosivity magnitudes derived from EU-
RADCLIM follow the seasonal trends in GloREDa (Pana-
gos et al.,, 2023), wherein the average summer (June—
July—August) rainfall erosivity is around 3—4 times higher
than winter (December—January—February). However, sig-
nificant positive seasonal bias in the monthly and seasonal
averages was present in the original EURADCLIM rain-
fall erosivity predictions (Table 2). For example, EURAD-
CLIM produced a summer average of 800 MJ mmha~'h~!,
which is approximately 2.5 times higher than the GloREDa
values (Panagos et al., 2023). The average winter value
(180 MJmmha~—! h™!) is similarly inflated, at roughly dou-
ble the GIoREDa values. As in the case of the annual R-
factor, monthly overestimation is more pronounced in ar-
eas of Europe with a generally higher rainfall intermit-
tency and erosivity (i.e. Southern Europe), compared to
lower erosivity areas in Northern Europe (i.e., less than
100 MI mmha~! h~! month™') (Fig. S6).

Compared to the unadjusted EURADCLIM simulations,
CMORPH, for example (Bezak et al., 2022), yields a better
monthly agreement with GloREDa with a coefficient of de-
termination ranging from 0.68 to 0.95 and percent bias from
—47 % to 110 % (mean = 23 %). However, as in the case of
the annual R-factor (Sect. 3.1), a significant improvement in
the monthly coefficient of determination (R? =0.49 to 0.94)
and % bias (—15 % to 103 %) could be achieved when apply-
ing a limit (80 mmh™!) to the I3y parameter when calculating
El3p from EURADCLIM (Sect. 3.4; Table 2). Thus, further
filtering of extreme outliers in EURADCLIM shows the po-
tential to bring the monthly predictive skill of EURADCLIM
in line with satellite-based retrievals, however, both seasonal
and spatial disparities in performance require consideration
(Fig. 1 and Table 2).
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Rainfall erosivity
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Figure 1. Upper: Comparison between annual rainfall erosivity (R) (MJ mm ha—! h~1) calculated using the EURADCLIM dataset (top left)
and GloREDa dataset (top right) for Europe. Lower: The percentage difference (% diff) between the EURADCLIM R-factor and GloREDa
for the original EURADCLIM R-factor (bottom left) and with a strict I3 limit of 20 mm h~! (see Sect. 3.4) applied to El3( (bottom right).

Table 1. Coefficient of determination (R2), percent bias (PBIAS) and Mean Error (ME) values for annual rainfall erosivity for spatially aggre-
gated countries (i.e. country-average values) covered by EURADCLIM. Comparison between GloREDa (Panagos et al., 2023), GloREDatE
(Das et al., 2024), IMERG (Das et al., 2024) and CMORPH (Bezak et al., 2022) is shown. Additionally, the EURADCLIM performance

using an I3 threshold of 80 mm h~—1 is shown (Sect. 3.4).

GloREDA EURADCLIM GloRESatE IMERG COMRPH EURADCLIM I3(-threshold
R? 0.06 0.62 0.67 0.66
PBIAS (%) 96 10 -8 9
ME [(MJ mm yrha—! h~=1)] 890 —241 96 -79 83

3.3 Event rainfall erosivity

EURADCLIM-derived Elzg values were compared with
GloREDa measurements for all comparable (i.e., temporal
matches within a 24 h window) simulations and gauge mea-
surement locations in 2013 (Fig. 2). For the 6262 events,
Fig. 2 firstly shows the existence of potentially large pos-
itive discrepancies (> 1000 MJmmha~!h~!) between EU-
RADCLIM and GloREDa, occurring in a small minority of
events. These overpredictions likely result from unfiltered
artefacts (false positives), which result in high error in mul-
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tiple sites concurrently, particularly in Spain (ES) and Ro-
mania (RO), causing large discrepancies in their upper quan-
tiles (Fig. S7). Conversely, negative errors show less tempo-
ral correspondence between gauges, indicative of localised
underpredictions which may relate to missed events (false
negatives) or geolocation issues in EURADCLIM when re-
solving the spatial rainfall intensity gradients. In this respect,
differences in the spatiotemporal continuity of the OPERA
radar network (Saltikoff et al., 2019) and the clutter-removal
algorithm applied to EURADCLIM (Overeem et al., 2023)
may be a source of these underestimations, if artefacts were
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Table 2. Coefficient of determination (R2) and percent bias (PBIAS) values for the monthly rainfall erosivity values between EURADCLIM
and GloREDa for countries (country-average values were used) covered by both datasets. Additionally, the EURADCLIM performance using

the I3q threshold is shown (Sect. 3.4).

EURADCLIM Jan Feb Mar Apr May Jun Ju Aug Sep Oct Nov Dec
R? 085 0.66 041 060 067 0.17 040 0.16 055 040 0.60 046
PBIAS (%) 61 227 53 18 3 267 17 61 17 212 93 225
EURADCLIM I3g-threshold  Jan Feb Mar Apr May Jun Ju Aug Sep Oct Nov Dec
R? 083 086 074 094 076 049 058 0.68 073 0.61 0.64 0.67
PBIAS (%) 46 103 25 —-13 —-15 14 -10 -2 -9 14 48 86

falsely classified and removed. The overall effect of these
complex errors, amplified by the sensitivity Elzp to overesti-
mations at singular time steps, creates a bias favouring over-
prediction especially in summer months (Sect. 3.2). Further
analysis of the relative error allowed preliminary baseline
quantifications based on the sample of events, showing that
50 % of EURADCLIM derivations of Elz( have a relative er-
ror of 35 %, 75 % with an error below 59 %, and 95 % with an
error below 88 %. Below a 100 % error, there is little system-
atic tendency for under- or overprediction, therefore suggest-
ing that artefacts in the El3( values influence the uppermost
quantiles via a small but critical addition of high-magnitude
events. Despite limitations, EURADCLIM produced reason-
ably good predictive performance (Kling—Gupta efficiency
(KGE) (Gupta et al., 2009; Gupta and Kling, 2011) > 0.4)
for 50 % of locations with over 10 comparable El3p events
(n =231). For a gauge location in Slovenia, an in-depth
assessment is given of the disaggregated 30 min EURAD-
CLIM cumulative rainfall depth profiles for several rainfall
events, alongside the aggregated monthly rainfall erosivity
(Fig. S14).

The event-scale analyses provided aim to give the most ob-
jective possible overview of the capability of EURADCLIM
for EIzg. However, grid-to-point comparisons exhibit funda-
mental differences due to the simplified representations of
spatial and temporal scales in the former (Tozer et al., 2012).
The overwhelming benefit of the continuous spatiotemporal
acquisitions made by EURADCLIM is their capacity to re-
solve the spatial detail of storm cells determining the erosion
response. For instance, Fig. S8 shows the spatial patterns of
Elzg for an event on 20 June 2013 in Germany for which
the agreement between EURADCLIM and GloREDa is rel-
atively good despite underestimation at a few gauge sites.
However, preceding this event were relatively extreme floods
occurring at the end of May and early June 2013 in Ger-
many (Thieken et al., 2016). In this case, all but one gauge in
GloREDa recorded a value below 200 MJ mmha~! h~! over
multiple days, which represents a smaller event within Glo-
REDa compared to 20 June, although the latter had no associ-
ated flooding. This event represents an example in which the
relatively low GloREDa coverage in Central Germany meant
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that the main peak of the storm contributed proportionately
much less to the long-term rainfall erosivity and the entire
event was split into several smaller erosive events. Consider-
ing the impacts of these spatial mismatches over short time
periods, datasets with remotely acquired rainfall such as EU-
RADCLIM are critical to acquire representative predictions
of soil erosion at large scales.

Additionally, visualisation of the El3p spatial gradients
combined with Sentinel-2 data on the soil cover condi-
tion offers insights into the use of EURADCLIM for in-
stantaneous erosion mapping. Figure 3 (upper) shows two
significant erosive rainfall events that occurred in UK in
February 2020 (Sefton et al., 2021) and in France in Octo-
ber 2020 (Copernicus Climate Change Service, 2024). EU-
RADCLIM can detect spatial gradients in rainfall erosivity
down to a fine, multi-kilometre resolution which can greatly
benefit process-based and empirical erosion model applica-
tions, as well as machine learning (data-driven) algorithms
for (spatiotemporal) erosion feature detection (Shmilovitz et
al., 2023). The combination of spatial El3y predictions with
Sentinel-2 NDVI data shows the possibility of identifying
spatiotemporal coincidence between high rainfall intensity
and arable fields at bare or low crop development stages.
For example, in South-West England, the coincidence be-
tween erosive rainfall centres (i.e., > 100 MJmmha~!h~1)
and at-risk arable land was relatively low (Fig. 3). In con-
trast, the example in South-West France shows spatial coin-
cidence between heavy rainfall (i.e., > 300 MI mmha=! h=1)
and clusters of fields with particularly low vegetation cover,
principally due to relatively recent seed bed preparation
of winter crops around October (Fig. 3). Field evidence
(Boardman and Favis-Mortlock, 2014) highlights the time-
dependency of erosion, wherein spatiotemporal correspon-
dences between tilled soil and heavy rainfall generate sub-
stantial soil loss. EURADCLIM may excel in detecting spa-
tial detail in small-scale extreme events where a subopti-
mally distributed ground-based precipitation measuring net-
work would otherwise be insufficient.

Hydrol. Earth Syst. Sci., 29, 5299-5313, 2025
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Figure 2. Event based comparison of rainfall erosivity (El3g) for GloREDa and EURADCLIM datasets for year 2013: (a) the event-scale
error in the El3( prediction for positive and negative absolute errors (points) and their monthly average profiles (lines) with standard deviation
(envelopes), (b) the probability distribution of relative % error for positive (overpredictions) and negative (underpredictions) error, (c) the
cumulative % of GloREDa locations with a given Kling—Gupta efficiency (KGE), and (d) the average KGE per country based on the average

of the evaluated locations (N events > 10) with GloREDa data.

3.4 EURADCLIM bias correction

Individual outliers from radar-related artefacts and their in-
teraction with temporal disaggregation methods strongly im-
pact the agreement of the EURADCLIM dataset with Glo-
REDa (i.e., Figs. S9, S10, S11). Consequently, at the event
scale, a large inflation in the absolute percentage error on
El30 occurs for events in which the initial error on the precip-
itation depth is high (Fig. S9). To improve the pan-European
R-factor, which is a long-term statistical aggregation of indi-
vidual El3g events (Sect. 3.3), we additionally analysed the
potential of I3 thresholds to limit large predictive errors by
mitigating against artificially extreme El3 values. Data for
the year 2013 for multiple GloREDa stations and data from
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Slovenian stations for 20162020 was used to test the impact
of different I3 thresholds on the KGE (Fig. S12).

Based on the evaluation it was found that the I3 =
80mmh~! threshold, in which all I3 values exceeding this
threshold were limited to 80 mmh~!, can significantly im-
prove the agreement between the EURADCLIM and Glo-
REDa (Fig. S12). We argue that this threshold removes little
to no actual extreme rainfall events due to the incredible rar-
ity of an hourly rainfall rate exceeding 80 mmh~! (Bezak et
al., 2021a, b; Mohr et al., 2020; Reder et al., 2022; Rusjan

et al., 2009). Following the limitation of the I3, a significant
improvement was found in both the annual and monthly pre-
dictions when evaluated against GIoREDa (Tables 1 and 2),
which resulted in superior performance compared to GloRE-
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Figure 3. Event based comparison of EURADCLIM dataset and soil exposure data derived from Sentinel-2 for two specific extreme events
that occurred in UK in February 2020 and in France in October 2020. The relative exposure is approximated using categories of: protected
soil (NDVI = 0.8-1), low exposure (NDVI = 0.6-0.8), medium exposure (NDVI = 0.4-0.6), high exposure (NDVI = 0.2-0.4) and very
high exposure (NDVI = 0-0.2) based on the closest available Sentinel-2 acquisition to the event date.

SatE and IMERG datasets and a comparable performance to
CMORPH (Tables 1, 2, Fig. S10). The mean annual rainfall
erosivity (728 MJmmha~! h™!) converged on that of Glo-
REDa, although still with a higher standard deviation of
945MJmmha~'h~! (Fig. 4). Moreover, both the average
annual and monthly correspondence between EURADCLIM
and GloREDa significantly improved across the whole do-
main (Table 2) and across countries (Figs. 4 and 5), particu-
larly for the warmer part of the year compared to the colder
season (Fig. 5). Despite improvement, the EURADCLIM R-
factor still has visibly remaining artefacts and is still over-
predicted for countries like Bosnia and Herzegovina, Croatia,
Serbia and Romania. Stricter limits on I3g (e.g. 20mmh~")
can be used to filter a larger number of potential artefacts and
provide smoother R-factor surfaces (Fig. 4), however with
the risk of impacting true high-intensity events, for which
ground-radar is arguably most beneficial. As discussed in
Sect. 3.1, part of this overprediction can be related to the
variable input data quality within EURADCLIM, which may
limit the absolute potential of post subsequent corrections in
some European regions.
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3.5 Study limitations and the potential of ground radar
in rainfall erosivity ensembles

Highlighting several methodological limitations is rele-
vant for advancing pan-European ground radar applications.
Firstly, the 1-hourly EURADCLIM dataset required tempo-
ral disaggregation to calculate the Elz( parameter (Sect. 2.3),
but with several possible limitations: (i) the simple disag-
gregation scheme (i.e., 25 % of rainfall was considered in
the first 30 min and 75 % of rainfall in second 30 min) from
hourly into a 30 min resolution was satisfactory for the tested
subset in Slovenia (Fig. S1 in the Supplement), however,
its performance in other climatic regions of Europe is not
known, and ii) artefacts within EURADCLIM can be exag-
gerated by the disaggregation method which can create ex-
treme artificial rainfall intensity peaks influencing the El3g
values (Fig. S9). Addressing the former point (i) requires ex-
tensions of the high-resolution time series data included in
GIoREDa, as well as additional data compilations to investi-
gate spatial variations in the potential error. The latter point
(ii) is complex and relates strongly to the processing steps
to remove non-meteorological echoes within EURADCLIM
which minimise the propagation of error into disaggregation

Hydrol. Earth Syst. Sci., 29, 5299-5313, 2025
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Figure 6. Median, standard deviation and absolute difference (MJ mm ha~! h_l) of the annual rainfall erosivity calculated based on the
ensemble of different rainfall erosivity products. left column: a 4 data source ensemble of GloREDa (Panagos et al., 2023), CMORPH
(Bezak et al., 2022), IMERG (Das et al., 2024), GloRESatE (Das et al., 2024), right column: a 5 data source ensemble of GloREDa (Panagos
et al., 2023), CMORPH (Bezak et al., 2022), IMERG (Das et al., 2024), GloRESatE (Das et al., 2024) and EURADCLIM (this study)).
Upper panels show median values of the ensembles, middle panels show standard deviation and lower panels show the absolute difference

between the ensemble medians and the GloREDa map.

methods and Elzg calculations. Stricter manipulation of the
El30 equation, such as an I3y limit below 80 mm h! (Fig. 4),
may reduce the propagation of non-meteorological noise into
the R-factor, but impact the predicted magnitudes of true
events (Type II error). Furthermore, related to both points
is the selected El3p equation (i.e., Brown and Foster, 1987)
which can further impact the R-factor due to its sensitivity to
rainfall intensity peaks (McGehee et al., 2021).

Secondly, despite GloREDa’s use as a baseline estimate
for comparison, it has recognised uncertainties (Ballabio et
al., 2017; Bezak et al., 2022; Panagos et al., 2015, 2023),
such as the mismatches in data periods used between sta-
tions and the differing gauge measurement resolutions be-
tween stations. Further mismatch is introduced due to Glo-
REDa and EURADCLIM covering predominantly different
periods (i.e., most of GloREDa in Europe: 1951-2013; EU-
RADCLIM: 2013-2022, in this study 20162022 period was
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used), which limits the number of comparable Elz events
and may introduce potential bias. Mismatches in data peri-
ods may further induce issues of non-stationarity into com-
parisons of the long-term R-factor due to climate change.
However, with a relatively large (n = 6262) combined sample
of Elzp events over which a direct comparison was possible
(Sect. 3.3), key insights into the spatial difference in predic-
tion capacity and the effects of radar artefacts were possi-
ble. Among the varying relevant considerations, the impact
of precipitation artefacts, recognised and addressed to some
extent in EURADCLIM (Overeem et al., 2023, 2024), re-
mains a critical limitation for applications relying on rainfall
intensity approximations such as rainfall erosivity.

In recent years different meteorological datasets have been
used to derive rainfall erosivity, each with its own unique ad-
vantages, limitations and uncertainties. Baseline interpolated
estimations such as GloREDa have their own set of limita-
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tions given the complex spatial and temporal dynamics of
rainfall. For example, the combination of limited rain gauge
densities in GloREDa may miss or poorly capture extreme
events (e.g., Fig. S8) with smoothing spatial interpolation al-
gorithms that may simplify the spatial nature of the R-factor
compared to radar-based areal estimations. Hence, rainfall
erosivity estimations could benefit from statistical ensembles
which capitalise on the agreement and disparities between
different prediction methods. To give preliminary insights
into multi-platform ensembles, we used GloREDa (Panagos
et al., 2023), CMORPH (Bezak et al., 2022), IMERG (Das et
al., 2024), GloRESatE (Das et al., 2024) and EURADCLIM
(this study) to create a multi-product ensemble at a common
resolution (i.e., 0.1° used by GloRESatE). The spatial pat-
terns of the ensemble are shown in Fig. 6 without (left) and
with (right) EURADCLIM. The median ensemble without
EURADCLIM shows generally smooth patterns in the spa-
tial dis(agreement) as quantified by the standard deviation
(Fig. 6), with most variability in areas of Southern Europe
and the Atlantic coast. Conversely, the addition of EURAD-
CLIM into the ensemble adds significantly more spatial de-
tail to the patterns of disagreement between datasets (Fig. 6).
A visible component of this disagreement is attributable to
remaining artefacts (e.g., linear features), however the addi-
tion of real features such as fine-scale convective precipita-
tion cells is a potentially large benefit of ground radar data.
Future studies are needed to obtain more comprehensive en-
sembles of rainfall erosivity which include a wider variety
of precipitation retrieval methods and El3( calculation rou-
tines, as well as at varying timescales (e.g., event-, multi-
day-, monthly- and annual-scale) to match the hydrometeo-
rological forcing requirements of erosion models. However,
fundamental considerations in such ensembles should be the
assimilated rain gauge data within each gridded dataset, the
consideration of optimal heterogeneity between inputs (e.g.,
GloRESatE is based on both IMERG and CMORPH data),
and the necessity to incorporate fine spatial detail into such
ensembles such as that obtainable through ground radar.

4 Conclusions

Based on the evaluation of EURADCLIM 1-hourly rainfall
acquisitions to derive rainfall erosivity across multiple tem-
poral scales, the following conclusions are drawn:

i. EURADCLIM overestimates rainfall erosivity com-
pared to GloREDa, principally due to the propagation of
artificially high rainfall rate predictions into the El3q pa-
rameter. This overestimation was most significant in re-
gions like the Balkans, with complex topography, lower
radar and rain gauge coverage (both in GIoREDa and
EURADCLIM), which potentially limits spatially con-
tinuous application of EURADCLIM in specific re-
gions. Consequently, satellite-based products such as
CMORPH with 30 min acquisitions could be more suit-

Hydrol. Earth Syst. Sci., 29, 5299-5313, 2025

F. Matthews et al.: Dynamic assessment of rainfall erosivity in Europe

able for spatially continuous, large-scale rainfall erosiv-
ity estimations in some regions.

ii. Despite the strong influence of non-meteorological arte-
facts on rainfall erosivity, EURADCLIM offers unique
spatial detail to detect small-scale rainfall features (e.g.,
convective cells) critical for predicting erosion in sus-
ceptible fields. Future removal of non-meteorological
echoes in EURADCLIM updates and a better quantifi-
cation of its spatial error will augment its practical ap-
plication in large-scale soil erosion prediction applica-
tions.

iii. Given the strong impact of residual radar artefacts in
EURADCLIM on Elj3g, rainfall erosivity (statistical
sums of El3p over time) estimates should account for
artificially high instantaneous rainfall rate predictions
in the computation of El3g. Applying a simple threshold
value of 80 mmh~! to limit unrealistic I3y values signif-
icantly improves the performance of the EURADCLIM
dataset compared to the GloREDa. Stricter, spatially
variable limits, or other methods of spatial smoothing
for the R-factor, may further improve the quality of fi-
nal map products.

iv. Based on the different rainfall erosivity products, a data-
source ensemble (median and standard deviation) was
derived to give initial insights into a potential future av-
enue for updatable pan-European rainfall erosivity pre-
dictions. Ensembles will better allow the incorporation
of uncertainty in the R-factor due to differing precip-
itation retrieval methods and the computation of El3g.
As an ensemble component, EURADCLIM may offer
unique spatial detail on rainfall rates that is unobtainable
from other retrieval methods but critical for soil erosion
prediction.
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