Articles | Volume 29, issue 18
https://doi.org/10.5194/hess-29-4711-2025
https://doi.org/10.5194/hess-29-4711-2025
Research article
 | 
29 Sep 2025
Research article |  | 29 Sep 2025

Assessing multivariate bias corrections of climate simulations on various impact models under climate change

Denis Allard, Mathieu Vrac, Bastien François, and Iñaki García de Cortázar-Atauri

Related authors

A non-stationary trans-Gaussian model for daily rainfall over complex topography
Lionel Benoit, Matthew P. Lucas, Denis Allard, Keri M. Kodama, and Thomas W. Giambelluca
EGUsphere, https://doi.org/10.5194/egusphere-2025-2181,https://doi.org/10.5194/egusphere-2025-2181, 2025
Short summary
Distribution-based pooling for combination and multi-model bias correction of climate simulations
Mathieu Vrac, Denis Allard, Grégoire Mariéthoz, Soulivanh Thao, and Lucas Schmutz
Earth Syst. Dynam., 15, 735–762, https://doi.org/10.5194/esd-15-735-2024,https://doi.org/10.5194/esd-15-735-2024, 2024
Short summary

Cited articles

Adeyeri, O. E., Zhou, W., Laux, P., Ndehedehe, C. E., Wang, X., Usman, M., and Akinsanola, A. A.: Multivariate Drought Monitoring, Propagation, and Projection Using Bias-Corrected General Circulation Models, Earth's Future, 11, e2022EF003303, https://doi.org/10.1029/2022EF003303, 2023. a
Ahn, K.-H., de Padua, V. M. N., Kim, J., and Yi, J.: Impact of diverse configuration in multivariate bias correction methods on large-scale hydrological modelling under climate change, J. Hydrol., 627, 130406, https://doi.org/10.1016/j.jhydrol.2023.130406, 2023. a, b, c, d, e
Allard, D., François, B., García de Cortázar-Atauri, I., and Vrac, M.: Multivariate bias corrections of climate simulations seen through impact model, HAL-INRAE [data set], 2023 (data available at: https://doi.org/10.5194/esd-11-537-2020). a, b, c, d, e, f, g, h, i, j, k, l, m
Allard, D., Bastien, F., García de Cortázar-Atauri, I., and Vrac, M.: Dataset for “Agroclimatic indicators with multivariate bias correction methods”, Recherche Data Gouv [data set], https://doi.org/10.57745/TUIHKT, 2024. a
Allen, R., Pereira, L., and Smith, M.: Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56, vol. 56, 1998. a, b
Download
Short summary
Atmospheric variables from climate models often present biases relative to the past. In order to use these models to assess the impact of climate change on processes of interest, it is necessary to correct these biases. We tested several Multivariate Bias Correction Methods (MBCMs) for 5 physical variables that are input variables for 4 process models. We provide recommendations regarding the use of MBCMs when multivariate and time dependent processes are involved.
Share