Chen, L.-C. and Bradley, A. A.: Adequacy of using surface humidity to estimate atmospheric moisture availability for probable maximum precipitation, Water Resour. Res., 42, W09410,
https://doi.org/10.1029/2005WR004469, 2006.
a
Clavet-Gaumont, J., Huard, D., Frigon, A., Koenig, K., Slota, P., Rousseau, A., Klein, I., Thiémonge, N., Houdré, F., Perdikaris, J., Turcotte, R., Lafleur, J., and Larouche, B.: Probable maximum flood in a changing climate: An overview for Canadian basins, Journal of Hydrology: Regional Studies, 13, 11–25,
https://doi.org/10.1016/j.ejrh.2017.07.003, 2017.
a,
b,
c
DTN and MGS Engineering: Probable maximu
m precipitation guidelines for British Columbia, Tech. Rep. Bulletin 2020-3-PMP, British Columbia Ministry of Forests, Lands, Natural Resources Operations, and Rural Development, 2020. a
Environmental Water Resources Group Ltd.: Assessment of potential impact of climate change on probable maximum precipitation applicable to nuclear facilities in Canada, Tech. Rep. R723.1, Canadian Nuclear Safety Commission (CNSC), 2020. a
Hansen, E. M.: Probable maximum precipitation estimates: United States between the Continental Divide and the 103rd meridian, Tech. Rep. 55A, United States Office of Hydrology, Hydrometeorological Branch; United States Army, Corps of Engineers, Washington D.C.,
https://repository.library.noaa.gov/view/noaa/7154 (last access: 12 September 2025), 1988. a
Hershfield, D. M.: Rainfall frequency atlas of the United States, Tech. rep., United States Weather Bureau, 1961b. a
Johnson, N. L., Kotz, S., and Balakrishnan, N.: Continuous univariate distributions, 2nd edn., vol. 2, John Wiley & sons, ISBN 978-0-471-58494-0, 1995.
a,
b,
c,
d
Koutsoyiannis, D.: A probabilistic view of Hershfield's method for estimating probable maximum precipitation, Water Resour. Res., 35, 1313–1322,
https://doi.org/10.1029/1999WR900002, 1999.
a
Kunkel, K. E., Karl, T. R., Easterling, D. R., Redmond, K., Young, J., Yin, X., and Hennon, P.: Probable maximum precipitation and climate change, Geophys. Res. Lett., 40, 1402–1408,
https://doi.org/10.1002/grl.50334, 2013.
a,
b
Martins, E. and Stedinger, J.: Generalized maximum likelihood GEV quantile estimators for hydrologic data, Water Resour. Res., 36, 737–744,
https://doi.org/10.1029/1999WR900330, 2000.
a
Miller, J. F.: Probable maximum precipitation and rainfall-frequency data for Alaska for areas to 400 square miles, durations to 24 hours and return periods from 1 to 100 years, Technical paper 47, Weather Bureau, United States Department of Commerce Washington, D.C., 1963. a
National Academies of Sciences, Engineering, and Medicine: Modernizing Probable Maximum Precipitation estimation, Washington D.C., the national academies press edition, ISBN 978-0-309-71511-9,
https://doi.org/10.17226/27460, 2024.
a,
b,
c,
d
Naveau, P., Huser, R., Ribereau, P., and Hannart, A.: Modeling jointly low, moderate, and heavy rainfall intensities without a threshold selection, Water Resour. Res., 52, 2753–2769, 2016. a
Papalexiou, S. M. and Koutsoyiannis, D.: Battle of extreme value distributions: A global survey on extreme daily rainfall, Water Resour. Res., 49, 187–201,
https://doi.org/10.1029/2012WR012557, 2013.
a
Rouhani, H., and Leconte, R.: A novel method to estimate the maximization ratio of the Probable Maximum Precipitation (PMP) using regional climate model output, Water Resour. Res., 52, 7347–7365,
https://doi.org/10.1002/2016WR018603, 2016.
a
Rouhani, H. and Leconte, R.: A methodological framework to assess PMP and PMF in snow-dominated watersheds under changing climate conditions – A case study of three watersheds in Québec (Canada), J. Hydrol., 561, 796–809,
https://doi.org/10.1016/j.jhydrol.2018.04.047, 2018.
a,
b
Rousseau, A. N., Klein, I. M., Freudiger, D., Gagnon, P., Frigon, A., and Ratté-Fortin, C.: Development of a methodology to evaluate probable maximum precipitation (PMP) under changing climate conditions: Application to southern Quebec, Canada, J. Hydrol., 519, 3094–3109,
https://doi.org/10.1016/j.jhydrol.2014.10.053, 2014.
a,
b
Schreiner, L.-C. and Riedel, J. T.: Probable maximum precipitation estimates, United States east of the 105th meridian, Tech. Rep. 51, United States, Office of Hydrology, Hydrometeorological Branch; United States, Army, Corps of Engineers, Washington D.C.,
https://repository.library.noaa.gov/view/noaa/6499 (last access: 12 September 2025), 1978. a
United States Weather Bureau: Generalized estimates of probable maximum precipitation for the United States west of the 105th meridian for areas to 400 square miles and durations to 24 hours, Technical paper 38, Weather Bureau, United States Department of Commerce Washington, D.C.,
https://www.weather.gov/media/owp/oh/hdsc/docs/TP38.pdf (last access: 12 September 2025), 1960. a
Visser, J. B., Kim, S., Wasko, C., Nathan, R., and Sharma, A.: The impact of climate change on operational probable maximum precipitation estimates, Water Resour. Res., 58, e2022WR032247,
https://doi.org/10.1029/2022WR032247, 2022.
a,
b
WMO: Manual on estimation of Probable Maximum Precipitation (PMP), World Meteorological Organization (WMO), Geneva, ISBN 978-926-3103045-9, 2009.
a,
b,
c,
d,
e,
f,
g,
h,
i,
j,
k,
l