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Abstract. Climate change has already affected global water
resources and is expected to have even more severe conse-
quences in the future. Advancing climate change will neces-
sitate the use of new distributions that are more flexible in
adapting to trends and other non-stationarities. In this paper
we compare three-parameter distributions, such as the log-
normal (LN3), the Generalized Extreme Value (GEV), and
the Pearson type III (P3), with the Dual Gamma Generalized
Extreme Value (GGEV) distribution. The GGEV is a four-
parameter extension of the GEV. The comparison is made
under different trend conditions and takes into account the
differences in the catchment area and peak flow magnitude.
The research pertains to basins in the temperate climate zone
of Poland and includes data from 678 water gauges located
on 340 rivers. Based on the trend criterion, the GGEV dis-
tribution compared to the analyzed three-parameter distribu-
tions and the GEV distribution compared to the other three-
parameter distributions were the best fit for most samples.
Based on the trend criterion and the catchment size, GEV
is best suited for micro- and meso-catchments, while GGEV
is ideal for macro- to large catchments when the series ex-
hibits a trend, either positive or negative. The major bene-
fit of GGEV is its flexibility when the data are influenced
by temporal non-stationarities. The additional shape param-
eter of GGEV compensates for the limitations of the other
shape parameter in distributions with lighter tails. Analysis
of the dependence relationships between the environmental
indicators, such as the geographic, physiographic, and hy-
drological indicators, and the distribution parameters is less

conclusive. In order to test the risk of overparameterization
and overfitting for the distributions with more parameters, the
Kolmogorov—Smirnov test and the K-fold cross-validation
were used. They show that the GEV and GGEV distribu-
tions perform better compared to the exponential and the
two-parameter lognormal distributions. As an overall conclu-
sion, the study shows that, for the analyzed samples from the
temperate climate zone in the era of climate change, distribu-
tions that better capture trends, such as GGEV, perform more
effectively.

1 Introduction

Climate change has already affected global water resources
and is expected to have even more severe consequences in the
future (Dakhlaoui et al., 2019; Pokhrel et al., 2021; Potom-
ski and Wiatkowski, 2023; Tomczyk et al., 2023; Willems,
2013). The significance of climate change lies in the sub-
stantial impacts it brings, including the increased frequency
of floods (Gruss et al., 2023; Tabari et al., 2021b). In the mod-
eling of extreme hydrological events, such as floods, stochas-
tic modeling is commonly used. This approach relies on his-
torical data and employs probability distributions (Gruss et
al., 2022; Mtynski et al., 2020) to account for the uncer-
tainty and variability in these phenomena (Szulczewski and
Jakubowski, 2018). Such methods include the at-site flood
frequency analysis (FFA) (Cassalho et al., 2018). The choice
of probability distribution should be verified against the as-
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sumptions of stationarity and independence, as any deviation
may result in biased outcomes and potentially catastrophic
consequences, such as inappropriate designs, that could en-
danger property and human life (Ologhadien, 2021). How-
ever, the assumption of stationarity has faced increasing chal-
lenges due to the intensification of climate change and human
activities (Gruss et al., 2022; Jiang and Kang, 2019; Milly et
al., 2008). Many studies present series consisting of annual
maximums where, for some water gauges, the assumption of
stationarity, randomness, or non-monotonic trend (NMT) is
not met (Cassalho et al., 2018; Szulczewski and Jakubowski,
2018). Advancing climate change will require the use of new
distributions that are more flexible in adapting to changes in
stationarity or the presence of trends in the sample.

In many countries, two- and three-parameter distributions
are used to estimate the magnitude and frequency of annual
maximum streamflow (e.g., Valentini et al., 2024; Gruss et
al., 2022; Mtynski et al., 2018; Pitlick, 1994; Rutkowska et
al., 2015; Rutkowska et al., 2015; Bezak et al., 2014; Morlot
et al., 2019; graj et al., 2016; Ul Hassan et al., 2019; Berton
and Rahmani, 2024). There are also many studies among
them on the Pearson type III (P3) (Cassalho et al., 2018), the
log Pearson Type III (LP3) (Berton and Rahmani, 2024; Mor-
lot et al., 2019), and the two- and three-parameter log-normal
distributions (LN2 and LN?3) in the at-site FFA (Cassalho et
al., 2018). According to Vogel and Wilson (1996), the LP3
provides the best fit to both the annual minimum and the an-
nual average streamflows, assuming the series is stationary.
In recent decades, a significant amount of research has been
dedicated to the Generalized Extreme Value (GEV) distribu-
tion. Extreme events are often better modeled using heavy-
tailed distributions (Karczewski et al., 2022; Karczewski and
Michalski, 2022), a characteristic of the GEV distribution
(Cassalho et al., 2018; Morlot et al., 2019; Otiniano et al.,
2019; Rutkowska et al., 2015).

However, some extreme event data do not follow the GEV
distribution because they require a more asymmetric distri-
bution or one with a heavier tail. As a result, new classes
of probability distributions have been developed that extend
beyond the GEV, such as the Dual Gamma GEV (GGEV)
(Otiniano et al., 2019) distribution. The GGEV distribu-
tion is regarded as highly flexible for several reasons: (1) it
introduces an additional parameter that adjusts tail weight
and skewness, making it more adaptable to diverse datasets.
(2) This added flexibility allows the GGEV to capture the
nuances of empirical data more effectively than the standard
GEV. (3) Consequently, the GGEV distribution is often pre-
ferred in practical applications where accurate modeling of
complex data is essential (Nascimento et al., 2015). The ad-
ditional shape parameter (§) enables the GGEV distribution
to adapt to various data characteristics, especially in terms
of tail behavior. Notably, when this parameter is less than 1,
the GGEV exhibits a heavier tail than the GEV, making it
more effective at modeling extreme events that may occur
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more frequently than lighter-tailed distributions would pre-
dict (Silva and Do Nascimento, 2022).

Next to the influence of non-stationarities, it is well known
that various environmental factors, including land use, may
significantly influence the tail of flood frequency distribu-
tions, although this depends on the region. Pitlick (1994)
found that the mean annual flood is most closely correlated
with the watershed area but did not find an influence of
other measures of basin physiography on the differences in
flood frequency distributions. In contrast, research by Ahilan
et al. (2012) confirms that the type of landscape influences
the GEV. Other research by Sampaio and Costa (2021) and
Tyralis et al. (2019) has shown that morphological catchment
characteristics correlate with these distributions. Kusumas-
tuti et al. (2007) also highlight the role of environmental
factors in influencing flood frequency and the occurrence of
flood events. Although single factors may not always cor-
relate well with the distribution parameters, it may be the
combined influence of multiple factors that explain the dif-
ferences in flood quantiles (Allamano et al., 2009). Under-
standing this influence may provide valuable insights for re-
gionalization (He et al., 2015) and reduce uncertainties in
inferences made using regional FFA frameworks (Hu et al.,
2020; Tyralis et al., 2019). In this study, the assumption is
made that, if environmental factors have an influence on the
distribution parameters, one can expect dependence relation-
ships between the parameters when different distributions are
calibrated to the flood data.

The aim of the study is to analyze the fit of the GGEV
distribution versus the three-parameter distributions (GEV,
LN3, P3) to empirical data for river basins in Poland. The
study also aims to analyze the consistency of patterns exhib-
ited by environmental factors with regard to the parameters
of the examined distributions and to conduct tests for overpa-
rameterization and overfitting of the analyzed distributions.

2 Study area

The research area spans 678 water gauges situated within the
drainage basins of the Dniester, Dunajec, Neman, Oder, Pre-
gota, Vistula, and other rivers flowing into the Baltic Sea and
covering the territory of Poland in central Europe (Fig. 1).
Poland is located within the temperate climate zone.
Depending on the size of the catchment area in
the study area, micro-catchments (A < 10 km?), meso-
catchments (10 < A < 100 km2), macro-catchments (100 <
A < 1000km?), large catchments (1000 < A < 10000 km?),
and very large catchments (A > 10000km?) were distin-
guished. This division criterion is adopted based on Bertola
et al. (2020). The fewest catchments identified were micro-
catchments, represented by only 2 stream gauge profiles,
while the most numerous were macro-catchments, repre-
sented by 388 profiles. In between were the very large catch-
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Figure 1. Location of the analyzed 678 water gauges (source: hydrographic map of Poland).

ments, meso-catchments, and large catchments, with 50, 68,
and 170 stream gauge profiles, respectively (Fig. 1).

The terrain of the study area is uneven. Most stream
gauge profiles (as many as 582 profiles) are located in low-
land areas (Fig. 2). These are catchments situated within the
provinces of the Central Polish Lowland, the Eastern Baltic—
Belarusian Lowland, and the Czech Massif in the Polish Up-
lands. A smaller quantity, specifically 86 stream gauge pro-
files, were located in highland areas. They are located within
the provinces of the Polish Uplands, the Czech Massif, and
the Western Carpathians with the Western and Northern Sub-
carpathia, as well as the Eastern Carpathians with the Eastern
Subcarpathia. A total of 10 stream gauge profiles located in
mountainous regions are situated within the provinces of the
Czech Massif, the Western Carpathians with the Western and
Northern Subcarpathia, and the Eastern Carpathians with the
Eastern Subcarpathia.

3 Methods
3.1 Data collection and extraction of flow extremes

For 1070 gauge stations located in the basins of the Vis-
tula, Oder, Pregota, Neman, Dniester, and Dunajec rivers,
the maximum annual flows were collected. The source of the
data (flows) is the Institute of Meteorology and Water Man-
agement — National Research Institute (IMGW-PIB). These
data have been processed. Only the gauge stations with data
series equal to or longer than 30 years were retained (Gruss
et al., 2022; Tabari et al., 2021a). The data periods used for
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analysis varied across stations, from 30 to 70. In this way,
the maximum annual flows were collected for 678 stations.
These data were compiled in the hydrological year, which for
Poland begins in November and ends in October. For each
hydrological year, the annual maximum flow was extracted.
These values are hereafter referred to as peak flows (Qp),
often associated with floods or extreme hydrological events
(Gruss et al., 2022; Langridge et al., 2020; Northrop, 2004).
Op help in understanding the maximum capacity of rivers or
streams to handle water, which is essential for infrastructure
planning, floodplain management, and disaster mitigation ef-
forts (Langridge et al., 2020). The Qp were utilized in this
study for calibrating and evaluating the probability distribu-
tions.

For each station, the mean annual flood or mean annual
maximum flow (MAF) represents the average of the Qp over
the period of record (Nyeko-Ogiramoi et al., 2012; Pastor et
al., 2014). In order to understand the long-term characteris-
tics of river systems, including flood frequency, river behav-
ior, and water resource management, the hydrologists often
analyze mean annual maximum flows (Merz and Bloschl,
2009; Nyeko-Ogiramoi et al., 2012; Pastor et al., 2014). In
this study, the MAF was utilized for the redundancy analysis
(RDA).

3.2 Trend detection

For all the analyzed time series, a test was conducted to as-
certain the presence of a trend. The Mann—Kendall (MK) test
was utilized for this purpose. This allowed us to group the
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Figure 2. Terrain characteristics of the 678 stream gauge profiles analyzed consist of lowlands, highlands, and mountains (source: hydro-

graphic map of Poland).

obtained distributions into three categories: without a trend,
with a positive trend, and with a negative trend.

The Mann—Kendall (MK) test is frequently used to detect
a monotonic trend in long time series of hydrological data
(Cassalho et al., 2018; Gruss et al., 2022, 2023; Rutkowska,
2015; Svensson et al., 2005).

The null hypothesis is that the data are identically dis-
tributed; the alternative hypothesis is that the data follow a
monotonic trend. A two-sided test was performed, and the
significance level was set to 5 %.

3.3 Extreme value distributions and parameter
calibration methods

This study considered the following types of extreme value
distributions: the four-parameter GGEV distribution and the
three-parameter distributions GEV, LN3, and P3.

The GGEV probability density function (PDF) proposed
by Nascimento et al. (2015) is given by

o

ey s (8)1
%[14‘ ] (g)

)

i Eemm g
fxspso:8;8)= eXp{ U+ ]é}’g#o’

5 expl=dl(x — w)/o1)
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where u is the location parameter, o is the scale parameter,
& is the shape parameter, and § is the shape parameter of the
GGEV extension.
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This GGEYV is a four-parameter extension of the GEV dis-
tribution with an additional shape parameter (§). The three
parameters of this distribution (u, o, £) were estimated a
posteriori by the ggevp function from the MCMC4Extremes
R package (in this study, block =1, int = 100. Computer:
AMD Ryzen 7 4800H with Radeon Graphics 2.90 GHz,
16 GB RAM, 500GB and 1TB SSD) (Do Nascimento
and Moura E Silva, 2015; R Core Team, 2022). The ini-
tial 33333.3 iterations, corresponding to the first portion
of the chain (first thin*int/3 iterations), were designated
as the burn-in period. The Metropolis—Hastings algorithm
technique of sampling was used to estimate the marginal
posterior distribution for each parameter except for § be-
cause identifiability problems were detected in the estima-
tion of this fourth parameter, as reported by Nascimento et
al. (2015). For the estimation of the § parameter, the method
proposed by Nascimento et al. (2015) and Silva and Do
Nascimento (2022) was adopted. We created a grid of pos-
sible § values from 0.01 to 10, with an increment of 0.01, to
estimate the other parameters (u, o, £) using the Bayesian
approach for each point of the grid and selected the § value
with the lowest —21In(L). The calibration of the fourth pa-
rameter § is thus not based on a purely Bayesian approach
but is limited to the capabilities of the ggevp function (Silva
and Do Nascimento, 2022).

The posteriori parameter values were selected by the low-
est AIC, BIC, and DIC values (Belzile et al., 2023).

The diagnosis for each chain was based on trace plots us-
ing the plot.mcmc function from the coda R package (Plum-
mer et al., 1999). We created separate trace plots for each of
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the three parameters (i, o, and &). For the pu parameter, in
each profile (in 678 profiles), the chain reached stationarity
(the values of u oscillate around the mean for most of the
iterations). For the & parameter in 8 profiles, and for o in 58
profiles, the chain did not reach stationarity. When analyzing
the plot with three chains, it can be seen that their courses are
quite consistent for all of the three analyzed parameters (they
overlap and do not separate clearly from each other, which
suggests their convergence).

Moreover, to assess the convergence of the model, the
scale reduction factor R (Gelman and Rubin’s convergence
diagnostic) was run for three parallel chains (Hamra et al.,
2013; Ossandén et al., 2022). For this purpose, the gel-
man.diag function from the coda R package was used. The
R values below the critical threshold of 1.1 indicate adequate
model convergence. In all our runs, the R values were below
1.1 in 678 samples, confirming convergence. The R factor is
commonly seen as a convergence diagnostic, useful for find-
ing sufficient burn-in (Jones and Qin, 2022; Vats and Knud-
son, 2021).

The GEV was used in many studies (Abida and Ellouze,
2008; Bezak et al., 2014; Cassalho et al., 2018; Kidson and
Richards, 2005; Szulczewski and Jakubowski, 2018). The
GEYV PDF function is given in Eq. (2),

M}—l/é] , )
o

f (x) =exp [—{1 +
for 1 +& (x —w)/o >0 and o > 0, where u, o, and & are
location, scale, and shape parameters, respectively.

The parameters of this distribution were estimated by
the maximum likelihood estimation (MLE), as described by
Smith (1985). The estimation of the parameters and fitting
of the GEV distribution was done using the “evd” and “fEx-
tremes” R packages (Stephenson, 2024; Wuertz et al., 2023).

The LN3 distribution function is given by the Eq. (3):

1
exp{—=—llog(x — ) — & 1%, (3)

(x—wo, 5z 20y2

where &,, ayz,  are shape, scale, and location parameters,
respectively.

The LN3 is similar to the two-parameter LN2 distribution,
except that x is subtracted by a value « in the former, which
represents the lower bound (Cassalho et al., 2018). The pa-
rameters of this distribution were estimated by the MLE as
shown by Meeker and Escobar (1998). The estimation of
the parameters and the fitting of probability distribution were
carried out using the “EnvStats” and “weibulltools” R pack-
ages (Hensel and Barkemeyer, 2018; Millard, 2013). For the
MLE used to estimate the distribution parameters, a confi-
dence level of 0.95 was assumed.

The PDF of the P3 distribution is given by Eq. (4),

)= b —plfle 5, (4)

_
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for s #0,a > 0, and XS;’\ > 0, where &, o, and u are shape,
scale, and location parameters, respectively.

The MLE was used to estimate the parameters for the P3
distribution. In the gamma distribution developed by Becker
and KloBner (2025), this function allows negative scale pa-
rameters to accommodate negative skewness. The estimation
of the parameters and the fitting of probability distribution
were done using the “PearsonDS” R package (Becker and
Kl16Bner, 2025).

3.4 Accuracy measures and scoring rules

The goodness of fit of the four probability distributions to
the empirical data was evaluated based on the accuracy mea-
sures, mean absolute error (MAE) and root-mean-square er-
ror (RMSE). The MAE is recommended for leptokurtic dis-
tributions (MAE), and RMSE is preferred for platykurtic dis-
tributions (Karunasingha, 2022). Among the 678 samples,
the kurtosis value exceeded 3 for 560 samples (leptokurtic
distributions), while kurtosis less than 3 was observed in 118
samples (platykurtic distributions). Moreover, the Continu-
ous Ranked Probability Score (CRPS) was used to compare
the entire cumulative distribution function (CDF) (Hersbach,
2000; Pic et al., 2025). For this purpose, the crps_sample
function from the scoringRules R package was used (Jordan
et al., 2016).

3.5 Redundancy analysis

Redundancy analysis (RDA) was applied as a canonical tech-
nique to investigate the influence of environmental variables
and sample characteristics on the parameters of the extreme
value distributions. The aim was to identify common patterns
and key factors affecting the distribution parameters.

The environmental factors examined included the water-
shed area, categorized by the catchment type, and the na-
ture of the watercourse (Lowlands, Highlands, Mountains)
(Bertola et al., 2020; Han et al., 2023; Tyralis et al., 2019).
Sample characteristics considered included the highest QOp,
MAF, sample size (N ), empirical moments of standard devia-
tion (SD), variance (Var), skewness (Skew.), kurtosis (Kurt.),
third-moment center (3thMoment) and fourth-moment center
(4thMoment, which measures the intensity of the distribution
tails) of the Qp, and trend measures.

RDA was performed separately for each distribution. The
final RDA model was selected by evaluating independent
variables using the Variance Inflation Factor (VIF). The in-
dependent variables of the RDA are catchment area ranges
(a — micro-catchments; b — meso-catchments; ¢ — macro-
catchments; d — large catchments; e — very large catchments),
Op, trend (NMT is no trend, PT is positive trend, and NT is
negative trend), the nature of the watercourse (L — lowlands;
H - highlands; M — mountains), Skew., 4thMoment, Kurt.,
and N. The response variables of the RDA are §, i, o, and &.

Hydrol. Earth Syst. Sci., 29, 5165-5184, 2025



5170

Since the mean, SD, Var, 3thMoment, and 4thMoment
are interrelated, it is essential to carefully select the set
of explanatory variables. It was also confirmed that multi-
collinearity exists between Skew. and Kurt. as explanatory
variables (VIF > 10). Collinearity between Skew. and Kurt.
may result from the fact that both of these measures are de-
fined using the SD. Therefore, RDA was conducted sepa-
rately for Kurt. (Figs. 9a, 10a, 11a, 12a) and Skew. (Figs. 9b,
10b, 11b, 12b). Additionally, RDA was performed with the
inclusion of the catchment area ranges, and Kurt. was re-
placed with 4thMoment and Skew. (see Figs. 9c, 10c, 11c,
and 12c¢).

The decision to replace Kurt. with 4thMoment was made
because both Skew. and Kurt. are functions of SD, making
them potentially collinear. The use of Skew. and 4thMoment
allows more detailed aspects of the data distribution to be
captured. 4thMoment measures the overall Kurt., which is
the tail heaviness of the distribution, while Kurt. is the nor-
malized version of this moment. Following the initial RDA,
subsequent analyses considered only the changes that were
not identified in the first analysis.

The use of topography in modeling Qp helps to uncover
the runoff mechanism prevailing in the catchment (Valeo and
Rasmussen, 2000).

RDA, standardized by response variables (center and
standardize) and environmental variables (center), was per-
formed using the Canoco software ver. 5.12 (ter Braak and
Smilauer, 2019).

3.6 Assessment of overparameterization and overfitting

Increasing the number of parameters in a distribution does
not automatically improve its accuracy. Clearly, it will lead
to a better goodness of fit, because of the higher flexibility
during calibration, but more parameters will also lead to a
higher uncertainty in their calibration. Consequently, a three-
or more parameter distribution may result in “overparame-
terization” and “overfitting”. Including more parameters also
increases the risk of greater errors in distribution extrapola-
tions (Alsadat et al., 2023).

In order to evaluate whether the increased complexity of
multi-parameter distributions offers a substantial improve-
ment in fit or merely results in overfitting, the procedure
shown in Fig. 3 was applied.

The one- and two-parameter distributions of the exponen-
tial (Exp) and 2-lognormal (LN2) distributions were desig-
nated to serve as a reference for evaluating the overparam-
eterization and overfitting in the three- and four-parameter
distributions GEV and GGEV.

The first analysis focused on examining whether the the-
oretical GEV and GGEV distributions significantly alter the
shape parameter compared to the LN2 distribution (Fig. 3:
Step 2) (Raynal-Villasenor and Raynal-Gutierrez, 2014).
This investigation aimed to determine whether the GEV and
GGEV distributions are unnecessarily complex (overparam-
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eterized), and whether fitting these distributions enhances the
accuracy of predictions for extreme values, especially at very
long return periods.

In the second analysis, the Kolmogorov—Smirnov test (KS
test) was used (Kim et al., 2017) in two testing variants:
(1) theoretical quantiles with empirical data and (2) empir-
ical data with random quantiles (Fig. 3: Step 3). This was
done for the GEV, GGEV, Exp, and LN2 distributions. The
hypothesis was that a p value of less than 0.05 would suggest
rejecting the hypothesis that the samples come from the same
distribution. The KS test was used to determine whether
the multi-parameter distributions (such as GEV and GGEV)
might provide slightly better fits in some cases (variant 1)
and whether they could be more prone to overfitting (variant
2) (Ozonur et al., 2021). Moreover, sensitivity analysis was
also performed by randomly sampling from a two-, three-
and four-parameter distribution separately and then testing
whether these distributions would not “overturn” and lead to
more erroneous extrapolations beyond the range of the em-
pirical data used for calibration. This evaluation was based
on quantile—quantile (QQ) plots, in which the quantiles ob-
tained from the calibrated distributions were compared with
the empirical ones.

In the third analysis, the K-fold cross-validation (split
sample test) was used to validate the distribution’s per-
formance (Fig. 3: Step 4) (Kim et al., 2017; Xu and
Goodacre, 2018). In this study, we employed the K-fold
cross-validation technique, specifically dividing the data se-
ries into five equal folds (also called 5-folds) (Rohani et al.,
2018; Yadav and Shukla, 2016). The distribution is trained
on k— 1 subsets and tested on the remaining subset. This pro-
cess is repeated k times until each subset has been used as the
test set (Prusty et al., 2022). K-fold cross-validation is often
used for comparing and selecting the best distribution for a
given predictive problem. This method allows us to evaluate
which distribution generalizes best to a new data set (Brunner
et al., 2018; Jaiswal et al., 2022). Cross-validation was per-
formed for the GEV and GGEV distributions. To check the
results, two measures were used: MAE (for leptokurtic distri-
butions) and RMSE (for platykurtic distributions) (Karunas-
ingha, 2022). As regards the question of how these anal-
yses would be conducted for distributions with fewer than
three parameters, two additional distributions, Exp and LN2,
were selected for testing. Finally, a comparison of the cross-
validation results between GEV and GGEV and between Exp
and LN2 was conducted. For the GEV and GGEV, only the
distribution with the best fit following the MAE and RMSE
was considered in that analysis. That means that the total
number of tested samples was 678 for each of the Exp and
LN2 distributions. In contrast, there were 172 samples for
the GEV and 281 for the GGEV distribution.

The methods for determining the Exp and LN2 distribu-
tions and their goodness-of-fit assessment are presented in
Sects. S1 and S2 in the Supplement. The generation of ran-
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Figure 3. Workflow for evaluating overparameterization and overfitting in multi-parameter probability distributions.
dom samples for the Exp, LN2, GEV, and GGEV distribu- 200
tions is described in Sect. S3 in the Supplement.
175
4 Results and discussion 150
2
4.1 Goodness-of-fit results in relation to the trend § 125 Legond
category 3 GGEV
2100 GEV
Among the 678 samples, no trend (NMT) was observed in the g P3
. . 5 LN3
highest number of cases (446). Conversely, a negative trend £ s
(NT) was identified in 200 samples, while the smallest num- 8
ber of samples exhibited a positive trend (PT) (32 samples) 50
(Fig. 4, Table S1 in the Supplement).
In the case of NMT, the accuracy measures show a good fit -
to 61 samples for LN3, a good fit to 96 samples for P3, a good
fit to 111 samples for GEV, and a good fit to 178 samples for

GGEV (Fig. 4). In the case of NT, the accuracy measures led
to fitting the LN3 distribution to 27 samples, the P3 distri-
bution to 32 samples, the GEV distribution to 53 samples,
and the GGEV distribution to 88 samples (Fig. 4). In turn,
for a PT, the accuracy measures resulted in fitting the P3 dis-
tribution to 4 samples, the LN3 distribution to 5 samples, the
GEV distribution to 8 samples, and the GGEV distribution to
15 samples (Fig. 4). In NMT samples, the GGEV distribution
was the most frequently identified, and the LN3 distribution
was the least common. Similarly, for the NT and PT sam-
ples, the GGEV distribution was most frequently observed.
In contrast, the LN3 distribution was the least common in NT
samples, while the P3 distribution was the least frequently
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Negative Trend (NT)  No trend (NMT)
Trend detection

Positive trend (PT)

Figure 4. Count of the four fitting distributions (GEV, GGEV, LN3,
P3) with marked trend categories.

observed in PT samples (Fig. 4). Among the four examined
distributions, the GGEV distribution predominates in terms
of count for all trend categories (Fig. 4, Table S1). This is
consistent with the findings by Nascimento et al. (2015), who
established, for the maximum monthly flow data, that the best
model was the GGEV rather than the GEV.

Hydrol. Earth Syst. Sci., 29, 5165-5184, 2025
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Focusing solely on the three-parameter distributions (P3,
LN3, and GEV), it is evident that the GEV distribution is
most frequently fitted best, followed by P3 and LN3. This
applies to both NMT and NT samples. In contrast, for the
PT samples, the GEV distribution has the highest number
of best-fit samples among the three-parameter distributions,
followed by LN3 and, finally, P3 (Fig. 4, Table S1). This is
consistent with Kumar et al. (2003), who argue that, in terms
of the L-moments, GEV provided a better fit than P3. Bezak
et al. (2014) obtained a completely different result, namely
that, in terms of the MLE, the best results were obtained with
the P3 distribution.

4.2 Goodness-of-fit results in relation to the trend and
catchment size categories

Next, it was checked whether a similar pattern of results is
obtained when considering the catchment area size ranges
(Fig. 5).

For the NMT samples, the best-fitted distribution is the
GEV (for samples where the catchment area is less than
10 km? or is in the range 10-100 km?) or P3 (for those above
10000 kmz). Meanwhile, the GGEV distribution is the best
fit for samples with catchment areas in the range of 100-
1000km? and 1000-10000km? (Fig. 5, Table S2). Com-
paring these results for three-parameter distributions utiliz-
ing the MLE, Gruss et al. (2022) obtained findings for six
data series with no trend. Among these, the Weibull, GEV,
LN3, and P3 distributions were best fitted to the empiri-
cal data from sub-catchments with areas ranging from 100
to 1000 km?2. Moreover, as reported by Gruss et al. (2022),
the GEV distribution was fitted best for two catchment ar-
eas ranging from 1000 to 10000km?. In this study, in the
context of NMT samples, the least fitted distributions to the
empirical data were LN3 (samples with catchment areas in
the range of 10-100, 100-1000, and 1000-10 000 km?) and
LN3 and GGEV (for areas larger than 10 000 kmz).

There are no NT samples for catchments smaller than
10km?. The GEV distribution best fits to empirical data from
catchments with areas in the range of 10-100km?. Con-
versely, the GGEV distribution has the best fit for catch-
ments in the range of 100-1000, 1000-10000, and above
10 000 km? (Fig. 5, Table S2). This is consistent with Silva
and Nascimento (2022) for catchments with areas greater
than 10000 km?2, such as the Gurguéia River catchment in
Brazil. As reported by the authors, the GGEV distribution
has a better fit than the GEV. Gruss et al. (2022) concluded,
for Czech Republic and Poland, that the Weibull distribution
fits best for catchment areas ranging from 100 to 1000 km?,
the Weibull and P3 distributions fit best for catchment ar-
eas from 1000 to 10000 km?2, and the GEV distribution fits
best for catchment areas above 10000 km?. In this study, in
the context of NT samples, the least fitted distributions to
the empirical data are P3 (samples with catchment areas in
the range of 10-100km?), P3 and LN3 (samples with catch-
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ment areas in the range of 100-1000km?), LN3 (samples
with catchment areas in the range of 1000—10 000 km?), and
GEV (> 10000 km?) (Fig. 5, Table S2).

The PT samples are the scarcest, occurring only in catch-
ments within the range of 10-100, 100-1000, and 1000-
10000 km?. The GGEV distribution fits best for these sam-
ples (Fig. 5, Table S2). In the context of PT samples, the least
fitted distributions to the empirical data are P3 (samples with
catchment areas in the range of 10-100km?), P3 (samples
with catchment areas in the range of 100-1000km?), and
GEV (samples with catchment areas in the range of 1000-
10000 km?) (Fig. 5, Table S2).

4.3 Goodness-of-fit results in relation to the catchment
size and peak flow

Next, it was checked whether the relationship between the
catchment area (A) and the registered maximum peak flow
(Qp) could influence the choice of distribution.

The probability distributions determined for the NMT
samples show a relationship between A and Qp, represented
by a simple regression line (Fig. 6, Table S3). The widest
range of A is characterized by the samples for which the
P3 distribution (30-20000km?) and the GEV distribution
(3.5-170000km?) provide the best fits, while LN3 (35—
110000 km?) and GGEV (50-70000km?) fit more limited
ranges. Moreover, the widest range of Qp is characterized
by the samples for which the P3 (1.9-7000m>s~') and
GEV (1.6-7000 m> s~!) distributions fit best, suggesting that
these distributions are the most flexible in modeling extreme
flows for different basin sizes. In contrast, the LN3 (8.5 to
6.500m3 s~ 1) and GGEV (2 to 6000 m>s~!) distributions
show a more limited applicability (Fig. 6, Table S3). Since
this may appear to contradict the results presented in the pre-
vious sections, a similar analysis is carried out below but sep-
arately for each trend category.

When we focus on the observational series with an NT
(Fig. 7, Table S4), the widest range of A is characterized by
samples fitted to the GGEV distribution (80-180 000 kmz),
whereas other distributions (P3, LN3, GEV) have more lim-
ited ranges. The widest range of Qp is characterized by sam-
ples fitted to the GGEV distribution (5-7000 m3 s~1), indi-
cating its versatility in modeling extreme flows for samples
with a detected NT. The P3 and LN3 distributions have nar-
rower ranges, making them less flexible for samples with a
detected NT. This suggests that the GGEV distribution is par-
ticularly well suited for extreme flow events with NT. More-
over, for the NT samples, the GEV distribution fits much bet-
ter than any of the other three-parameter distributions.

For the PT samples (Fig. 8, Table S5), the widest range
of area A is characterized by samples fitted to the GEV dis-
tribution (48-2470km?), while other distributions (GGEV,
LN3, P3) have more limited ranges. The widest range of Op
is characterized by samples fitted to the GGEV distribution
(8=750m? s~1), indicating its flexibility in modeling extreme
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Figure 6. Relationship between the catchment area (A) and the peak flow magnitude (Qp) for observational series with no trend and for the

four fitting probability distributions (P3, LN3, GEV, and GGEV).

flows. The P3 and LN3 distributions have narrower ranges,
making them less flexible for samples with a detected PT. In
another study on the evaluation of the GEV and LN3 distribu-
tions, carried out for the Sewden River, Kousar et al. (2020),
using the L-moments estimation, concluded that two loca-
tions, one with A in the range of 1000—-10000 km? and one
with A above 10000 km?2, exhibit a platykurtic distribution
and fit best to the GEV. In turn, the LN3 distribution was
the best fit for three other locations that exhibit a leptokurtic
distribution for areas ranging 100-1000, 1000—10 000, and
above 10000 km?.
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4.4 Influence of the environmental factors and sample
characteristics on the probability distribution
parameters

4.4.1 The GEYV distribution

In the first RDA, the first two axes (RDA 1 and RDA 2) ex-
plain 80.50 % of the variance (63.51 % and 16.99 %, respec-
tively) (Fig. 9a). In the second RDA, they explain 86.46 %
(63.60 % and 22.86 %; Fig. 9b), and, in the third RDA, they
explain 85.09 % (61.75 % and 23.34 %; Fig. 9c). In the first
and second RDA (Fig. 9a-b), the Op and A are strongly cor-
related with RDA 1, and Kurt. and Skew. are strongly corre-
lated with RDA 2. According to the response variables, o and
w are related to RDA 1, and £ is related to RDA 2 (Fig. 9a-b).

Hydrol. Earth Syst. Sci., 29, 5165-5184, 2025
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This is consistent with the findings of Tabari et al. (2021b)
and Villarini and Smith (2010). The second and third RDA
show that o and pu are inversely proportional to PT (Fig. 9b)
and to ¢ (Fig. 9c), respectively. The second RDA shows that
o and pu are correlated with N (Fig. 9b). In the third RDA,
o is strongly positively correlated with Op, which is in line
with the findings of Villarini and Smith (2010). This rela-
tionship is further supported by the use of scale-invariant
statistics, which show good correlations with historical flood-
frequency records (Turcotte 1993). This is consistent with
Tabari et al. (2021b), who report that the o parameter of the
GEV distribution represents the deviation around the mean
and serves as an indicator of variance. However, it is im-
portant to note that o can vary over time, as demonstrated
by the application of a non-stationary GEV model to ac-
count for changing streamflow series (Jiang and Kang, 2019).

Hydrol. Earth Syst. Sci., 29, 5165-5184, 2025

Moreover, in the third RDA, u is strongly positively corre-
lated with e and 4thMoment (Fig. 9c). The p parameter in-
dicates the center of the distribution, acting as an indicator
of the mean. What is particularly noteworthy is that hydro-
logical signatures related to flow magnitude, such as p and
o, are primarily dependent on A (Fig. 9a-b), which signif-
icantly influences their values, while other attributes have
a lesser impact on the response variable. This is consistent
with previous findings by He et al. (2015), Northrop (2004),
and Tyralis et al. (2019). Another study using the MLE con-
firms the above, indicating a linear relationship between u
and o, which means that, as the catchment area increases,
so do these parameters (Northrop, 2004). Current research
confirms this trend (Fig. 9a—b). In sample e, which is a very
large catchment, 4thMoment affects the u parameter. Sam-
ple ¢ with PT is weakly negatively correlated with both u

https://doi.org/10.5194/hess-29-5165-2025
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Figure 9. RDA results of the relationship between environmental factors, sample characteristics, and the parameters of GEV (o, &, ),
distinguishing between (a) kurtosis instead of skewness, (b) skewness instead of kurtosis, and (c) catchment area ranges instead of variable
A and the fourth moment. Descriptions of symbols: ; — location parameter; o — scale parameter; £ — shape parameter. Catchment area ranges
(in kmz): a-A<10;b-10<A <100; c-100 < A < 1000; d — 1000 < A < 10000; ¢ — A > 10000. Flow peak: Qp. Trend: NMT is no
trend, PT is positive trend, and NT is negative trend. Nature of the watercourse: L — lowlands; H — highlands; M — mountains. Parameters of
the empirical sample: Skew. is empirical skewness, Kurt. is empirical kurtosis, and 4thMoment is the fourth-moment center. N: sample size.

and 4thMoment. Other catchment types (a, b, and d) have
a weak influence on the parameters of this distribution. & is
positively related to Kurt., H, M, NMT, Skew. (Fig. 9a-b),
and a (Fig. 9c). The & parameter determines the tail behav-
ior of the distribution (He et al., 2015). Specifically, higher
values of £ lead to heavier tails (Tabari et al., 2021b; Tyralis
et al., 2019; Villarini and Smith, 2010). The RDA reveals
that £ is inversely proportional to L and NT (Fig. 9a—b) and
additionally to d (Fig. 9c). This is consistent with other re-
search (Ahilan et al., 2012; He et al., 2015; Sampaio and
Costa, 2021; Tabari et al., 2021b; Tyralis et al., 2019; Vil-
larini and Smith, 2010). However, other researchers did not
indicate that the & parameter could be related to the type of
landscape. Morrison and Smith (2002) found that & is not de-
pendent on the basin morphological parameters or land cover
properties, suggesting that other factors may be at play. Ku-
mar et al. (2003) highlight the importance of the GEV dis-
tribution in regional FFA but do not specifically address the
relationship between & and the highlands area. Nonetheless,
& is more likely linked to hydrological processes and me-
teorological conditions than to A (He et al., 2015). How-
ever, other studies have indicated some correlations between
& and either terrain elevation or the type of landscape. The
& parameter of the GEV distribution is correlated with na-
ture (terrain elevation) (Sampaio and Costa, 2021; Tyralis et
al., 2019). Moreover, research confirms that the type of land-
scape affects the distribution of GEV (Ahilan et al., 2012).
The magnitude of & in the GEV distribution depends on u of
the gauge, irrespective of it being in lowlands, highlands, or
mountains (Villarini and Smith, 2010). According to Tyralis
et al. (2019), & exhibits a negative linear correlation with the
catchment mean elevation, which means that, as the eleva-
tion increases, the value of £ slightly decreases. Our study

https://doi.org/10.5194/hess-29-5165-2025

actually indicates an opposite trend (Fig. 9a—c). However, the
impact of the morphologic characteristics of the catchments
in the regression model for the GEV & parameter is small
(Sampaio and Costa, 2021). This is also confirmed by the
current study — landscape forms have a weak influence on
the parameters of this distribution. The £ parameter depen-
dency is mainly influenced by climatic indices, while other
catchment characteristics are less significant (Tyralis et al.,
2019). This is consistent with He et al. (2015), who found
no relationship between & and A, suggesting that the hydro-
logical heterogeneity is implicitly captured by &. In the first
RDA, N is correlated with RDA 3; in the third RDA, N and
b are related to RDA 3 (Fig. 10c).

4.4.2 The GGEYV distribution

In the first RDA, the first two axes (RDA 1 and RDA 2) ex-
plain 54.00 % of the variance (45.76 % and 8.24 %, respec-
tively) (Fig. 10a). In the second RDA, they explain 54.36 %
(45.78 % and 8.58 %; Fig. 10b), and, in the third, they explain
56.19% (47.19 % and 9.00 %; Fig. 10c). Similarly to the
GEV distribution, in both Fig. 10a and 10b, o and u (which
are related to the RDAI axis) are strongly positively corre-
lated with Qp and A. In contrast, in the third RDA (Fig. 10c¢),
o remains strongly positively correlated with Qp, while u is
strongly positively correlated with e and 4thMoment. This
means that higher Qp values correspond to a larger o pa-
rameter in the GGEV distribution. Larger catchment areas e
lead to an increase in w, which shifts the central point of the
distribution. Across all redundancy analyses (Fig. 10a—c), &
and 8 show a positive relationship with Kurt. or Skew., which
may support the additional parameter mechanism described
by Nascimento et al. (2015) for this distribution. Moreover,
& and § show a positive relationship with NMT (Fig. 10a—c).
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Observing the biplots (Fig. 10a, c), it is noted that the Kurt.
parameter affects £ and §, while 4thMoment influences (. An
increase in 4thMoment, which measures the concentration
of values around the mean and is also related to Kurt., indi-
cates an increase in u. The u parameter determines where the
center of the distribution is located on the number line. The
greater the 4thMoment, the higher the u in a heavy-tailed dis-
tribution. This means that, where more extreme values occur,
the central tendency of the distribution (measured by the p
parameter) shifts towards these higher values to better reflect
the influence of extremes on the distribution (Tabari et al.,
2021b). Since 4thMoment is not associated with RDA2, it
will not directly influence £ and §, or its impact will be lim-
ited for the samples examined (Fig. 10a). However, 4thMo-
ment used to determine Kurt. will cause Kurt. to strongly cor-
relate with & (Fig. 10c). & is correlated with Skew. and Kurt.
of the empirical data. This means that £ influences the asym-
metry and tail distribution of empirical flow data, which is
consistent with the description by Nascimento et al. (2015).
In this study, & and § are inversely related to N. In practice,
this might suggest that, with larger N, the distribution be-
comes less extreme or lighter. The shape parameters likely
adjust to reflect a more stable and less variable distribution
as the amount of data increases. The third RDA addition-
ally revealed that £ and § are negatively correlated with NT
(Fig. 10c). This may indicate that, in situations where there is
a downward trend in the data, the distribution becomes less
varied or more flattened. A weak correlation could suggest
that, with an NT, the values of § and & may slightly decrease.
We observe that § is not as strongly correlated with Skew. as
it is with &. § serves as a supplementary parameter, and the
canonical analysis shown in Fig. 10a—b indicates that § has
similar properties to £. Meanwhile, 3thMoment strongly cor-
relates with o (not shown on the graph) because o affects the
magnitude of deviations from the mean, and the third central
moment measures precisely these deviations. o and u are
negatively correlated with ¢ (Fig. 10c). The other indepen-
dent variables (H, L, M, PT, b, d) are associated with RDA3
and do not affect the distribution parameters. This suggests
that terrain topography does not have a direct impact on the
parameters of GGEV. Additionally, it can be suggested that
not all the types of catchments influence the shaping of dis-
tribution parameters. Very large catchments (e) have a strong
positive impact, while ¢ has only a weak influence, and there
is no effect on the parameters of b and d. This may be be-
cause distribution parameters (in this case, ) affecting larger
areas may not have as strong an impact on smaller catch-
ments, where local effects dominate over the effects associ-
ated with distribution parameters (Arnaud et al., 2011; Rood-
sari and Chandler, 2017).

4.4.3 The P3 distribution

The first two axes (RDA 1 and RDA 2) explain 66.72 % of
variance (62.38 % and 4.34 %, respectively) (Fig. 11a). In the
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second RDA, they explain 66.72 % (62.35 % and 10.40 %, re-
spectively) (Fig. 11b) , and, in the third, they explain 73.30 %
(61.78 % and 11.52 %, respectively) (Fig. 11c). A compar-
ison of the RDA results for the P3 distribution parameters
with those of GEV and GGEV has revealed the following
dependencies: £ is strongly negatively correlated with N and
weakly correlated with Kurt. and Skew. (Fig. 11a—c). This
means that, with smaller sample sizes and higher Skew., the
& parameter is larger. This is confirmed by the study of Hu et
al. (2020). As reported by Hu et al. (2020), Skew. in the log-
P3 distribution is very sensitive to N. In turn, £ is weakly
positively correlated with L and negatively correlated with
H (Fig. 11a-b). The M, NT, PT, and NMT are correlated
with RDA 3 (Fig. 11a). In the second RDA, £ is weakly neg-
atively correlated with M and PT. (Fig. 11b). u is weakly
correlated with NMT and NT (Fig. 11b). In the third RDA,
& is inversely proportional to PT (Fig. 11c). The b parameter
has a weak positive relation to the & parameter (Fig. 11¢). In
b catchments, & increases. In contrast, H, L, M, NT, NMT, c,
and d do not influence the distribution parameters (Fig. 11c).

4.4.4 The LN3 distribution

The first two axes (RDA 1 and RDA 2) explain 46.61 % of the
variance (38.71 % and 7.90 %, respectively) (Fig. 12a). In the
second RDA, they explain 54.09 % (38.98 % and 15.11 %, re-
spectively) (Fig. 12b), and, in the third, they explain 57.72 %
(42.60 % and 15.12 %, respectively) (Fig. 12c). A compari-
son of the RDA results for the LN3 distribution parameters
with those of GEV, P3, and GGEV has revealed the following
dependencies: u is weakly correlated with NMT (Fig. 12a—
b). PT, NT, M, and L are correlated with RDA 3 (Fig. 12a—
b). In the first RDA, £ is negatively related to Kurt. and H is
weakly correlated with N. (Fig. 12a). In the second RDA, & is
negatively related to Skew. and H (Fig. 12b—c). u is weakly
inversely proportional to N (Fig. 12b). In the third RDA, in
contrast to GEV, GGEYV, and P3, ¢ is strongly positively cor-
related with e, and p is strongly positively correlated with
QOp and 4thMoment (Fig. 12c¢). & is positively correlated with
NMT. Moreover, £ is negatively correlated with N and NT
(Fig. 12c¢). o is negatively correlated with ¢ (Fig. 12c). As
reported (Kamal et al., 2017), the larger the N, the better the
result for LN3. Lastly, b, d, H, M, L, and PT are correlated
with RDA 3 (Fig. 12c¢).

4.4.5 Key points on the influence of environmental
factors and sample characteristics

The following points summarize key findings regarding
the relationships between environmental factors and sample
characteristics and the parameters of the studied probability
distributions:

GGEY tends to have the H, M, and L located outside the
RDA1 and RDA2.
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L. Gruss et al.: Evaluation of the Dual Gamma Generalized Extreme Value distribution 5177

(a) (b) (c)
< e <
- T - Skew.
N 0 S
X © P
< o 5
a < <
x o fa)
4 x
4thMoment
Zlva 2 3| ma
04  RDA1 (45.76%) 1.0 0.4  RDA1 (45.78%) 1.0 0.2 RDA 1 (47.19%) 1.0

Figure 10. RDA results of the relationship between environmental factors, sample characteristics, and the parameters of GGEV (o, &, 8, 1),
distinguishing between (a) kurtosis instead of skewness, (b) skewness instead of kurtosis, and (¢) catchment area ranges instead of variable
A and the fourth moment. Descriptions of symbols: © — location parameter; o — scale parameter; £ — shape parameter; § — shape parameter
of GGEV extension. Catchment area ranges (in kmz): a-A<10;b-10<A <100; ¢c — 100 < A < 1000; d — 1000 < A < 10000; e
— A > 10000. Flow peak: Qp. Trend: NMT is no trend, PT is positive trend, and NT is negative trend. Nature of the watercourse: L —
lowlands; H — highlands; M — mountains. Parameters of the empirical sample: Skew. is empirical skewness, Kurt. is empirical kurtosis, and
4thMoment is the fourth-moment center. N: sample size.

(@) (b) (©

©
3 £ A = 3 s| &
b
. H A N
. L

N ANMT o 3 NMT U d\IL nwT 4thMoment M
= S LA _—=» < It . —e
3 InT < > | 8|4 -
3} S oQ o |Ac P o
@ NTA P c |er
NI o A N el
N MH
o 2 3
[m) o) 4
' N Kurt. o N N

M

A
PT
A

© o
3 Ha | N < M APT HA | Vsiew, 2 Skew.

-0.4 RDA1 (62.38%) 1.0 1.0 RDA1 (62.35%) 1.0 02 RDA1(61.78%) 10

Figure 11. RDA results of the relationship between environmental factors, sample characteristics, and the parameters of P3 (o, &, p),
distinguishing between (a) kurtosis instead of skewness, (b) skewness instead of kurtosis, and (¢) catchment area ranges instead of variable
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the empirical sample: Skew. is empirical skewness, Kurt. is empirical kurtosis, and 4thMoment is the fourth-moment center. N: sample size.

GGEYV and P3 share a common feature of a negative cor-
relation between N and &, while GEV and LN3 exhibit more
complex correlation patterns.

GGEV, GEV, and P3 show similar correlations between
the 4thMoment and Qp, along with e in the context of RDA1,
whereas LN3 differs in this respect.

Both GGEV and GEV exhibit a pattern characterized by a
negative correlation between NT and £ and a positive corre-
lation between & and NMT.

https://doi.org/10.5194/hess-29-5165-2025

Only for the P3 distribution is the £ parameter more
strongly negatively correlated with N than with Kurt. and
Skew. This confirms that the £ parameter is highly dependent
on N.

Only the patterns for GGEV and LN3 show a PT along the
RDA3.

Catchment size types influence the distribution parame-
ters, with the most types affecting the parameters of GEV
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Figure 12. RDA results of the relationship between environmental factors, sample characteristics, and the parameters of LN3 (o, &, ),
distinguishing between (a) kurtosis instead of skewness, (b) skewness instead of kurtosis, and (c) catchment area ranges instead of variable
A and the fourth moment. Descriptions of symbols: ¢ — location parameter; o — scale parameter; £ — shape parameter. Catchment area ranges
(inkmz): a-A<10;b-10<A <100; ¢ - 100 < A < 1000; d — 1000 < A < 10000; e — A > 10000. Flow peak: Qp. Trend: NMT is no
trend, PT is positive trend, and NT is negative trend. Nature of the watercourse: L — lowlands; H — highlands; M — mountains. Parameters of
the empirical sample: Skew. is empirical skewness, Kurt. is empirical kurtosis, and 4thMoment is the fourth-moment center. N: sample size.

and the least types affecting the parameters of GGEV, LN3,
and P3.

Based on the above comparison, the GGEV distribution
shows some similarities with other distributions regarding
the occurrence and correlation of the distribution parameters.
However, there are differences in certain aspects, such as the
distribution of parameters in the principal components and
parameter correlations, which indicates unique characteris-
tics of GGEV compared to GEV, LN3, and P3. GGEV often
differs from other distributions in how its parameters spread
within the principal component space, which may be signif-
icant when modeling and interpreting the results of extreme
flow data analysis.

4.5 Overparameterization check

In order to evaluate the overparameterization or overfitting
problem, the results are summarized below according to the
four steps of the methodology outlined in Fig. 3.

Step 1

Out of the two distributions (Exp and LN2), only LN2
demonstrates the best fit across all the 678 profiles based
on accuracy measures and scoring rules. Nevertheless, we
performed the tests for both distributions. Additionally,
these distributions were evaluated against three- and four-
parameter distributions (GEV and GGEV) using the same
criteria.

Step 2

For the GEV distribution, analyzed for 172 profiles, the &
parameter values are consistently near zero, well below 1.

Hydrol. Earth Syst. Sci., 29, 5165-5184, 2025

In turn, the fitted LN2 distribution has a scale parameter (o)
greater than 1 for only seven stations, which indirectly affects
the distribution’s shape. In contrast, the GGEV distribution
has a & parameter value greater than 1 for a smaller number of
four stations. It is worth noting that the § parameter reached
a value greater than 1 for 45 profiles out of the 281 analyzed.
However, as shown by the RDA analysis, the contribution of
the § parameter relative to the £ parameter is smaller. This
may suggest that the § parameter primarily compensates for
the limitations of the & parameter in distributions with lighter
tails. More details can be found in Tables S6-S8. This is con-
firmed by the research of Nascimento et al. (2015), who state
that, when the § parameter is less than 1, the GGEV exhibits a
heavier tail than the GEV, making it more effective for mod-
eling extreme events, which may occur more frequently than
lighter-tailed distributions would predict.

In order to investigate how the § parameter in the GGEV
distribution affects the form of the extreme value distribution,
a visual inspection was conducted (Fig. 13). Figure 13 shows
the ability of both GEV and GGEV distributions to model hy-
drological extremes. At station 149220070, the GGEV cap-
tures the peak of the distribution more accurately than GEV.
For station 150190080, the GGEV captures the peak of the
distribution more accurately, and GGEV provides a slightly
better fit in the upper tail. At station 150200090, both mod-
els follow the empirical curve well, although GGEV shows a
marginal advantage in modeling the higher extremes.

Step 3

The KS test, which compares the theoretical quantiles (Exp
distribution) with the empirical data, found no significant dif-
ferences (p value > 0.05) for 372 out of 678 profiles, indi-
cating agreement between the distributions. Similarly, when
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Figure 13. Empirical (black dots) and theoretical probability density functions of GEV and GGEV for Qp, shown for three profiles:

(a) 149220070, (b) 150190080, (c) 150200090.

comparing empirical quantiles to random samples (Exp dis-
tribution), 279 profiles showed no significant differences,
suggesting a comparable nature of the empirical and random
distributions in these cases. This corresponds to a fit rate of
74.9 % (279/372).

A better fit was obtained for the LN2 distribution. The KS
test comparing the theoretical quantiles (LN2 distribution)
with the empirical data found no significant differences (p
value > 0.05) for 678 out of 678 profiles, indicating agree-
ment between the distributions. Similarly, when comparing
empirical quantiles to random samples (LN2 distribution),
661 profiles showed no significant differences, suggesting
a comparable nature of the empirical and random distribu-
tions in these cases. This corresponds to a fit rate of 97.5 %
(678/661).

A much better fit was obtained for the GEV and GGEV
distributions. The KS test comparing the theoretical quantiles
(GEV distribution) with the empirical data found no signif-
icant differences (p value > 0.05) for 172 out of 172 pro-
files, indicating agreement between the distributions. Simi-
larly, when comparing empirical quantiles to random sam-
ples (GEV distribution), 171 profiles showed no significant
differences, suggesting a comparable nature of the empirical
and random distributions in these cases. This corresponds to
a fit rate of 99.4 % (171/172). The KS test comparing the-
oretical quantiles (GGEV distribution) with empirical data
found no significant differences (p value > 0.05) for 281
out of 281 profiles, indicating agreement between the dis-
tributions. Similarly, when comparing empirical quantiles to
random samples (GGEV distribution), 281 profiles showed
no significant differences, suggesting a comparable nature of
the empirical and random distributions in these cases. This
corresponds to a fit rate of 100 % (281/281).

The results showed that distributions with more parame-
ters (three or more, such as GEV and GGEV) not only pro-
vided a slightly better fit in some cases (in the empirical data
vs. theoretical quantiles scenario) but were also less prone
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to overfitting (in the empirical data vs. random quantiles sce-
nario) This is confirmed in the QQ plots; see the Supplement.

Step 4

The GEV and GGEYV distributions were subjected to the K -
fold cross-validation alongside the LN2 and Exp distribu-
tions.

The K-fold cross-validation results are presented as the
percentage distribution of outcomes across individual inter-
vals relative to the total number of results (Table 1).

MAE and RMSE values vary significantly, ranging from
very low values (close to 0) to much higher values (e.g.,
1000). High values suggest that the model predicts river
flows less accurately for certain rivers. The intervals rep-
resent the quality of model fit, with 0-100 indicating the
best fit, 101-1000 indicating a well-fitting model, and
1001-10000 indicating the poorest fit. The GEV distribu-
tion achieved the highest percentage of best-fitting models
(95.09 % for MAE and 100 % for RMSE), indicating superior
performance compared to the other distributions. The GGEV
distribution also showed strong results, with 94.9 % of mod-
els falling in the best-fit category for MAE and 98.48 % of
models falling in the best-fit category for RMSE. The LN2
and Exp distributions performed similarly, with over 94 %
of results in the best-fit category for both MAE and RMSE.
However, the Exp distribution showed a small proportion
(3.39 %) of poorest-fitting models in the RMSE category,
which was not observed for the other distributions. To sum-
marize, Step 4 has shown that the GGEV and GEV distribu-
tions have excellent predictive efficiency (better than that of
the distributions with fewer parameters), which demonstrates
that, in most cases analyzed, they are quite robust to overpa-
rameterization and overfitting.

Although the study used observational series of 30 years
or more, the number of profiles analyzed in highland and
mountainous areas was considerably lower than that in low-
land areas. Furthermore, the number of observational series
exhibiting a positive trend in the analyzed region was limited;
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Table 1. Percentage distribution of the K-fold cross-validation results across individual intervals relative to the total number of outcomes.

Distribution MAE MAE RMSE RMSE RMSE

(0-100)  (101-1000)  (0-100)  (101-1000)  (1001-10000)
2LN 94.8 % 522% 92.37% 7.63 % 0%
Exp 94.8 % 522% 9237 % 4.24 % 3.39%
GEV 95.09 % 491 % 100 % 0% 0%
GGEV 94.9 % 512%  98.48 % 1.51% 0%

Explanation: MAE — mean absolute error; RMSE - root-mean-square error; 0—100 — best-fitting model;
101-1000 — well-fitting model; 1001-10 000 — poorest-fitting model.

moreover, the study did not account for the non-stationarity
in the parameters of the analyzed distributions.

5 Conclusions

The main findings of this research can be summarized as fol-
lows:

1. Based only on the trend criterion, the GGEV distribu-
tion compared to the analyzed three-parameter distribu-
tions and the GEV distribution compared to the other
three-parameter distributions were the best fit for most
samples.

2. Based on the trend criterion and the catchment size, it
was found that the GEV distribution is best suited for
micro- and meso-catchments, while the GGEV distri-
bution is ideal for macro- to large-catchments, where
the series exhibits a trend (either negative trend or no
trend). The P3 distribution is preferred for very large
catchments but only when the sample has no trend. In
contrast, for samples with a positive trend, the GGEV
distribution performs best across the meso- to very large
catchments.

3. Compared to the analyzed P3, LN3, and GEV distribu-
tions, the GGEV distribution was not flexible regarding
both the catchment area and the peak flow for samples
with no trend and positive trend, but it was flexible for
samples in which a negative trend was detected.

4. Our findings revealed certain patterns in the shape pa-
rameter between the P3 and GGEV distributions and be-
tween the GEV and GGEV distributions. Additionally,
patterns were noted in the p parameter among the P3,
GEV, and GGEV distributions. Our study also showed
that GGEV was the only distribution for which the pa-
rameters were not correlated with the forms of land-
scape (lowlands, highlands, mountains).

5. It has been confirmed that adding the shape parameter
of the GGEV distribution primarily compensates for the
limitations of the shape parameter in distributions with
lighter tails.
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6. Using the Kolmogorov—Smirnov test, it was found that
GEYV and GGEV not only provided a slightly better fit in
some cases (in the empirical data vs. theoretical quan-
tiles scenario) but were also less prone to overfitting (in
the empirical data vs. random quantiles scenario and in
the theoretical quantiles vs. random quantiles scenario)
in comparison to Exp and LN2. Furthermore, the robust-
ness of GEV and GGEV distributions to overparame-
terization and overfitting was confirmed by the K-fold
cross-validation.

7. Based on the above, in the era of climate change, distri-
butions such as GGEV are expected to be better suited
when trends are present, offering a clear performance
advantage.

The results of this study highlight several promising avenues
for future research. One potential direction is the further ex-
ploration of the GGEV distribution in the context of various
hydrological and meteorological phenomena. Given its su-
perior performance in fitting most samples and its sensitivity
to trends, especially under non-stationary conditions such as
climate change, future studies could examine its applicabil-
ity across different geographical regions and climatic condi-
tions.

The findings on the influence of catchment types on dis-
tribution parameters indicate that more research is needed to
refine our understanding of how landscape characteristics in-
teract with hydrological distributions. A deeper exploration
into the relationship between the catchment area characteris-
tics, especially in varied topographies and land-use patterns,
could yield more universal insights. Expanding the range of
predictor variables used in modeling, beyond trend detection,
nature of catchment, catchment area, and the hydrological
characteristics, might also improve the accuracy and flexibil-
ity of distribution selection.

As part of future research directions, the team plans to fo-
cus on modeling the GGEV distribution in a full Bayesian
approach, involving the estimation of the four parameters of
this distribution using MCMC sampling, instead of the ggevp
function. In particular, we plan to determine prior distribu-
tions for each of the parameters and to implement the MCMC
algorithms, taking into account the need to adjust the pro-
posal distributions, the length of the burn-in phase, thinning,
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and the number of samples — depending on the specifics of
the model under study.

Appendix A: Abbreviations and acronyms in
alphabetical order

a Micro-catchments

b Meso-catchments

c Macro-catchments

d Large catchments

e Very large catchments

A Catchment area (km?)

CRPS  Continuous Ranked Probability Score

Exp Exponential distribution
FFA Flood frequency analysis

GEV Generalized Extreme Value distribution

GGEV Dual Gamma Generalized Extreme
Value distribution

GOF Goodness-of-fit test

H Highland

Kurt. Kurtosis

L Lowland

LN2 Two-parameter log-normal distribution

LN3 Three-parameter log-normal distribution

M Mountain

MAE Mean absolute error

MAF Mean annual maximum flow

MK Mann-Kendall trend test

MLE Maximum likelihood estimation
N Sample size

NMT No trend

NT Negative trend

P3 Pearson type III distribution
PT Positive trend

Qp Peak flow

RDA Redundancy analysis
RMSE Root-mean-square error

SD Standard deviation

Skew.  Empirical skewness

Var Variance

VIF Variance Inflation Factor

Code availability. The model codes used in this study are available
from the corresponding author upon request.

Data availability. Research data will be made available upon re-
quest from the corresponding author.

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/hess-29-5165-2025-supplement.

https://doi.org/10.5194/hess-29-5165-2025

5181

Author contributions. LG: conceptualization, data curation, formal
analysis, investigation, methodology, resources, software, writing
(original draft preparation and review and editing). PW: conceptu-
alization, methodology, supervision, validation, writing (review and
editing). PT: investigation, resources, visualization, writing (origi-
nal draft preparation and review and editing). CM: data curation,
writing (review and editing). MW: supervision, validation. JPJr:
conceptualization, supervision. JPSen: supervision. Scz: supervi-
sion, validation.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibil-
ity lies with the authors. Views expressed in the text are those of the
authors and do not necessarily reflect the views of the publisher.

Acknowledgements. The authors would like to express their sincere
gratitude to Karol Misdziol, MSc Eng., for his help with coding in
R and to the Institute of Meteorology and Water Management —
National Research Institute in Warsaw for their release of the flow
data.

Financial support. This research received no external funding.
This research was funded by Innovative researcher (grant no.
N060/0006/20). The APC is financed by Wroctaw University of En-
vironmental and Life Sciences.

Review statement. This paper was edited by Nadia Ursino and re-
viewed by Zhijia Li and Alvaro Ossandén.

References

Abida, H. and Ellouze, M.: Probability distribution of flood
flows in Tunisia, Hydrol. Earth Syst. Sci., 12, 703-714,
https://doi.org/10.5194/hess-12-703-2008, 2008.

Ahilan, S., O’Sullivan, J. J., and Bruen, M.: Influences on flood
frequency distributions in Irish river catchments, Hydrol. Earth
Syst. Sci., 16, 1137-1150, https://doi.org/10.5194/hess-16-1137-
2012, 2012.

Allamano, P., Claps, P., and Laio, F.: An analytical model of
the effects of catchment elevation on the flood frequency
distribution, Water Resources Research, 45, 2007WR006658,
https://doi.org/10.1029/2007WR006658, 2009.

Alsadat, N., Elgarhy, M., Hassan, A. S., Ahmad, H., and El-Hamid
Eisa, A.: A new extension of linear failure rate distribution
with estimation, simulation, and applications, AIP Advances, 13,
105019, https://doi.org/10.1063/5.0170297, 2023.

Hydrol. Earth Syst. Sci., 29, 5165-5184, 2025


https://doi.org/10.5194/hess-29-5165-2025-supplement
https://doi.org/10.5194/hess-12-703-2008
https://doi.org/10.5194/hess-16-1137-2012
https://doi.org/10.5194/hess-16-1137-2012
https://doi.org/10.1029/2007WR006658
https://doi.org/10.1063/5.0170297

5182

Arnaud, P., Lavabre, J., Fouchier, C., Diss, S., and Javelle,
P.: Sensitivity of hydrological models to uncertainty in
rainfall input, Hydrological Sciences Journal, 56, 397-410,
https://doi.org/10.1080/02626667.2011.563742, 2011.

Becker, M. and KloBner, S.: PearsonDS: Pear-
son Distribution System (1.3.2) [code],
https://doi.org/10.32614/CRAN.package.PearsonDS, 2025.

Belzile, L. R., Dutang, C., Northrop, P. J., and Opitz, T.: A mod-
eler’s guide to extreme value software, Extremes, 26, 595-638,
https://doi.org/10.1007/s10687-023-00475-9, 2023.

Bertola, M., Viglione, A., Lun, D., Hall, J., and Bloschl,
G.: Flood trends in Europe: are changes in small and big
floods different?, Hydrol. Earth Syst. Sci., 24, 1805-1822,
https://doi.org/10.5194/hess-24-1805-2020, 2020.

Berton, R. and Rahmani, V.: Differences in Flood Quantiles
Estimate of Disturbed and Undisturbed Watersheds in the
United States, Hydroecology and Engineering, 1, 10002-10002,
https://doi.org/10.35534/hee.2024.10002, 2024.

Bezak, N., Brilly, M., and Sraj, M.: Comparison between the peaks-
over-threshold method and the annual maximum method for
flood frequency analysis, Hydrological Sciences Journal, 59,
959-977, https://doi.org/10.1080/02626667.2013.831174, 2014.

Brunner, M. 1., Furrer, R., Sikorska, A. E., Viviroli, D., Seib-
ert, J., and Favre, A.-C.: Synthetic design hydrographs for
ungauged catchments: a comparison of regionalization meth-
ods, Stoch. Environ. Res. Risk Assess., 32, 1993-2023,
https://doi.org/10.1007/s00477-018-1523-3, 2018.

Cassalho, F., Beskow, S., De Mello, C. R., De Moura, M. M., Ker-
stner, L., and Avila, L. F.: At-Site Flood Frequency Analysis
Coupled with Multiparameter Probability Distributions, Water
Resour. Manage., 32, 285-300, https://doi.org/10.1007/s11269-
017-1810-7, 2018.

Dakhlaoui, H., Ruelland, D., and Tramblay, Y.: A bootstrap-
based differential split-sample test to assess the transferabil-
ity of conceptual rainfall-runoff models under past and fu-
ture climate variability, Journal of Hydrology, 575, 470-486,
https://doi.org/10.1016/j.jhydrol.2019.05.056, 2019.

Do Nascimento, F. F. and Moura E Silva, W. V.: MCMC4Extremes:
Posterior Distribution of Extreme Value Models in R [code],
https://doi.org/10.32614/CRAN.package. MCMC4Extremes,
2015.

Gruss, L., Wiatkowski, M., Tomczyk, P., Pollert, J., and Pollert,
J.: Comparison of Three-Parameter Distributions in Controlled
Catchments for a Stationary and Non-Stationary Data Series,
Water, 14, 293, https://doi.org/10.3390/w14030293, 2022.

Gruss, L., Wiatkowski, M., Potomski, M., Szewczyk, L., and
Tomczyk, P.: Analysis of Changes in Water Flow after Pass-
ing through the Planned Dam Reservoir Using a Mixture
Distribution in the Face of Climate Change: A Case Study
of the Nysa Ktodzka River, Poland, Hydrology, 10, 226,
https://doi.org/10.3390/hydrology 10120226, 2023.

Hamra, G., MacLehose, R., and Richardson, D.: Markov
Chain Monte Carlo: an introduction for epidemiolo-
gists, International Journal of Epidemiology, 42, 627-634,
https://doi.org/10.1093/ije/dyt043, 2013.

Han, H., Yan, X., Xie, H., Qiu, J., Li, X., Zhao, D., Li,
X., Yan, X., and Xia, Y.: Incorporating a new landscape
intensity indicator into landscape metrics to better under-
stand controls of water quality and optimal width of ri-

Hydrol. Earth Syst. Sci., 29, 5165-5184, 2025

L. Gruss et al.: Evaluation of the Dual Gamma Generalized Extreme Value distribution

parian buffer zone, Journal of Hydrology, 625, 130088,
https://doi.org/10.1016/j.jhydrol.2023.130088, 2023.

He, J., Anderson, A., and Valeo, C.: Bias compensation in flood
frequency analysis, Hydrological Sciences Journal, 60, 381-401,
https://doi.org/10.1080/02626667.2014.885651, 2015.

Hensel, T.-G. and Barkemeyer, D.: weibulltools: Sta-
tistical Methods for Life Data  Analysis [code],
https://doi.org/10.32614/CRAN.package.weibulltools, 2018.

Hersbach, H.: Decomposition of the Continuous Ranked
Probability Score for Ensemble Prediction Systems, Wea.
Forecasting, 15, 559-570, https://doi.org/10.1175/1520-
0434(2000)015<0559:DOTCRP>2.0.C0O;2, 2000.

Hu, L., Nikolopoulos, E. I., Marra, F., and Anagnostou, E. N.: Sensi-
tivity of flood frequency analysis to data record, statistical model,
and parameter estimation methods: An evaluation over the con-
tiguous United States, J. Flood. Risk Management, 13, e12580,
https://doi.org/10.1111/jfr3.12580, 2020.

Jaiswal, R. K., Nayak, T. R., Lohani, A. K., and Galkate, R. V.:
Regional flood frequency modeling for a large basin in India,
Nat. Hazards, 111, 1845-1861, https://doi.org/10.1007/s11069-
021-05119-4, 2022.

Jiang, S. and Kang, L.: Flood frequency analysis for annual max-
imum streamflow using a non-stationary GEV model, E3S Web
Conf., 79, 03022, https://doi.org/10.1051/e3sconf/20197903022,
2019.

Jones, G. L. and Qin, Q.: Markov Chain Monte Carlo
in Practice, Annu. Rev. Stat. Appl, 9, 557-578,
https://doi.org/10.1146/annurev-statistics-040220-090158,

2022.

Jordan, A. I, Krueger, F, Lerch, S., and Allen,
S.: scoringRules: Scoring Rules for  Paramet-
ric and Simulated Distribution  Forecasts [code],

https://doi.org/10.32614/CRAN.package.scoringRules, 2016.

Kamal, V., Mukherjee, S., Singh, P., Sen, R., Vishwakarma, C. A.,
Sajadi, P., Asthana, H., and Rena, V.: Flood frequency analysis
of Ganga river at Haridwar and Garhmukteshwar, Appl. Water
Sci., 7, 1979-1986, https://doi.org/10.1007/s13201-016-0378-3,
2017.

Karczewski, M. and Michalski, A.: A data-driven ker-
nel estimator of the density function, Journal of Sta-
tistical Computation and Simulation, 92, 3529-3541,
https://doi.org/10.1080/00949655.2022.2072503, 2022.

Karczewski, M., Kazmierczak, B., Michalski, A., and Kuchar, L.:
Probability Function Estimation for the Maximum Precipitation
Model Using Kernel Estimators, Rocznik Ochrona Srodowiska,
24, 260-275, https://doi.org/10.54740/r0s.2022.019, 2022.

Karunasingha, D. S. K.: Root mean square error or mean absolute
error? Use their ratio as well, Information Sciences, 585, 609—
629, https://doi.org/10.1016/j.ins.2021.11.036, 2022.

Kidson, R. and Richards, K. S.. Flood frequency anal-
ysis: assumptions and alternatives, Progress in Physi-
cal Geography: Earth and Environment, 29, 392-410,
https://doi.org/10.1191/0309133305pp454ra, 2005.

Kim, H., Kim, S., Shin, H., and Heo, J.-H.: Appropriate
model selection methods for nonstationary generalized ex-
treme value models, Journal of Hydrology, 547, 557-574,
https://doi.org/10.1016/j.jhydrol.2017.02.005, 2017.

Kousar, S., Khan, A. R., Ul Hassan, M., Noreen, Z., and Bhatti, S.
H.: Some best-fit probability distributions for at-site flood fre-

https://doi.org/10.5194/hess-29-5165-2025


https://doi.org/10.1080/02626667.2011.563742
https://doi.org/10.32614/CRAN.package.PearsonDS
https://doi.org/10.1007/s10687-023-00475-9
https://doi.org/10.5194/hess-24-1805-2020
https://doi.org/10.35534/hee.2024.10002
https://doi.org/10.1080/02626667.2013.831174
https://doi.org/10.1007/s00477-018-1523-3
https://doi.org/10.1007/s11269-017-1810-7
https://doi.org/10.1007/s11269-017-1810-7
https://doi.org/10.1016/j.jhydrol.2019.05.056
https://doi.org/10.32614/CRAN.package.MCMC4Extremes
https://doi.org/10.3390/w14030293
https://doi.org/10.3390/hydrology10120226
https://doi.org/10.1093/ije/dyt043
https://doi.org/10.1016/j.jhydrol.2023.130088
https://doi.org/10.1080/02626667.2014.885651
https://doi.org/10.32614/CRAN.package.weibulltools
https://doi.org/10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2
https://doi.org/10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2
https://doi.org/10.1111/jfr3.12580
https://doi.org/10.1007/s11069-021-05119-4
https://doi.org/10.1007/s11069-021-05119-4
https://doi.org/10.1051/e3sconf/20197903022
https://doi.org/10.1146/annurev-statistics-040220-090158
https://doi.org/10.32614/CRAN.package.scoringRules
https://doi.org/10.1007/s13201-016-0378-3
https://doi.org/10.1080/00949655.2022.2072503
https://doi.org/10.54740/ros.2022.019
https://doi.org/10.1016/j.ins.2021.11.036
https://doi.org/10.1191/0309133305pp454ra
https://doi.org/10.1016/j.jhydrol.2017.02.005

L. Gruss et al.: Evaluation of the Dual Gamma Generalized Extreme Value distribution

quency analysis of the Ume River, J. Flood Risk Management,
13, 12640, https://doi.org/10.1111/jfr3.12640, 2020.

Kumar, R., Chatterjee, C., Kumar, S., Lohani, A. K., and Singh,
R. D.: Development of Regional Flood Frequency Relation-
ships Using L-moments for Middle Ganga Plains Subzone
1(f) of India, Water Resources Management, 17, 243-257,
https://doi.org/10.1023/A:1024770124523, 2003.

Kusumastuti, D. L., Struthers, 1., Sivapalan, M., and Reynolds,
D. A.: Threshold effects in catchment storm response and
the occurrence and magnitude of flood events: implications
for flood frequency, Hydrol. Earth Syst. Sci., 11, 1515-1528,
https://doi.org/10.5194/hess-11-1515-2007, 2007.

Langridge, M., Gharabaghi, B., McBean, E., Bonakdari, H., and
Walton, R.: Understanding the dynamic nature of Time-to-
Peak in UK streams, Journal of Hydrology, 583, 124630,
https://doi.org/10.1016/j.jhydrol.2020.124630, 2020.

Meeker, W. Q. and Escobar, L. A.: Statistical methods for reliability
data, New York, 712 pp., 1998.

Merz, R. and Bloschl, G.: Process controls on the statistical flood
moments — a data based analysis, Hydrological Processes, 23,
675-696, https://doi.org/10.1002/hyp.7168, 2009.

Millard, S. P: EnvStats: Package for Environmen-
tal  Statistics, Including US EPA Guidance [code],
https://doi.org/10.32614/CRAN.package.EnvStats, 2013.

Milly, P. C. D., Betancourt, J., Falkenmark, M., Hirsch, R. M.,
Kundzewicz, Z. W., Lettenmaier, D. P., and Stouffer, R. J.: Sta-
tionarity Is Dead: Whither Water Management?, Science, 319,
573-574, https://doi.org/10.1126/science.1151915, 2008.

Mtynski, D., Petroselli, A., and Walgga, A.: Flood frequency
analysis by an event-based rainfall-runoff model in selected
catchments of southern Poland, Soil Water Res., 13, 170-176,
https://doi.org/10.17221/153/2017-SWR, 2018.

Mtynski, D., Watgga, A., Ozga-Zielinski, B., Ciupak, M., and
Petroselli, A.: New approach for determining the quantiles
of maximum annual flows in ungauged catchments using
the EBA4SUB model, Journal of Hydrology, 589, 125198,
https://doi.org/10.1016/j.jhydrol.2020.125198, 2020.

Morlot, M., Brilly, M., and graj, M.: Characterisation of
the floods in the Danube River basin through flood fre-
quency and seasonality analysis, Acta Hydrotechnica, 73-89,
https://doi.org/10.15292/acta.hydro.2019.06, 2019.

Morrison, J. E. and Smith, J. A.: Stochastic modeling of flood peaks
using the generalized extreme value distribution, Water Re-
sources Research, 38, https://doi.org/10.1029/2001WR000502,
2002.

Nascimento, F., Bourguignon, M., and Leao, J.: Ex-
tended generalized extreme value distribution with
applications in environmental data, HIMS, 46, 1-1,
https://doi.org/10.15672/HIMS.20159514081, 2015.

Northrop, P. J.: Likelihood-based approaches to flood fre-
quency estimation, Journal of Hydrology, 292, 96-113,
https://doi.org/10.1016/j.jhydrol.2003.12.031, 2004.

Nyeko-Ogiramoi, P., Willems, P., Mutua, F. M., and Moges, S.
A.: An elusive search for regional flood frequency estimates in
the River Nile basin, Hydrol. Earth Syst. Sci., 16, 3149-3163,
https://doi.org/10.5194/hess-16-3149-2012, 2012.

Ologhadien, I.: Selection of Probabilistic Model of Extreme
Floods in Benue River Basin, Nigeria, EJENG, 6, 7-18,
https://doi.org/10.24018/ejeng.2021.6.1.2300, 2021.

https://doi.org/10.5194/hess-29-5165-2025

5183

Ossandon, A., Brunner, M. 1., Rajagopalan, B., and Kleiber, W.:
A space-time Bayesian hierarchical modeling framework for
projection of seasonal maximum streamflow, Hydrol. Earth
Syst. Sci., 26, 149-166, https://doi.org/10.5194/hess-26-149-
2022, 2022.

Otiniano, C. E. G., Paiva, B. S. D., and Martins Netob, D. S. B.: The
transmuted GEV distribution: properties and application, CSAM,
26, 239-259, https://doi.org/10.29220/CSAM.2019.26.3.239,
2019.

Ozonur, D., Pobocikova, 1., and De Souza, A.: Statistical analy-
sis of monthly rainfall in Central West Brazil using probabil-
ity distributions, Model. Earth Syst. Environ., 7, 1979-1989,
https://doi.org/10.1007/s40808-020-00954-z, 2021.

Pastor, A. V., Ludwig, F., Biemans, H., Hoff, H., and Kabat,
P.: Accounting for environmental flow requirements in global
water assessments, Hydrol. Earth Syst. Sci., 18, 5041-5059,
https://doi.org/10.5194/hess-18-5041-2014, 2014.

Pic, R., Dombry, C., Naveau, P., and Taillardat, M.: Proper scoring
rules for multivariate probabilistic forecasts based on aggregation
and transformation, Adv. Stat. Clim. Meteorol. Oceanogr., 11,
23-58, https://doi.org/10.5194/ascmo-11-23-2025, 2025.

Pitlick, J.: Relation between peak flows, precipitation, and physiog-
raphy for five mountainous regions in the western USA, Jour-
nal of Hydrology, 158, 219-240, https://doi.org/10.1016/0022-
1694(94)90055-8, 1994.

Plummer, M., Best, N., Cowles, K., Vines, K., Sarkar,
D., Bates, D., Almond, R., and Magnusson, A.: coda:
Output Analysis and Diagnostics for MCMC [code],
https://doi.org/10.32614/CRAN.package.coda, 1999.

Pokhrel, Y., Felfelani, F., Satoh, Y., Boulange, J., Burek, P., Giadeke,
A., Gerten, D., Gosling, S. N., Grillakis, M., Gudmundsson, L.,
Hanasaki, N., Kim, H., Koutroulis, A., Liu, J., Papadimitriou,
L., Schewe, J., Miiller Schmied, H., Stacke, T., Telteu, C.-E.,
Thiery, W., Veldkamp, T., Zhao, F., and Wada, Y.: Global ter-
restrial water storage and drought severity under climate change,
Nat. Clim. Chang., 11, 226-233, https://doi.org/10.1038/s41558-
020-00972-w, 2021.

Potomski, M. and Wiatkowski, M.: Impounding Reservoirs, Ben-
efits and Risks: A Review of Environmental and Technical As-
pects of Construction and Operation, Sustainability, 15, 16020,
https://doi.org/10.3390/su152216020, 2023.

Prusty, S., Patnaik, S., and Dash, S. K. SKCV: Strati-
fied K-fold cross-validation on ML classifiers for pre-
dicting cervical cancer, Front. Nanotechnol., 4, 972421,
https://doi.org/10.3389/fnano.2022.972421, 2022.

R Core Team: R: A Language and Environment for Statistical Com-
puting, https://www.R-project.org/ (last access: 3 July 2025),
2022.

Raynal-Villasenor, J. A.
Estimation procedures for the
the minima, Journal of Hydrology, 519,
https://doi.org/10.1016/j.jhydrol.2014.07.045, 2014.

Rohani, A., Taki, M., and Abdollahpour, M.: A novel soft
computing model (Gaussian process regression with K-
fold cross validation) for daily and monthly solar radia-
tion forecasting (Part: 1), Renewable Energy, 115, 411-422,
https://doi.org/10.1016/j.renene.2017.08.061, 2018.

Roodsari, B. K. and Chandler, D. G.: Distribution of surface imper-
viousness in small urban catchments predicts runoff peak flows

and Raynal-Gutierrez, M. E.:
GEV distribution for
512-522,

Hydrol. Earth Syst. Sci., 29, 5165-5184, 2025


https://doi.org/10.1111/jfr3.12640
https://doi.org/10.1023/A:1024770124523
https://doi.org/10.5194/hess-11-1515-2007
https://doi.org/10.1016/j.jhydrol.2020.124630
https://doi.org/10.1002/hyp.7168
https://doi.org/10.32614/CRAN.package.EnvStats
https://doi.org/10.1126/science.1151915
https://doi.org/10.17221/153/2017-SWR
https://doi.org/10.1016/j.jhydrol.2020.125198
https://doi.org/10.15292/acta.hydro.2019.06
https://doi.org/10.1029/2001WR000502
https://doi.org/10.15672/HJMS.20159514081
https://doi.org/10.1016/j.jhydrol.2003.12.031
https://doi.org/10.5194/hess-16-3149-2012
https://doi.org/10.24018/ejeng.2021.6.1.2300
https://doi.org/10.5194/hess-26-149-2022
https://doi.org/10.5194/hess-26-149-2022
https://doi.org/10.29220/CSAM.2019.26.3.239
https://doi.org/10.1007/s40808-020-00954-z
https://doi.org/10.5194/hess-18-5041-2014
https://doi.org/10.5194/ascmo-11-23-2025
https://doi.org/10.1016/0022-1694(94)90055-8
https://doi.org/10.1016/0022-1694(94)90055-8
https://doi.org/10.32614/CRAN.package.coda
https://doi.org/10.1038/s41558-020-00972-w
https://doi.org/10.1038/s41558-020-00972-w
https://doi.org/10.3390/su152216020
https://doi.org/10.3389/fnano.2022.972421
https://www.R-project.org/
https://doi.org/10.1016/j.jhydrol.2014.07.045
https://doi.org/10.1016/j.renene.2017.08.061

5184 L. Gruss et al.: Evaluation of the Dual Gamma Generalized Extreme Value distribution

and stream flashiness, Hydrological Processes, 31, 2990-3002,
https://doi.org/10.1002/hyp.11230, 2017.

Rutkowska, A.: Properties of the Cox—Stuart Test for Trend in Ap-
plication to Hydrological Series: The Simulation Study, Commu-
nications in Statistics — Simulation and Computation, 44, 565—
579, https://doi.org/10.1080/03610918.2013.784988, 2015.

Rutkowska, A., Kohnovd, S., Banasik, K., Szolgay, J., and
Karabova, B.: Probabilistic properties of a curve number: A case
study for small Polish and Slovak Carpathian Basins, J. Mt. Sci.,
12, 533-548, https://doi.org/10.1007/s11629-014-3123-0, 2015.

Sampaio, J. and Costa, V.: Bayesian regional flood frequency
analysis with GEV hierarchical models under spatial depen-
dency structures, Hydrological Sciences Journal, 66, 422-433,
https://doi.org/10.1080/02626667.2021.1873997, 2021.

Silva, W. V. M. and Do Nascimento, F. F.: MCMC4Extremes: an R
package for Bayesian inference for extremes and its extensions,
Communications in Statistics — Simulation and Computation,
51, 432-442, https://doi.org/10.1080/03610918.2019.1653914,
2022.

Smith, R. L.: Maximum likelihood
class of nonregular cases, Biometrika, 72,
https://doi.org/10.1093/biomet/72.1.67, 1985.

Sraj, M., Viglione, A., Parajka, J., and Bléschl, G.: The influence
of non-stationarity in extreme hydrological events on flood fre-
quency estimation, Journal of Hydrology and Hydromechanics,
64, 426-437, https://doi.org/10.1515/johh-2016-0032, 2016.

Stephenson, A.: evd: Functions for Extreme Value Distributions
[code], https://doi.org/10.32614/CRAN.package.evd, 2024.

Svensson, C., Kundzewicz, W. Z., and Maurer, T.: Trend detec-
tion in river flow series: 2. Flood and low-flow index series/Dé-
tection de tendance dans des séries de débit fluvial: 2. Séries
d’indices de crue et d’étiage, Hydrological Sciences Journal, 50,
6, https://doi.org/10.1623/hysj.2005.50.5.811, 2005.

Szulczewski, W. and Jakubowski, W.: The Application of Mix-
ture Distribution for the Estimation of Extreme Floods in Con-
trolled Catchment Basins, Water Resour. Manage., 32, 3519—
3534, https://doi.org/10.1007/s11269-018-2005-6, 2018.

Tabari, H., Hosseinzadehtalaei, P., Thiery, W., and Willems, P.:
Amplified Drought and Flood Risk Under Future Socioeco-
nomic and Climatic Change, Earth’s Future, 9, e2021EF002295,
https://doi.org/10.1029/2021EF002295, 2021a.

Tabari, H., Moghtaderi Asr, N., and Willems, P.: Developing a
framework for attribution analysis of urban pluvial flooding
to human-induced climate impacts, Journal of Hydrology, 598,
126352, https://doi.org/10.1016/j.jhydrol.2021.126352, 2021b.

ter Braak, C. J. F. and Smilauer, P: Canoco, https:/www.
microcomputerpower.com/ (last access: 28 June 2025), 2019.

Tomczyk, P., Wierzchowski, P. S., Dobrzynski, J., Kulkova, I.,
Wrébel, B., Wiatkowski, M., Kuriqi, A., Skorulski, W., Ka-
bat, T., Prycik, M., Gruss, L., and Drobnik, J.: Effective mi-
croorganism water treatment method for rapid eutrophic reser-
voir restoration, Environ. Sci. Pollut. Res., 31, 2377-2393,
https://doi.org/10.1007/s11356-023-31354-2, 2023.

estimation in a
67-90,

Hydrol. Earth Syst. Sci., 29, 5165-5184, 2025

Tyralis, H., Papacharalampous, G., and Tantanee, S.: How to
explain and predict the shape parameter of the general-
ized extreme value distribution of streamflow extremes us-
ing a big dataset, Journal of Hydrology, 574, 628-645,
https://doi.org/10.1016/j.jhydrol.2019.04.070, 2019.

Ul Hassan, M., Hayat, O., and Noreen, Z.: Selecting the
best probability distribution for at-site flood frequency anal-
ysis; a study of Torne River, SN Appl. Sci., 1, 1629,
https://doi.org/10.1007/s42452-019-1584-z, 2019.

Valentini, M. H. K., Beskow, S., Beskow, T. L. C., De Mello,
C. R., Cassalho, F, and Da Silva, M. E. S.: At-site flood
frequency analysis in Brazil, Nat. Hazards, 120, 601-618,
https://doi.org/10.1007/s11069-023-06231-3, 2024.

Valeo, C. and Rasmussen, P.: Topographic Influences on Flood Fre-
quency Analyses, Canadian Water Resources Journal, 25, 387—
406, https://doi.org/10.4296/cwrj2504387, 2000.

Vats, D. and Knudson, C.: Revisiting the Gelman—Rubin Diagnos-
tic, Statist. Sci., 36, https://doi.org/10.1214/20-STS812, 2021.
Villarini, G. and Smith, J. A.: Flood peak distributions
for the eastern United States, Water Resources Research,
46, 2009WRO008395, https://doi.org/10.1029/2009WR008395,

2010.

Vogel, R. M. and Wilson, I.: Probability Distribution
of Annual Maximum, Mean, and Minimum Stream-
flows in the United States, J. Hydrol. Eng., 1, 69-76,
https://doi.org/10.1061/(ASCE)1084-0699(1996)1:2(69), 1996.

Willems, P.: Revision of urban drainage design rules after as-
sessment of climate change impacts on precipitation extremes
at Uccle, Belgium, Journal of Hydrology, 496, 166-177,
https://doi.org/10.1016/j.jhydrol.2013.05.037, 2013.

Wuertz, D., Setz, T., and Chalabi, Y.: fExtremes: Rmet-
rics — Modelling Extreme Events in Finance [code],
https://doi.org/10.32614/CRAN.package.fExtremes, 2023.

Xu, Y. and Goodacre, R.: On Splitting Training and Validation
Set: A Comparative Study of Cross-Validation, Bootstrap and
Systematic Sampling for Estimating the Generalization Per-
formance of Supervised Learning, J. Anal. Test., 2, 249-262,
https://doi.org/10.1007/541664-018-0068-2, 2018.

Yadav, S. and Shukla, S.: Analysis of k-Fold Cross-Validation over
Hold-Out Validation on Colossal Datasets for Quality Classifica-
tion, in: 2016 IEEE 6th International Conference on Advanced
Computing (IACC), 2016 IEEE 6th International Conference
on Advanced Computing (IACC), Bhimavaram, India, 78-83,
https://doi.org/10.1109/IACC.2016.25, 2016.

https://doi.org/10.5194/hess-29-5165-2025


https://doi.org/10.1002/hyp.11230
https://doi.org/10.1080/03610918.2013.784988
https://doi.org/10.1007/s11629-014-3123-0
https://doi.org/10.1080/02626667.2021.1873997
https://doi.org/10.1080/03610918.2019.1653914
https://doi.org/10.1093/biomet/72.1.67
https://doi.org/10.1515/johh-2016-0032
https://doi.org/10.32614/CRAN.package.evd
https://doi.org/10.1623/hysj.2005.50.5.811
https://doi.org/10.1007/s11269-018-2005-6
https://doi.org/10.1029/2021EF002295
https://doi.org/10.1016/j.jhydrol.2021.126352
https://www.microcomputerpower.com/
https://www.microcomputerpower.com/
https://doi.org/10.1007/s11356-023-31354-2
https://doi.org/10.1016/j.jhydrol.2019.04.070
https://doi.org/10.1007/s42452-019-1584-z
https://doi.org/10.1007/s11069-023-06231-3
https://doi.org/10.4296/cwrj2504387
https://doi.org/10.1214/20-STS812
https://doi.org/10.1029/2009WR008395
https://doi.org/10.1061/(ASCE)1084-0699(1996)1:2(69)
https://doi.org/10.1016/j.jhydrol.2013.05.037
https://doi.org/10.32614/CRAN.package.fExtremes
https://doi.org/10.1007/s41664-018-0068-2
https://doi.org/10.1109/IACC.2016.25

	Abstract
	Introduction
	Study area
	Methods
	Data collection and extraction of flow extremes
	Trend detection
	Extreme value distributions and parameter calibration methods
	Accuracy measures and scoring rules
	Redundancy analysis
	Assessment of overparameterization and overfitting

	Results and discussion
	Goodness-of-fit results in relation to the trend category
	Goodness-of-fit results in relation to the trend and catchment size categories
	Goodness-of-fit results in relation to the catchment size and peak flow
	Influence of the environmental factors and sample characteristics on the probability distribution parameters
	The GEV distribution
	The GGEV distribution
	The P3 distribution
	The LN3 distribution
	Key points on the influence of environmental factors and sample characteristics

	Overparameterization check

	Conclusions
	Appendix A: Abbreviations and acronyms in alphabetical order
	Code availability
	Data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

