Articles | Volume 29, issue 20
https://doi.org/10.5194/hess-29-5165-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-5165-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluation of the Dual Gamma Generalized Extreme Value distribution for flood events in Poland
Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, Wrocław, 50-363, Poland
Patrick Willems
Department of Civil Engineering, KU Leuven, Kasteelpark Arenberg 40, 3001, Leuven, Belgium
Paweł Tomczyk
Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, Wrocław, 50-363, Poland
Jaroslav Pollert Jr.
Faculty of Civil Engineering, Czech Technical University in Prague, Prague, 16629, Czech Republic
Jaroslav Pollert Sr.
Faculty of Civil Engineering, Czech Technical University in Prague, Prague, 16629, Czech Republic
Christoph Märtner
M&S Umweltprojekt GmbH, Pfortenstraße 7, 08527 Plauen, Germany
Stanisław Czaban
Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, Wrocław, 50-363, Poland
Mirosław Wiatkowski
Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, Wrocław, 50-363, Poland
Related authors
No articles found.
Jayson Gabriel Pinza, Ona-Abeni Devos Stoffels, Robrecht Debbaut, Jan Staes, Jan Vanderborght, Patrick Willems, and Sarah Garré
SOIL, 11, 681–714, https://doi.org/10.5194/soil-11-681-2025, https://doi.org/10.5194/soil-11-681-2025, 2025
Short summary
Short summary
We can use hydrological models to estimate how water is allocated in soils with compaction. However, compaction can also affect how much plants can grow in the field. Here, we show that when we consider this affected plant growth in our sandy soil compaction model, the resulting water allocation can change a lot. Thus, to get more reliable model results, we should know the plant growth (above and below the ground) in the field and include them in the models.
Tim Busker, Daniela Rodriguez Castro, Sergiy Vorogushyn, Jaap Kwadijk, Davide Zoccatelli, Rafaella Loureiro, Heather J. Murdock, Laurent Pfister, Benjamin Dewals, Kymo Slager, Annegret H. Thieken, Jan Verkade, Patrick Willems, and Jeroen C. J. H. Aerts
EGUsphere, https://doi.org/10.5194/egusphere-2025-828, https://doi.org/10.5194/egusphere-2025-828, 2025
Short summary
Short summary
In July 2021, the Netherlands, Luxembourg, Germany, and Belgium were hit by an extreme flood event with over 200 fatalities. Our study provides, for the first time, critical insights into the operational flood early-warning systems in this entire region. Based on 13 expert interviews, we conclude that the systems strongly improved in all countries. Interviewees stressed the need for operational impact-based forecasts, but emphasized that its operational implementation is challenging.
A. Dlesk, V. Strogonov, K. Vach, and J. Pollert
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-5-W2-2023, 31–36, https://doi.org/10.5194/isprs-archives-XLVIII-5-W2-2023-31-2023, https://doi.org/10.5194/isprs-archives-XLVIII-5-W2-2023-31-2023, 2023
J. Pollert and V. Strogonov
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-5-W2-2023, 93–97, https://doi.org/10.5194/isprs-archives-XLVIII-5-W2-2023-93-2023, https://doi.org/10.5194/isprs-archives-XLVIII-5-W2-2023-93-2023, 2023
Veit Blauhut, Michael Stoelzle, Lauri Ahopelto, Manuela I. Brunner, Claudia Teutschbein, Doris E. Wendt, Vytautas Akstinas, Sigrid J. Bakke, Lucy J. Barker, Lenka Bartošová, Agrita Briede, Carmelo Cammalleri, Ksenija Cindrić Kalin, Lucia De Stefano, Miriam Fendeková, David C. Finger, Marijke Huysmans, Mirjana Ivanov, Jaak Jaagus, Jiří Jakubínský, Svitlana Krakovska, Gregor Laaha, Monika Lakatos, Kiril Manevski, Mathias Neumann Andersen, Nina Nikolova, Marzena Osuch, Pieter van Oel, Kalina Radeva, Renata J. Romanowicz, Elena Toth, Mirek Trnka, Marko Urošev, Julia Urquijo Reguera, Eric Sauquet, Aleksandra Stevkov, Lena M. Tallaksen, Iryna Trofimova, Anne F. Van Loon, Michelle T. H. van Vliet, Jean-Philippe Vidal, Niko Wanders, Micha Werner, Patrick Willems, and Nenad Živković
Nat. Hazards Earth Syst. Sci., 22, 2201–2217, https://doi.org/10.5194/nhess-22-2201-2022, https://doi.org/10.5194/nhess-22-2201-2022, 2022
Short summary
Short summary
Recent drought events caused enormous damage in Europe. We therefore questioned the existence and effect of current drought management strategies on the actual impacts and how drought is perceived by relevant stakeholders. Over 700 participants from 28 European countries provided insights into drought hazard and impact perception and current management strategies. The study concludes with an urgent need to collectively combat drought risk via a European macro-level drought governance approach.
Karen Gabriels, Patrick Willems, and Jos Van Orshoven
Nat. Hazards Earth Syst. Sci., 22, 395–410, https://doi.org/10.5194/nhess-22-395-2022, https://doi.org/10.5194/nhess-22-395-2022, 2022
Short summary
Short summary
As land use influences hydrological processes (e.g., forests have a high water retention and infiltration capacity), it also impacts floods downstream in the river system. This paper demonstrates an approach quantifying the impact of land use changes on economic flood damages: damages in an initial situation are quantified and compared to damages of simulated floods associated with a land use change scenario. This approach can be used as an explorative tool in sustainable flood risk management.
J. Pollert jun., J. Pollert sen., V. Strogonov, and O. Švanda
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVI-5-W1-2022, 177–184, https://doi.org/10.5194/isprs-archives-XLVI-5-W1-2022-177-2022, https://doi.org/10.5194/isprs-archives-XLVI-5-W1-2022-177-2022, 2022
Hossein Tabari, Santiago Mendoza Paz, Daan Buekenhout, and Patrick Willems
Hydrol. Earth Syst. Sci., 25, 3493–3517, https://doi.org/10.5194/hess-25-3493-2021, https://doi.org/10.5194/hess-25-3493-2021, 2021
Bertold Mariën, Inge Dox, Hans J. De Boeck, Patrick Willems, Sebastien Leys, Dimitri Papadimitriou, and Matteo Campioli
Biogeosciences, 18, 3309–3330, https://doi.org/10.5194/bg-18-3309-2021, https://doi.org/10.5194/bg-18-3309-2021, 2021
Short summary
Short summary
The drivers of the onset of autumn leaf senescence for several deciduous tree species are still unclear. Therefore, we addressed (i) if drought impacts the timing of autumn leaf senescence and (ii) if the relationship between drought and autumn leaf senescence depends on the tree species. Our study suggests that the timing of autumn leaf senescence is conservative across years and species and even independent of drought stress.
Laurène J. E. Bouaziz, Fabrizio Fenicia, Guillaume Thirel, Tanja de Boer-Euser, Joost Buitink, Claudia C. Brauer, Jan De Niel, Benjamin J. Dewals, Gilles Drogue, Benjamin Grelier, Lieke A. Melsen, Sotirios Moustakas, Jiri Nossent, Fernando Pereira, Eric Sprokkereef, Jasper Stam, Albrecht H. Weerts, Patrick Willems, Hubert H. G. Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 25, 1069–1095, https://doi.org/10.5194/hess-25-1069-2021, https://doi.org/10.5194/hess-25-1069-2021, 2021
Short summary
Short summary
We quantify the differences in internal states and fluxes of 12 process-based models with similar streamflow performance and assess their plausibility using remotely sensed estimates of evaporation, snow cover, soil moisture and total storage anomalies. The dissimilarities in internal process representation imply that these models cannot all simultaneously be close to reality. Therefore, we invite modelers to evaluate their models using multiple variables and to rely on multi-model studies.
Cited articles
Abida, H. and Ellouze, M.: Probability distribution of flood flows in Tunisia, Hydrol. Earth Syst. Sci., 12, 703–714, https://doi.org/10.5194/hess-12-703-2008, 2008.
Ahilan, S., O'Sullivan, J. J., and Bruen, M.: Influences on flood frequency distributions in Irish river catchments, Hydrol. Earth Syst. Sci., 16, 1137–1150, https://doi.org/10.5194/hess-16-1137-2012, 2012.
Allamano, P., Claps, P., and Laio, F.: An analytical model of the effects of catchment elevation on the flood frequency distribution, Water Resources Research, 45, 2007WR006658, https://doi.org/10.1029/2007WR006658, 2009.
Alsadat, N., Elgarhy, M., Hassan, A. S., Ahmad, H., and El-Hamid Eisa, A.: A new extension of linear failure rate distribution with estimation, simulation, and applications, AIP Advances, 13, 105019, https://doi.org/10.1063/5.0170297, 2023.
Arnaud, P., Lavabre, J., Fouchier, C., Diss, S., and Javelle, P.: Sensitivity of hydrological models to uncertainty in rainfall input, Hydrological Sciences Journal, 56, 397–410, https://doi.org/10.1080/02626667.2011.563742, 2011.
Becker, M. and Klößner, S.: PearsonDS: Pearson Distribution System (1.3.2.) [code], https://doi.org/10.32614/CRAN.package.PearsonDS, 2025.
Belzile, L. R., Dutang, C., Northrop, P. J., and Opitz, T.: A modeler's guide to extreme value software, Extremes, 26, 595–638, https://doi.org/10.1007/s10687-023-00475-9, 2023.
Bertola, M., Viglione, A., Lun, D., Hall, J., and Blöschl, G.: Flood trends in Europe: are changes in small and big floods different?, Hydrol. Earth Syst. Sci., 24, 1805–1822, https://doi.org/10.5194/hess-24-1805-2020, 2020.
Berton, R. and Rahmani, V.: Differences in Flood Quantiles Estimate of Disturbed and Undisturbed Watersheds in the United States, Hydroecology and Engineering, 1, 10002–10002, https://doi.org/10.35534/hee.2024.10002, 2024.
Bezak, N., Brilly, M., and Šraj, M.: Comparison between the peaks-over-threshold method and the annual maximum method for flood frequency analysis, Hydrological Sciences Journal, 59, 959–977, https://doi.org/10.1080/02626667.2013.831174, 2014.
Brunner, M. I., Furrer, R., Sikorska, A. E., Viviroli, D., Seibert, J., and Favre, A.-C.: Synthetic design hydrographs for ungauged catchments: a comparison of regionalization methods, Stoch. Environ. Res. Risk Assess., 32, 1993–2023, https://doi.org/10.1007/s00477-018-1523-3, 2018.
Cassalho, F., Beskow, S., De Mello, C. R., De Moura, M. M., Kerstner, L., and Ávila, L. F.: At-Site Flood Frequency Analysis Coupled with Multiparameter Probability Distributions, Water Resour. Manage., 32, 285–300, https://doi.org/10.1007/s11269-017-1810-7, 2018.
Dakhlaoui, H., Ruelland, D., and Tramblay, Y.: A bootstrap-based differential split-sample test to assess the transferability of conceptual rainfall-runoff models under past and future climate variability, Journal of Hydrology, 575, 470–486, https://doi.org/10.1016/j.jhydrol.2019.05.056, 2019.
Do Nascimento, F. F. and Moura E Silva, W. V.: MCMC4Extremes: Posterior Distribution of Extreme Value Models in R [code], https://doi.org/10.32614/CRAN.package.MCMC4Extremes, 2015.
Gruss, Ł., Wiatkowski, M., Tomczyk, P., Pollert, J., and Pollert, J.: Comparison of Three-Parameter Distributions in Controlled Catchments for a Stationary and Non-Stationary Data Series, Water, 14, 293, https://doi.org/10.3390/w14030293, 2022.
Gruss, Ł., Wiatkowski, M., Połomski, M., Szewczyk, Ł., and Tomczyk, P.: Analysis of Changes in Water Flow after Passing through the Planned Dam Reservoir Using a Mixture Distribution in the Face of Climate Change: A Case Study of the Nysa Kłodzka River, Poland, Hydrology, 10, 226, https://doi.org/10.3390/hydrology10120226, 2023.
Hamra, G., MacLehose, R., and Richardson, D.: Markov Chain Monte Carlo: an introduction for epidemiologists, International Journal of Epidemiology, 42, 627–634, https://doi.org/10.1093/ije/dyt043, 2013.
Han, H., Yan, X., Xie, H., Qiu, J., Li, X., Zhao, D., Li, X., Yan, X., and Xia, Y.: Incorporating a new landscape intensity indicator into landscape metrics to better understand controls of water quality and optimal width of riparian buffer zone, Journal of Hydrology, 625, 130088, https://doi.org/10.1016/j.jhydrol.2023.130088, 2023.
He, J., Anderson, A., and Valeo, C.: Bias compensation in flood frequency analysis, Hydrological Sciences Journal, 60, 381–401, https://doi.org/10.1080/02626667.2014.885651, 2015.
Hensel, T.-G. and Barkemeyer, D.: weibulltools: Statistical Methods for Life Data Analysis [code], https://doi.org/10.32614/CRAN.package.weibulltools, 2018.
Hersbach, H.: Decomposition of the Continuous Ranked Probability Score for Ensemble Prediction Systems, Wea. Forecasting, 15, 559–570, https://doi.org/10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2, 2000.
Hu, L., Nikolopoulos, E. I., Marra, F., and Anagnostou, E. N.: Sensitivity of flood frequency analysis to data record, statistical model, and parameter estimation methods: An evaluation over the contiguous United States, J. Flood. Risk Management, 13, e12580, https://doi.org/10.1111/jfr3.12580, 2020.
Jaiswal, R. K., Nayak, T. R., Lohani, A. K., and Galkate, R. V.: Regional flood frequency modeling for a large basin in India, Nat. Hazards, 111, 1845–1861, https://doi.org/10.1007/s11069-021-05119-4, 2022.
Jiang, S. and Kang, L.: Flood frequency analysis for annual maximum streamflow using a non-stationary GEV model, E3S Web Conf., 79, 03022, https://doi.org/10.1051/e3sconf/20197903022, 2019.
Jones, G. L. and Qin, Q.: Markov Chain Monte Carlo in Practice, Annu. Rev. Stat. Appl., 9, 557–578, https://doi.org/10.1146/annurev-statistics-040220-090158, 2022.
Jordan, A. I., Krueger, F., Lerch, S., and Allen, S.: scoringRules: Scoring Rules for Parametric and Simulated Distribution Forecasts [code], https://doi.org/10.32614/CRAN.package.scoringRules, 2016.
Kamal, V., Mukherjee, S., Singh, P., Sen, R., Vishwakarma, C. A., Sajadi, P., Asthana, H., and Rena, V.: Flood frequency analysis of Ganga river at Haridwar and Garhmukteshwar, Appl. Water Sci., 7, 1979–1986, https://doi.org/10.1007/s13201-016-0378-3, 2017.
Karczewski, M. and Michalski, A.: A data-driven kernel estimator of the density function, Journal of Statistical Computation and Simulation, 92, 3529–3541, https://doi.org/10.1080/00949655.2022.2072503, 2022.
Karczewski, M., Kaźmierczak, B., Michalski, A., and Kuchar, L.: Probability Function Estimation for the Maximum Precipitation Model Using Kernel Estimators, Rocznik Ochrona Środowiska, 24, 260–275, https://doi.org/10.54740/ros.2022.019, 2022.
Karunasingha, D. S. K.: Root mean square error or mean absolute error? Use their ratio as well, Information Sciences, 585, 609–629, https://doi.org/10.1016/j.ins.2021.11.036, 2022.
Kidson, R. and Richards, K. S.: Flood frequency analysis: assumptions and alternatives, Progress in Physical Geography: Earth and Environment, 29, 392–410, https://doi.org/10.1191/0309133305pp454ra, 2005.
Kim, H., Kim, S., Shin, H., and Heo, J.-H.: Appropriate model selection methods for nonstationary generalized extreme value models, Journal of Hydrology, 547, 557–574, https://doi.org/10.1016/j.jhydrol.2017.02.005, 2017.
Kousar, S., Khan, A. R., Ul Hassan, M., Noreen, Z., and Bhatti, S. H.: Some best-fit probability distributions for at-site flood frequency analysis of the Ume River, J. Flood Risk Management, 13, e12640, https://doi.org/10.1111/jfr3.12640, 2020.
Kumar, R., Chatterjee, C., Kumar, S., Lohani, A. K., and Singh, R. D.: Development of Regional Flood Frequency Relationships Using L-moments for Middle Ganga Plains Subzone 1(f) of India, Water Resources Management, 17, 243–257, https://doi.org/10.1023/A:1024770124523, 2003.
Kusumastuti, D. I., Struthers, I., Sivapalan, M., and Reynolds, D. A.: Threshold effects in catchment storm response and the occurrence and magnitude of flood events: implications for flood frequency, Hydrol. Earth Syst. Sci., 11, 1515–1528, https://doi.org/10.5194/hess-11-1515-2007, 2007.
Langridge, M., Gharabaghi, B., McBean, E., Bonakdari, H., and Walton, R.: Understanding the dynamic nature of Time-to-Peak in UK streams, Journal of Hydrology, 583, 124630, https://doi.org/10.1016/j.jhydrol.2020.124630, 2020.
Meeker, W. Q. and Escobar, L. A.: Statistical methods for reliability data, New York, 712 pp., 1998.
Merz, R. and Blöschl, G.: Process controls on the statistical flood moments – a data based analysis, Hydrological Processes, 23, 675–696, https://doi.org/10.1002/hyp.7168, 2009.
Millard, S. P.: EnvStats: Package for Environmental Statistics, Including US EPA Guidance [code], https://doi.org/10.32614/CRAN.package.EnvStats, 2013.
Milly, P. C. D., Betancourt, J., Falkenmark, M., Hirsch, R. M., Kundzewicz, Z. W., Lettenmaier, D. P., and Stouffer, R. J.: Stationarity Is Dead: Whither Water Management?, Science, 319, 573–574, https://doi.org/10.1126/science.1151915, 2008.
Młyński, D., Petroselli, A., and Wałęga, A.: Flood frequency analysis by an event-based rainfall-runoff model in selected catchments of southern Poland, Soil Water Res., 13, 170–176, https://doi.org/10.17221/153/2017-SWR, 2018.
Młyński, D., Wałęga, A., Ozga-Zielinski, B., Ciupak, M., and Petroselli, A.: New approach for determining the quantiles of maximum annual flows in ungauged catchments using the EBA4SUB model, Journal of Hydrology, 589, 125198, https://doi.org/10.1016/j.jhydrol.2020.125198, 2020.
Morlot, M., Brilly, M., and Šraj, M.: Characterisation of the floods in the Danube River basin through flood frequency and seasonality analysis, Acta Hydrotechnica, 73–89, https://doi.org/10.15292/acta.hydro.2019.06, 2019.
Morrison, J. E. and Smith, J. A.: Stochastic modeling of flood peaks using the generalized extreme value distribution, Water Resources Research, 38, https://doi.org/10.1029/2001WR000502, 2002.
Nascimento, F., Bourguignon, M., and Leao, J.: Extended generalized extreme value distribution with applications in environmental data, HJMS, 46, 1–1, https://doi.org/10.15672/HJMS.20159514081, 2015.
Northrop, P. J.: Likelihood-based approaches to flood frequency estimation, Journal of Hydrology, 292, 96–113, https://doi.org/10.1016/j.jhydrol.2003.12.031, 2004.
Nyeko-Ogiramoi, P., Willems, P., Mutua, F. M., and Moges, S. A.: An elusive search for regional flood frequency estimates in the River Nile basin, Hydrol. Earth Syst. Sci., 16, 3149–3163, https://doi.org/10.5194/hess-16-3149-2012, 2012.
Ologhadien, I.: Selection of Probabilistic Model of Extreme Floods in Benue River Basin, Nigeria, EJENG, 6, 7–18, https://doi.org/10.24018/ejeng.2021.6.1.2300, 2021.
Ossandón, Á., Brunner, M. I., Rajagopalan, B., and Kleiber, W.: A space–time Bayesian hierarchical modeling framework for projection of seasonal maximum streamflow, Hydrol. Earth Syst. Sci., 26, 149–166, https://doi.org/10.5194/hess-26-149-2022, 2022.
Otiniano, C. E. G., Paiva, B. S. D., and Martins Netob, D. S. B.: The transmuted GEV distribution: properties and application, CSAM, 26, 239–259, https://doi.org/10.29220/CSAM.2019.26.3.239, 2019.
Ozonur, D., Pobocikova, I., and De Souza, A.: Statistical analysis of monthly rainfall in Central West Brazil using probability distributions, Model. Earth Syst. Environ., 7, 1979–1989, https://doi.org/10.1007/s40808-020-00954-z, 2021.
Pastor, A. V., Ludwig, F., Biemans, H., Hoff, H., and Kabat, P.: Accounting for environmental flow requirements in global water assessments, Hydrol. Earth Syst. Sci., 18, 5041–5059, https://doi.org/10.5194/hess-18-5041-2014, 2014.
Pic, R., Dombry, C., Naveau, P., and Taillardat, M.: Proper scoring rules for multivariate probabilistic forecasts based on aggregation and transformation, Adv. Stat. Clim. Meteorol. Oceanogr., 11, 23–58, https://doi.org/10.5194/ascmo-11-23-2025, 2025.
Pitlick, J.: Relation between peak flows, precipitation, and physiography for five mountainous regions in the western USA, Journal of Hydrology, 158, 219–240, https://doi.org/10.1016/0022-1694(94)90055-8, 1994.
Plummer, M., Best, N., Cowles, K., Vines, K., Sarkar, D., Bates, D., Almond, R., and Magnusson, A.: coda: Output Analysis and Diagnostics for MCMC [code], https://doi.org/10.32614/CRAN.package.coda, 1999.
Pokhrel, Y., Felfelani, F., Satoh, Y., Boulange, J., Burek, P., Gädeke, A., Gerten, D., Gosling, S. N., Grillakis, M., Gudmundsson, L., Hanasaki, N., Kim, H., Koutroulis, A., Liu, J., Papadimitriou, L., Schewe, J., Müller Schmied, H., Stacke, T., Telteu, C.-E., Thiery, W., Veldkamp, T., Zhao, F., and Wada, Y.: Global terrestrial water storage and drought severity under climate change, Nat. Clim. Chang., 11, 226–233, https://doi.org/10.1038/s41558-020-00972-w, 2021.
Połomski, M. and Wiatkowski, M.: Impounding Reservoirs, Benefits and Risks: A Review of Environmental and Technical Aspects of Construction and Operation, Sustainability, 15, 16020, https://doi.org/10.3390/su152216020, 2023.
Prusty, S., Patnaik, S., and Dash, S. K.: SKCV: Stratified K-fold cross-validation on ML classifiers for predicting cervical cancer, Front. Nanotechnol., 4, 972421, https://doi.org/10.3389/fnano.2022.972421, 2022.
R Core Team: R: A Language and Environment for Statistical Computing, https://www.R-project.org/ (last access: 3 July 2025), 2022.
Raynal-Villasenor, J. A. and Raynal-Gutierrez, M. E.: Estimation procedures for the GEV distribution for the minima, Journal of Hydrology, 519, 512–522, https://doi.org/10.1016/j.jhydrol.2014.07.045, 2014.
Rohani, A., Taki, M., and Abdollahpour, M.: A novel soft computing model (Gaussian process regression with K-fold cross validation) for daily and monthly solar radiation forecasting (Part: I), Renewable Energy, 115, 411–422, https://doi.org/10.1016/j.renene.2017.08.061, 2018.
Roodsari, B. K. and Chandler, D. G.: Distribution of surface imperviousness in small urban catchments predicts runoff peak flows and stream flashiness, Hydrological Processes, 31, 2990–3002, https://doi.org/10.1002/hyp.11230, 2017.
Rutkowska, A.: Properties of the Cox–Stuart Test for Trend in Application to Hydrological Series: The Simulation Study, Communications in Statistics – Simulation and Computation, 44, 565–579, https://doi.org/10.1080/03610918.2013.784988, 2015.
Rutkowska, A., Kohnová, S., Banasik, K., Szolgay, J., and Karabová, B.: Probabilistic properties of a curve number: A case study for small Polish and Slovak Carpathian Basins, J. Mt. Sci., 12, 533–548, https://doi.org/10.1007/s11629-014-3123-0, 2015.
Sampaio, J. and Costa, V.: Bayesian regional flood frequency analysis with GEV hierarchical models under spatial dependency structures, Hydrological Sciences Journal, 66, 422–433, https://doi.org/10.1080/02626667.2021.1873997, 2021.
Silva, W. V. M. and Do Nascimento, F. F.: MCMC4Extremes: an R package for Bayesian inference for extremes and its extensions, Communications in Statistics – Simulation and Computation, 51, 432–442, https://doi.org/10.1080/03610918.2019.1653914, 2022.
Smith, R. L.: Maximum likelihood estimation in a class of nonregular cases, Biometrika, 72, 67–90, https://doi.org/10.1093/biomet/72.1.67, 1985.
Šraj, M., Viglione, A., Parajka, J., and Blöschl, G.: The influence of non-stationarity in extreme hydrological events on flood frequency estimation, Journal of Hydrology and Hydromechanics, 64, 426–437, https://doi.org/10.1515/johh-2016-0032, 2016.
Stephenson, A.: evd: Functions for Extreme Value Distributions [code], https://doi.org/10.32614/CRAN.package.evd, 2024.
Svensson, C., Kundzewicz, W. Z., and Maurer, T.: Trend detection in river flow series: 2. Flood and low-flow index series/Détection de tendance dans des séries de débit fluvial: 2. Séries d'indices de crue et d'étiage, Hydrological Sciences Journal, 50, 6, https://doi.org/10.1623/hysj.2005.50.5.811, 2005.
Szulczewski, W. and Jakubowski, W.: The Application of Mixture Distribution for the Estimation of Extreme Floods in Controlled Catchment Basins, Water Resour. Manage., 32, 3519–3534, https://doi.org/10.1007/s11269-018-2005-6, 2018.
Tabari, H., Hosseinzadehtalaei, P., Thiery, W., and Willems, P.: Amplified Drought and Flood Risk Under Future Socioeconomic and Climatic Change, Earth's Future, 9, e2021EF002295, https://doi.org/10.1029/2021EF002295, 2021a.
Tabari, H., Moghtaderi Asr, N., and Willems, P.: Developing a framework for attribution analysis of urban pluvial flooding to human-induced climate impacts, Journal of Hydrology, 598, 126352, https://doi.org/10.1016/j.jhydrol.2021.126352, 2021b.
ter Braak, C. J. F. and Šmilauer, P.: Canoco, https://www.microcomputerpower.com/ (last access: 28 June 2025), 2019.
Tomczyk, P., Wierzchowski, P. S., Dobrzyński, J., Kulkova, I., Wróbel, B., Wiatkowski, M., Kuriqi, A., Skorulski, W., Kabat, T., Prycik, M., Gruss, Ł., and Drobnik, J.: Effective microorganism water treatment method for rapid eutrophic reservoir restoration, Environ. Sci. Pollut. Res., 31, 2377–2393, https://doi.org/10.1007/s11356-023-31354-2, 2023.
Tyralis, H., Papacharalampous, G., and Tantanee, S.: How to explain and predict the shape parameter of the generalized extreme value distribution of streamflow extremes using a big dataset, Journal of Hydrology, 574, 628–645, https://doi.org/10.1016/j.jhydrol.2019.04.070, 2019.
Ul Hassan, M., Hayat, O., and Noreen, Z.: Selecting the best probability distribution for at-site flood frequency analysis; a study of Torne River, SN Appl. Sci., 1, 1629, https://doi.org/10.1007/s42452-019-1584-z, 2019.
Valentini, M. H. K., Beskow, S., Beskow, T. L. C., De Mello, C. R., Cassalho, F., and Da Silva, M. E. S.: At-site flood frequency analysis in Brazil, Nat. Hazards, 120, 601–618, https://doi.org/10.1007/s11069-023-06231-3, 2024.
Valeo, C. and Rasmussen, P.: Topographic Influences on Flood Frequency Analyses, Canadian Water Resources Journal, 25, 387–406, https://doi.org/10.4296/cwrj2504387, 2000.
Vats, D. and Knudson, C.: Revisiting the Gelman–Rubin Diagnostic, Statist. Sci., 36, https://doi.org/10.1214/20-STS812, 2021.
Villarini, G. and Smith, J. A.: Flood peak distributions for the eastern United States, Water Resources Research, 46, 2009WR008395, https://doi.org/10.1029/2009WR008395, 2010.
Vogel, R. M. and Wilson, I.: Probability Distribution of Annual Maximum, Mean, and Minimum Streamflows in the United States, J. Hydrol. Eng., 1, 69–76, https://doi.org/10.1061/(ASCE)1084-0699(1996)1:2(69), 1996.
Willems, P.: Revision of urban drainage design rules after assessment of climate change impacts on precipitation extremes at Uccle, Belgium, Journal of Hydrology, 496, 166–177, https://doi.org/10.1016/j.jhydrol.2013.05.037, 2013.
Wuertz, D., Setz, T., and Chalabi, Y.: fExtremes: Rmetrics – Modelling Extreme Events in Finance [code], https://doi.org/10.32614/CRAN.package.fExtremes, 2023.
Xu, Y. and Goodacre, R.: On Splitting Training and Validation Set: A Comparative Study of Cross-Validation, Bootstrap and Systematic Sampling for Estimating the Generalization Performance of Supervised Learning, J. Anal. Test., 2, 249–262, https://doi.org/10.1007/s41664-018-0068-2, 2018.
Yadav, S. and Shukla, S.: Analysis of k-Fold Cross-Validation over Hold-Out Validation on Colossal Datasets for Quality Classification, in: 2016 IEEE 6th International Conference on Advanced Computing (IACC), 2016 IEEE 6th International Conference on Advanced Computing (IACC), Bhimavaram, India, 78–83, https://doi.org/10.1109/IACC.2016.25, 2016.
Short summary
A new extension of the generalized extreme value distribution, namely the Dual Gamma Generalized Extreme Value distribution developed by Nascimento, Bourguignony, and Leão (2015), displays superior performance in fitting most samples and is sensitive to trends, especially under non-stationary conditions such as climate change.
A new extension of the generalized extreme value distribution, namely the Dual Gamma Generalized...