Articles | Volume 29, issue 19
https://doi.org/10.5194/hess-29-5121-2025
https://doi.org/10.5194/hess-29-5121-2025
Research article
 | 
13 Oct 2025
Research article |  | 13 Oct 2025

Climatic, topographic, and groundwater controls on runoff response to precipitation: evidence from a large-sample data set

Zahra Eslami, Hansjörg Seybold, and James W. Kirchner

Related authors

Catchment hydrological response and transport are affected differently by precipitation intensity and antecedent wetness
Julia L. A. Knapp, Wouter R. Berghuijs, Marius G. Floriancic, and James W. Kirchner
Hydrol. Earth Syst. Sci., 29, 3673–3685, https://doi.org/10.5194/hess-29-3673-2025,https://doi.org/10.5194/hess-29-3673-2025, 2025
Short summary
Declining runoff sensitivity to precipitation following permafrost degradation: Insights from event-scale runoff response in the Yellow River source region
Zhuoyi Tu, Taihua Wang, Juntai Han, Hansjörg Seybold, Shaozhen Liu, Cansu Culha, Yuting Yang, and James W. Kirchner
EGUsphere, https://doi.org/10.5194/egusphere-2025-3018,https://doi.org/10.5194/egusphere-2025-3018, 2025
Short summary
Bedrock geology controls on new water fractions and catchment functioning in contrasted nested catchments
Guilhem Türk, Christoph J. Gey, Bernd R. Schöne, Marius G. Floriancic, James W. Kirchner, Loic Leonard, Laurent Gourdol, Richard Keim, and Laurent Pfister
EGUsphere, https://doi.org/10.5194/egusphere-2025-1530,https://doi.org/10.5194/egusphere-2025-1530, 2025
Short summary
Data-Driven Estimation of the hydrologic response via Generalized Additive Models
Quentin Duchemin, Maria Grazia Zanoni, Marius G. Floriancic, Hansjörg Seybold, Guillaume Obozinski, James W. Kirchner, and Paolo Benettin
EGUsphere, https://doi.org/10.5194/egusphere-2025-1591,https://doi.org/10.5194/egusphere-2025-1591, 2025
Short summary
Quantifying controls on rapid and delayed runoff response in double-peak hydrographs using Ensemble Rainfall-Runoff Analysis (ERRA)
Huibin Gao, Laurent Pfister, and James W. Kirchner
EGUsphere, https://doi.org/10.5194/egusphere-2025-613,https://doi.org/10.5194/egusphere-2025-613, 2025
Short summary

Cited articles

Arora, V. K.: The use of the aridity index to assess climate change effect on annual runoff, J. Hydrol., 265, 164–177, https://doi.org/10.1016/S0022-1694(02)00101-4, 2002. 
Ashraf, S., Nazemi, A., and AghaKouchak, A.: Anthropogenic drought dominates groundwater depletion in Iran, Sci. Rep., 11, 9135, https://doi.org/10.1038/s41598-021-88522-y, 2021. 
Barrientos, G., Rubilar, R., Duarte, E., and Paredes, A.: Runoff variation and progressive aridity during drought in catchments in southern-central Chile, Hydrol. Res., 54, 1590–1605, https://doi.org/10.2166/nh.2023.116, 2023. 
Beven, K. and Kirkby, M.: A physically based, variable contributing area model of basin hydrology, Hydrol. Sci. J., 24, 43–69, https://doi.org/10.1080/02626667909491834, 1979. 
Botter, G., Basso, S., Rodriguez-Iturbe, I., and Rinaldo, A.: Resilience of river flow regimes, P. Natl. Acad. Sci. USA, 110, 12925–12930, https://doi.org/10.1073/pnas.1311920110, 2013. 
Download
Short summary
We used a new method to measure how streamflow responds to precipitation across a network of watersheds in Iran. Our analysis shows that streamflow is more sensitive to precipitation when groundwater levels are shallower, climates are more humid, topography is steeper, and drainage basins are smaller. These results are a step toward more sustainable water resource management and more effective flood risk mitigation.
Share