Hydrol. Earth Syst. Sci., 29, 4711-4738, 2025
https://doi.org/10.5194/hess-29-4711-2025

© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.

Hydrology and
Earth System
Sciences

Assessing multivariate bias corrections of climate simulations on
various impact models under climate change

Denis Allard', Mathieu Vrac?, Bastien Fran(;ois3 , and Ifiaki Garcia de Cortazar-Atauri

'INRAE, BioSP, Avignon 84914, France

4

2Laboratoire des Sciences du Climat et de I’Environnement (LSCE-IPSL), CEA/CNRS/UVSQ, Université Paris-Saclay,
Centre d’Etudes de Saclay, Orme des Merisiers, 91191 Gif-sur-Yvette, France
3Royal Netherlands Meteorological Institute (KNMI), Research and Development Weather

and Climate (RDWK), De Bilt, the Netherlands
4INRAE, Agroclim, Avignon 84914, France

Correspondence: Denis Allard (denis.allard @inrae.fr)

Received: 5 April 2024 — Discussion started: 28 August 2024

Revised: 14 July 2025 — Accepted: 1 August 2025 — Published: 29 September 2025

Abstract. Atmospheric variables simulated from climate
models often present biases relative to the same variables
calculated by reanalysis in the past. In order to use these
models to assess the impact of climate change on pro-
cesses of interest, it is necessary to correct these biases. Cur-
rently, the bias correction methods used operationally cor-
rect one-dimensional time series and are therefore applied
separately, physical variable by physical variable and site by
site. Multivariate bias correction methods have been devel-
oped to better take into account dependencies between vari-
ables and in space. Although the performance of multivariate
bias correction methods for adjusting the statistical proper-
ties of simulated climate variables has already been evalu-
ated, their effectiveness for different impact models has been
little investigated. In this work, we propose a comparison be-
tween two multivariate bias correction methods (R2D2 and
dOTC) in three different configurations (intervariable, spatial
and spatial-intervariable) and a univariate correction (CDF-t)
through several highly multivariate impact models (pheno-
logical stage, reference evapotranspiration, soil water con-
tent, fire weather index) integrating the weather conditions
over a whole season. Our results show that CDF-t does a
fair job in most situations and that there is no single best
MBC method. The performances of multivariate bias cor-
rection methods depend both on some characteristics of the
studied process and on the configuration of the chosen bias
correction method. When all characteristics are important
(multivariate, time cumulative and spatial) it is found that

dOTC in its spatial-intervariable configuration brings im-
provements in most cases and no significant improvement
in some rare cases. We did not find any multivariate cases
where the spatial-intervariable configuration for dOTC per-
forms less well than CDF-t.

1 Introduction

In the context of climate change, anticipating and imple-
menting mitigation and adaptation strategies using climate
model simulations is crucial to understand the possible con-
sequences of future climate on human societies. These pro-
jections are generated by global and regional climate mod-
els (GCMs and RCMs) that are based on well-established
physical principles and constrained by several greenhouse
gas emission scenarios, prescribed for example as part of the
CMIP6 project (Eyring et al., 2016). By using these projec-
tions as input into impact models, consequences of climate
change can be anticipated in a various number of domains,
for instance to investigate changes of vegetation distribu-
tion (e.g., Bachelet et al., 2001; Zhang et al., 2023; Chuine,
2010), agricultural production (e.g., Bezner Kerr et al., 2022;
Wheeler and von Braun, 2013; Zhu et al., 2022), global water
resources (e.g., Bates et al., 2008; Hagemann et al., 2013),
biodiversity (Bellard et al., 2012), spread of epidemic dis-
eases (e.g., Caminade et al., 2014; Chemison et al., 2021).
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Hence, providing reliable climate information is essen-
tial to obtain robust impact assessments. However, despite
considerable scientific progress in climate modeling, climate
simulations often present biases compared to observations.
This means that, even over the historical period, key statisti-
cal properties such as mean, variance or spatial correlations
between physical variables may differ from those observed
(see, e.g., Christensen et al., 2008; Eden et al., 2012; Cat-
tiaux et al., 2013; Mueller and Seneviratne, 2014). Climate
projections for future periods can therefore also be expected
to be biased, making some form of bias adjustment neces-
sary before they can be used as inputs into impact models
(Maraun et al., 2010; Teutschbein and Seibert, 2012). To alle-
viate such errors, many statistical bias correction (BC) meth-
ods have been developed over the last decades and aim to
produce “adjusted” climate simulations. Statistical bias cor-
rection consists in transforming climate model simulations
to align (a selected set of) their statistical features with those
of a reference data set over the historical period. Then, this
transformation can be applied to future simulations to obtain
adjusted outputs for the projection period. Simple univari-
ate statistical features of climate variables can be targeted
for correction, such as the mean (using delta-change, e.g.,
Xu, 1999) or the variance (using scaling of variance, e.g.,
Schmidli et al., 2006; Eden et al., 2012; Berg et al., 2012).
In general, the univariate approaches the most commonly
applied rely on the quantile-mapping technique (e.g., Had-
dad and Rosenfeld, 1997; Déqué, 2007; Michelangeli et al.,
2009; Gudmundsson et al., 2012; Vrac et al., 2012; Cannon
et al., 2015) that adjust not only the simulated mean and vari-
ance but also all percentiles. However, by adjusting simulated
variables separately for each physical variable at each spe-
cific location, univariate bias correction methods are unable
to adjust potential biases in the simulated inter-variable or
spatial properties (e.g., correlations). Studies show that inde-
pendent applications of univariate bias correction methods do
not modify the inter-variable or inter-site dependence struc-
ture of the simulated variables to be corrected (e.g., Wilcke
et al., 2013; Ivanov and Kotlarski, 2017; Vrac, 2018), which
can therefore lead to inappropriate multivariate situations if
these dependencies are not correctly represented in the cli-
mate model. This can have significant consequences when
these corrections are used as inputs into impact models that
rely on non-linear relationships between multiple climate
variables at various spatial and temporal scales. Indeed, if
the statistical dependencies between input climate variables
are not realistically simulated, then biases can propagate to
simulated impacts that depend on multivariate interactions,
regardless of whether simulations are corrected using uni-
variate BC methods (e.g., Boé et al., 2007; Zscheischler et al.,
2019). A correct representation of climatic variables and their
dependencies is thus necessary for many impact studies: for
instance, appropriate inter-variable and spatial properties are
of paramount importance for spatio-temporal wildfire risk as-
sessments that are determined by complex interactions be-
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tween wind, temperature, relative humidity and precipitation
(Senande-Rivera et al., 2022; Barik and Baidya Roy, 2023),
or for flood risk assessments, for which the spatial (and tem-
poral) properties of precipitation, soil moisture and water are
involved (Vorogushyn et al., 2018).

To adjust biases in multivariate dependencies, some mul-
tivariate bias correction (MBC) methods have been recently
developed in the literature. The objective of MBC is funda-
mentally the same as that of univariate BC: transforming cli-
mate model simulations so that selected statistical features
match those of a reference data set over the calibration pe-
riod. The difference with univariate BCs lies in the fact that
statistical features are not only univariate, but also multi-
variate such as inter-variable correlations or spatial copula
structure. MBC methods can be grouped into three categories
based on how they adjust climate simulations (Vrac, 2018;
Robin et al., 2019; Frangois et al., 2020): (1) most methods
belong to the “marginal/dependence” category that gathers
MBCs adjusting separately univariate distributions and de-
pendence properties. For precipitation outputs of RCMs, Bér-
dossy and Pegram (2012) proposed a correction of the spatial
structure using matrix recorrelation or sequential correlation
based on copulas. For correcting spatiotemporal biases for
multiple variables, Cannon (2018) proposed an image pro-
cessing technique for multivariate and spatial bias correc-
tion. Mehrotra and Sharma (2019) and Guo et al. (2019) pro-
posed a modification of the ranks (obtained from the empir-
ical quantiles) based on resampling for the former and shuf-
fling for the latter. In the same spirit, but based on CDF-t for
the univariate correction instead a simple quantile mapping,
Vrac (2018) and Vrac and Thao (2020) proposed a “Rank
Resampling for Distributions and Dependenceis” bias cor-
rection (R2D2), which will be detailed later. In principle,
these approaches are not limited in terms of the number of
variables, grid points in space, and the time scale consid-
ered. Nahar et al. (2018) proposed an independent compo-
nent analysis approach to correct biases at multiple locations
conjointly, but this approach must be applied independently
to each climate variable. Nguyen et al. (2019) considered a
bias correction approach for time series using the spectrum
in the frequency domain, applicable to multivariate time se-
ries or to several grid cells. Francois et al. (2021) proposed
Cycle-GAN, a cycle-consistent adversarial network for the
adjustment of spatial dependence structures of climate model
projections. (2) the “successive conditional” correction ap-
proach, that adjusts the different simulated variables suc-
cessively and conditionally on the previously adjusted ones
(e.g., Piani and Haerter, 2012; Dekens et al., 2017). (3) The
“all-in-one” category that consists of MBCs simultaneously
adjusting univariate and multivariate properties of climate
simulations. Pan et al. (2021) proposed to learn an adversar-
ial neural network for spatially coherent corrections of daily
precipitations, while Robin et al. (2019) use optimal trans-
port theory for multivariate and spatially coherent bias cor-
rections.
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Due to the differences in the applicability of the various
MBC methods, as well as their various underlying assump-
tions and statistical methods used, the quality of multivariate
bias-adjusted outputs can differ (Francois et al., 2020; Guo
et al., 2020). Francois et al. (2020) carried out an intercom-
parison study of four MBC methods to adjust simulated tem-
perature and precipitation outputs. Results show that half of
the methods were able to reasonably correct simulated inter-
variable and spatial dependence structures, while some of
them presented instability issues. However, even if multivari-
ate bias-adjusted outputs have appropriate statistical proper-
ties, differences of quality can potentially transfer into the
often non-linear impact model outputs. More generally, the
uncertainty introduced by bias correction in the impact mod-
eling chain, in addition to the other sources of uncertainty
(e.g., choice of climate models, forcing scenarios and im-
pact models), requires to be explored on a case-by-case basis
(Rotter et al., 2012; Tao et al., 2018). Regarding univariate
BC methods, recent studies have demonstrated their effec-
tiveness for specific regional impact studies, for instance for
hydrological purposes (e.g., Teutschbein and Seibert, 2012;
Chen et al., 2013; Hakala et al., 2018), forest fire prevention
(e.g., Yang et al., 2015; Casanueva et al., 2018) or agriculture
applications (e.g., Oettli et al., 2011; Laux et al., 2021). How-
ever, for multivariate BC methods, their suitability for impact
studies is the subject of debates within the scientific com-
munity. While, for a specific hydrological application, Rity
et al. (2018) found that using MBC methods is not necessar-
ily beneficial compared to using less sophisticated univariate
BC methods, other studies demonstrated their added value,
for instance to improve the realism of simulated multivari-
ate fire weather indices (e.g., FWI, Cannon, 2018; Casanueva
et al., 2018; Zscheischler et al., 2019), multivariate drought
indices (Adeyeri et al., 2023; Ansari et al., 2023), simulated
carbon cycle (Teckentrup et al., 2023), impact on crop mod-
eling (Galmarini et al., 2024) or hydrological impact projec-
tions (Chen et al., 2018; Meyer et al., 2019; Singh and Reza
Najafi, 2020; Su et al., 2020; Tootoonchi et al., 2022; Vogel
et al., 2023), although these benefits being less pronounced
in non-stationary contexts (Guo et al., 2020; Van de Velde
et al., 2022). These conflicting results could be potentially
explained by the fact that these studies sometimes apply a
set of methods in a limited number of dimensional config-
urations that does not allow the BC-induced uncertainty to
be adequately covered. Also, these studies often use impact
indicators that depend on statistical features of climate vari-
ables that are not necessarily adjusted by MBC methods (e.g.,
temporal properties). Identifying all the statistical character-
istics involved in impact metrics is an important aspect to bet-
ter understand the outputs from impact models and to provide
the nuances needed to correctly assess performances of MBC
methods. In addition, a large majority of these studies applies
MBCs to adjust simulated univariate and inter-variable prop-
erties in low dimensional contexts and discarding spatial con-
sideration (with the exception of Ahn et al., 2023) while the
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accurate representation of spatial dependence is also relevant
to many impact studies. A more comprehensive overview of
the effectiveness of the MBC methods for impact models
is therefore needed, not only by considering several MBC
methods and different impact metrics, but also by assessing
their capacity to provide reliable spatial information that is
essential for impact studies.

In this study, which can be seen as a follow-up of Francois
et al. (2020), we present an analysis of two multivariate
bias correction methods applied to adjust the inter-variable
and/or spatial dependence structures of 5 physical variables
(daily mean temperature, total precipitation, near-surface
wind speed, short-wave downwelling radiation and near-
surface relative humidity). This study thus complements the
analysis on crop models in Galmarini et al. (2024) which
showed the added value of multivariate bias correction meth-
ods on yield but did not include a spatial dimension, as well
as the findings reported in Ahn et al. (2023) which focused on
hydrological applications using only three climate variables
(daily precipitation, minimum and maximum daily tempera-
tures).

We focus in particular our analysis on MBC methods that
present stable results in high-dimensional contexts, accord-
ing to Francois et al. (2020). We evaluate their performances
using four impact metrics (phenological stage, evapotran-
spiration, soil water content and fire weather index) from
agronomic and forest impact models for three subregions of
France in order to better understand the influence of MBCs.
A univariate BC method is also included in the study to
assess the potential benefits of considering multivariate as-
pects. In addition to providing a diversified intercomparison
framework, the three subregions were chosen to provide rel-
evant adjusted data to climate services that can be reused in
the scientific community. This permits to have an extensive
overview of the performance of the multivariate bias correc-
tion methods for impact studies and further identifying their
advantages and limits.

This paper is organized as follows: Section 2 describes the
climate model and reference data, the agronomic and forest
impact models and the multivariate correction methods. The
experiment setup and the statistical analyses — focusing on
spatial features — are presented in Sect. 3, as well as the no-
tion of Effective Sample Size, central to the hypothesis test-
ing in a spatio-temporal context. Section 4 presents key se-
lected results among those obtained. Finally, our findings are
summarized in Sect. 5, along with guidelines for users, ele-
ment of discussions and perspectives for future research.

2 Data, models and bias correction methods
2.1 Model simulations and reference data

The climate model used in this study is the IPSL-CMO6A-
LR coupled model (Boucher et al., 2020) developed at the
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Institut Pierre-Simon Laplace (IPSL), part of the 6th Cou-
pled Models Intercomparison Project (CMIP6, Eyring et al.,
2016). Daily values of 5 physical variables that are used as
input variables for impact models have been extracted over a
historical period (1985-2014), which will be used for com-
parison and calibration, and a future period (2036-2065):
daily mean temperature (tas), total precipitation (pr), near-
surface wind speed (scfWind), short-wave downwelling radi-
ation (rsds) and near-surface relative humidity (hurs). We se-
lected the sspS85 (SSP5-RCP8.5) scenario, i.e. the scenario
with the highest CO; concentration.

Since our study covers France, the reference data is the
gridded “Systeme d’Analyze Fournissant des Renseigne-
ments Atmosphériques a la Neige” (SAFRAN) reanalysis
dataset (Vidal et al., 2010). Daily time series of the same
5 variables have a 8 km x 8§ km spatial resolution and di-
vide France into 8981 contiguous continental grid cells.
IPSL-CM6A-LR data, available at the 2.5° x 1.3° resolution,
were regridded to the SAFRAN resolution using the nearest-
neighbor technique.

Since the historical reference data SAFRAN is available
for the same period (1985-2014), a statistical comparison
between bias corrected time series and reference is possible.
Then, during the future period, comparison between the pro-
jection and the historical periods are possible for each bias
correction method. Moreover, comparison between bias cor-
rected projections is also possible.

Three contrasted regions of France were selected, see
Fig. 1: Brittany (North-West part of France, 259 grid cells),
Ile-de-France (the region around Paris, 319 grid cells) and
Provence (South-East part of France, 337 grid cells). In the
latter, some grid cells are located in the Alps, with quite high
mean elevation, up to 2900 m. In these grid cells the tem-
peratures are significantly lower and the precipitations are
significantly higher than in other locations of the region.

2.2 Impact models

The physical variables described above are used as input vari-
ables for several process models in order to compute indica-
tors. Four impact models have been selected based on their
characteristics, which are listed in Table 1 with their main
characteristics. They are briefly discussed here before being
detailed in the rest of this section. The widely used reference
evapotranspiration, ETO0, is computed on a daily basis. Dif-
ferent phenological plant models have been used to describe
main phenological stages, which depend only on Tempera-
ture. They provide one date for each phenological stage per
season. Here, we will use flowering stage (FLO). Then, us-
ing a complete plant model, a cumulative water balance is
computed every day. We will use as indicator the Soil Wa-
ter Content (SWC). Finally, the Fire Weather Index (FWI),
which is a danger indicator for forest wildfires, is also com-
puted. In summary, FLO depends only on temperature and is
cumulative. SWC, ETO and FWI return daily values involv-
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ing all physical variables, except ETO which does not include
Precipitation. All indicators are cumulative, except ETO.

2.2.1 Reference evapotranspiration

The reference evapotranspiration, ETO (in mm), is a classi-
cal and very informative indicator allowing to describe the
plant-soil water losses during the day. It is computed directly
from all variables except precipitation, using the Penman—
Monteith formula (Allen et al., 1998), independently to any
chosen plant model. ETO is computed every day of the year,
separately at each grid cell. As indicated in Table 1, ETO de-
pends thus on marginal and inter-variable properties, with no
time integration.

2.2.2 Flowering

Phenology is considered as the first biophysical indicator of
climate change (Menzel et al., 2006) and it is currently used
to explore crops climate suitability (Caubel et al., 2015). We
propose to use simple phenological models to simulate main
phenological stages for different crops. Most of these mod-
els depend on the accumulation of temperature only (Chuine
et al., 2013). Three plant models, among the major crops
cultivated in France, have been selected: wheat, maize and
grapevine.

— Wheat is mostly cultivated in and around Ile-de-France,
but wheat fields can be found anywhere in France, ex-
cept at high elevations. Flowering stage corresponds to a
sum of positive temperature equal to 375 taking into ac-
count previous phenological stages which also depend
on photoperiod (not affected by the methods described
below). Sowing date was set to October 1st, every year
and for all grid cells.

— A short-cycle variety was chosen for maize in order
to achieve late phenological stages in the Northern re-
gions (Brittany and Ile-de-France). Flowering stage cor-
responds to a sum of effective temperature (above 6°)
equal to 120 from the sowing date. Since no irriga-
tion was introduced, water deficit can be expected in
the Southern region (Provence). Sowing date was set to
10 April, every year and for all grid cells.

— Vineyards are very common in Provence (except in the
Alps), possible in the Ile-de-France region (e.g. nearby
Champagne) and they are being recently developed in
Brittany. A rather ubiquitous variety, Chardonay, was
chosen. There is no sowing date for grapevines, but
the whole model was re-initialized August 1st of the
previous year and calculated intermediate phenological
stages (as dormancy and budbreak).

We calculated the flowering stage (FLO) for all the three
species because it is an important phenological stage which
allow to characterize crop potential production. Moreover,
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Figure 1. Top: map of France showing the three studied regions in France: Brittany (North-West), Ile-de-France (North-center) and Provence
(South-East). Middle and bottom: summer (JJA) mean temperature (a—c) and mean daily precipitation (d—f) using SAFRAN database over
the three studied regions and the 1985-2014 period: Brittany (a, d), Ile-de-France (b, d) and Provence (c, f). In Ile-de-France, the Paris hot
spot is visible in the middle of the domain (b). In Provence, the influence of the Alps, with lower temperatures and higher precipitations in
the North-Eastern part of the region than elsewhere is visible in the upper right corner (c, f).
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Table 1. Main features of the different impact model indicators.

D. Allard et al.: MBC through impact models

Acronym

Time integration

Multivariate ~ Daily

Evapotranspiration ~ ETO
Phenological stage ~ FLO
Soil Water Content SWC
Fire Weather Index FWI

v v

NSNS X

X X
v v
v v

flowering is the latest stage reached in most grid cells and
years, except perhaps in the grid cells covering high moun-
tains in the Provence domain. For one given year, FLO is thus
the date, expressed in Julian days. The interest of these phe-
nological models is that depend thus only on univariate prop-
erties and it is time cumulative. Global framework and mod-
els are described in (Caubel et al., 2015), see also Maury et al.
(2021) and Garcia de Cortdzar-Atauri and Maury (2019). All
the phenological models were translated into R scripts.

2.2.3 Water balance model

We also calculated the Soil Water Content (SWC) using a
simplified water balance model (Allen et al., 1998). This
model combines the reference evapotranspiration (ETO —
above described) and the daily precipitation over the time,
by computing SWC; = SWC;_1 + (pr, — k- ET0;)/d, where
d is the depth of the soil and k is a constant depending on
the considered crop. The evolution of the amount of water
available in the soil also takes into account the type of crop
planted in the soil (using the coefficient k). SWC is the daily
water content in the soil, expressed as a percentage of the to-
tal quantity available (the “Water Reserve”), taking into ac-
count a soil description. SWC involves all 5 variables and it
has a strong temporal component relating to the temporal oc-
currence of precipitation. With this indicator, it is possible to
assess whether or not the MBCs are able to correct a highly
non-linear transformation of the 5 variables. In comparison
to ETO, since SWC is cumulative, it will be possible to as-
sess the effect of the MBCs on time-correlated outputs.

Early sensitivity tests have shown that when changing
these parameters, even though some differences were visible
in the SWC values, the conclusions in terms of bias correc-
tion methods that will be reported later remained unchanged
(not shown). In order to keep the experimental design at a
manageable size, we decided to run the full study for a sin-
gle soil type. This choice also avoids problems of soil hetero-
geneity in each region and allows us to catch as much climate
effect as possible.Thus, a deep soil (d = 140 cm), with more
than 200 mm useful water reserve and moderate soil water
capacity (28 % at field capacity and 35 % at saturation) was
chosen for all grid cells in all regions.

Hydrol. Earth Syst. Sci., 29, 4711-4738, 2025

2.2.4 Fire Weather Index

With nearly one third of Metropolitan France (mainland
France and Corsica, without overseas territories) covered by
woods and forests, France has among Europe’s highest for-
est cover (MTES, 2024). Apart from providing resources and
recreational activities, the forest plays a key role in climate
regulation, the water cycle, and soil preservation including
its role as biodiversity reservoir, carbon sink and in erosion
control. However, weather conditions such as drought, tem-
perature and wind have strong influence on the forests’ vul-
nerability to fire and its potential for spreading. Between
2007 and 2019, wildfires destroyed around 11 500 ha of for-
est per year in Metropolitan France. In 2022, over 59 000 ha
of forests were destroyed (https://bdiff.agriculture.gouv.fr/
incendies, last access: 25 September 2025). Climate change
increases the weather-induced component of the forest fire
risk across France and Europe (Dupuy et al., 2020; Fargeon
et al., 2020; Ruffault et al., 2020). The Fire Weather Index
(Van Wagner, 1987) summarizes the effects of wind, tem-
perature, humidity and precipitation into a single index used
by the national security services as a danger rating system
for forest wildfires. In theory, the FWI is determined ev-
ery day from the FWI value of the preceding day and from
noon weather readings: temperature, relative humidity, wind
speed, and rain (if any). Similarly to SWC, FWI depends thus
on marginal, inter-variable and temporal properties, the latter
not being accounted for in the tested correction methods of
this study. In this work, FWI is daily computed based on sim-
ulation or reanalysis data instead of meteorological readings,
using the R package cffdrs (Wang et al., 2017).

2.3 Multivariate bias correction methods

Multivariate Bias Correction methods (MBC) must be cho-
sen for their capacity to correct the biases and their spatial
properties over large geographical areas. Following the dis-
cussion in Francois et al. (2020), good candidates are dOTC
(dynamical Optimal Transport Correction) and R2D2 (Rank
Resampling for Distributions and Dependencies). These
methods are briefly recalled here and we refer to Francgois
et al. (2020) and the original papers referenced therein for a
more in-depth presentation.

R2D2, proposed in Vrac (2018) consists in two steps. In
the first step, each climate variable is adjusted using a uni-
variate bias correction method. In this work, CDF-t (de-
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scribed below) is used, but other methods could be used. The
second step is essentially a re-ordering technique, called the
Schaake Shuffle (Clark et al., 2004) which reorders a sample
such that the rank structure corresponds to the rank structure
of a reference sample. A reference dimension (i.e. one phys-
ical variable at one given site) is selected, for which the rank
chronology of the simulations remains unchanged. Recon-
struction of the inter-variable and spatial rank correlations of
the reference is then performed, while preserving the rank
temporal dynamics for the reference dimension. It must be
emphasized that, by construction, R2D2 assumes the inter-
variable and spatial rank correlations to be stationary in time.
While this may appear to be a strong assumption, Vrac et
al. (2022) showed that it serves as a conservative hypothesis.
This prevents climate models from exhibiting over-varying
inter-variable correlations that do not correspond to actual
(historical) evolutions (Vrac et al., 2023). Assuming a sta-
tionary copula corresponding to reference data is thus a safe
choice.

dOTC (Robin et al., 2019) corrects the marginal distribu-
tions and the multivariate dependence at the same time. It
is a generalization of the univariate quantile mapping ap-
proach to the multivariate case. Based on optimal transport
theory, it builds a transfer plan, which is a multivariate trans-
fer function from one multivariate distribution to another,
that minimizes a cost function based on an energy criterion.
Two important differences between R2D2 and dOTC are that
dOTC does not single out a particular “reference dimension”
and that dOTC does not assume the stationarity of copula
structure between the calibration and the projection periods.
dOTC is designed to transfer some of the multivariate prop-
erties” changes between the calibration and the projection pe-
riods from the model to bias corrected data.

As a benchmark, the multivariate dataset is also corrected
using the univariate CDF-t correction method (Michelangeli
et al., 2009). Separately for each variable and at each site,
CDF-t estimates a univariate transfer function, denoted 7,
that links the Cumulative Distribution Function (CDF) of a
climate variable of interest in the model simulations during
calibration period to that of the same variable in the reference
dataset. By assuming that 7 is also valid during the projec-
tion period, a “future reference” CDF can be defined, by ap-
plying T to the future climate model CDF. Then, a quantile-
quantile approach is performed between the new reference
CDF and the CDF from the model simulations during the
projection period. CDF-t is designed to take into account po-
tential simulated changes (between calibration and projec-
tion periods) of the univariate distribution in the correction
procedure. Thus, the bias-corrected data for the projection
period incorporate the model’s projected changes. In the spe-
cific case of precipitations, the “Singularity Stochastic Re-
moval” version of CDF-t (Vrac et al., 2016) is applied, work-
ing the same way as CDF-t but specifically designed to ac-
count for rainfall occurrences.
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3 Experiments and statistical analysis
3.1 Experiments

All indicators (ETO, FLO, SWC, FWI) are computed us-
ing the 5 physical variables described in Sect. 2.1 (tas, pr,
scfWind, rsds and hurs) simulated by the IPSL model gridded
to the SAFRAN 8 km x 8 km mesh (hence, with no correc-
tion) or corrected on the same grid using one of the bias cor-
rection methods: CDF-t, dOTC and R2D2. The MBC meth-
ods dOTC and R2D2 are applied according to the three fol-
lowing configurations:

— The Intervar configuration (I) aims at correcting inter-
variable correlations only: the MBC method corrects
jointly the 5 physical variables at each grid cell of the
domain independently on all other grid cells. In this con-
figuration, the pivot dimension for R2D2 is Temperature
at the considered grid cell.

— The Spatial configuration (S) aims at correcting the spa-
tial correlations for each physical variable separately:
each variable is corrected independently, and for each
variable the Ng vector of all values in the domain is cor-
rected. Here, the pivot dimension for R2D2 is the con-
sidered physical variable at the center of the region.

— The Spatial-Intervar configuration (SI) intents to correct
simultaneously the inter-variable and the spatial corre-
lations of the simulations: the complete SNg vector of
all variables in the domain is corrected at once. In this
configuration, the pivot for R2D2 is the Temperature at
the center of the region.

In addition to the historical reference data SAFRAN, for each
of the three regions, there is thus a total of 8 climate datasets
with the physical variables described in Sect. 2.1 (tas, pr,
scfWind, rsds and hurs): IPSL (gridded to the SAFRAN
8 km x 8 km mesh) and 7 bias corrected datasets. Using those
9 datasets as input variables, ETO and FWI are computed ev-
ery day at all grid cells. Then, for each plant model and at
all grid cells, the SWC is computed every day and FLO is
determined for each year.

In this work, the summer season (92d in June, July and
August) has been selected for analysis because variations of
ETO, SWC and FWTI are expected to be amplified and differ-
ences between MBC configurations largest. In particular, the
Provence region is characterized by high temperatures and
low precipitations in Summer.

3.2 Statistical analysis

Let us denote Z (s, t), one of the output variable, computed at
site s € S and Julian day ¢. There is a total of ng sites in S and
nt Julian days considered for the analysis every year. Mea-
surements (or computations) are repeated during m years of
a period whose climate is considered as being approximately
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constant. The m years are thus assumed to be independent
and identically distributed repetitions of the same spatio-
temporal process. Several summary statistics, described be-
low, are computed for visualization and hypothesis testing.

3.2.1 Univariate statistics

For a given spatio-temporal output Z(s, ), the mean and
variances are computed at each site,

fa(s) = (mnr)~" Y " Z(s, 1)
i=1t=1
&) = (mnp) ™'Y Y (ZGs.ti — 1ils)) (1)

i=1t=1

where #; denotes the Julian day ¢ in year i. From these, biases
and variances can be computed at each location s according
to

Bias(s) = ity (s) — g (s); VarRatio(s) = Eé(s)/?c\]% ), @

where the index M refers to one of the models (with or with-
out bias correction) and R stands for “Reference”. These lo-
cal statistics can be represented as maps or summarized as
boxplots, but in this case the spatial information is lost.

3.2.2 Spatial covariance and Moran’s 1

In order to assess the spatial structure in Z(s,t), the spa-
tial auto-covariance at short distances is computed assum-
ing second-order stationarity. It is known that given the
size of the domains under consideration (from 16000 to
22000 km?) and the complex topographic structures, in par-
ticular in Provence, one must expect that the mean and
variance of Z(s,t) vary in space. However, a locally sta-
tionary assumption is possible, at least in Brittany and Ile-
de-France, at the 40 km scale, which corresponds approxi-
mately to 5 SAFRAN grid meshes. For a given spatial lag
ke{-5,—-4,...,4,5} x{=5,—4,...,4,5} the empirical spa-
tial covariance is

Cll) = (mnrns(0) ™' YD " (Z(s.1) — ls))

i=1 t;=1 seS;

(Z(s+k, 1) — (s +h), 3

where Sy is the restriction of S with ng(k) elements such
that both s and s + k are in S.

Moran’s I (Moran, 1950) is a widely used measure of spa-
tial auto-correlation at short distances. We use here a local,
un-normalized version of Moran’s I given by

1 m_ n;
[P e
mnyy (Y o Ws.g ;;zs:;w PAVACED)
—A®) (26" 1)~ 7). )

Hydrol. Earth Syst. Sci., 29, 4711-4738, 2025

D. Allard et al.: MBC through impact models

where w(s,s’) is a binary indicator that characterizes
the neighborhood structure with w(s,s) =0. The “rook”
(resp. “queen”) neighborhood corresponds to ||s —s'|| <1
(resp. to ||s —s'|| < V/2), where the distance is expressed in
mesh units. The measure / in Eq. (4) is local because local
means [i(s) are used, and contrarily to the usual Moran’s [
it is not normalized by the variance, for an easier implemen-
tation of the hypothesis testing presented below. Using the
symmetry of the covariance function, direct manipulations
of Eq. (4) show that

C(0,1)+C(1,0)
Irook = —2 and

CO,)+C1,0+CA,H+C(—1,1)
Iqueenz 4 ’ (5

which shows that Moran’s [ is a summary of the short dis-
tance behavior of the spatial covariance function. The spatial
covariance will be represented as a function of the distance
d = 8||k|| (in km), where k is the spatial lag vector between
SAFRAN grid meshes.

3.2.3 Spatio-temporal correlation

At larger scales, the spatio-temporal non-stationarity must be
acknowledged. We thus decompose Z (s, t) according to

Z(s,t) =u(s,t)+o(s,t)e(s,t), (6)

where the mean u(s,?) and standard deviation o (s,t) vary
in space and time. They are estimated with their empirical
versions:

A, 0)=m"" ZZ(SJ,');

i=1
s, =m"> " (Z(s.1) — iGs. )", 7
i=l1

In Eq. (6), e(s,t) is a standardized residual. In all
generality, the spatio-temporal correlation function
Cor(e(s,t),s(s/,t/))=,0(s,s/,t,t’) is any positive defi-
nite function of (s,s’,¢,¢") (Chen et al., 2021). However,
motivated by the absence of complex space-time interactions
in g(s, t), such as diffusion or transport, the spatio-temporal
correlation function for ¢ is assumed to be space-time
separable with

Cor(e(s,1),e(s", 1)) = p(s,s',1,1") = ps(s,s)pr(t,1'). (8)

The spatial and temporal correlations are estimated using
temporal and spatial repetitions, respectively:

m nr

0s(s,s") = (mnyp)™! Z ZCor(e(s, 1),e(s',1));

i=11t=1

pr(t,t) = (mns)™' > Y "Cor(e(s, 1), (s, 1)). )

i=1seS
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We refer the reader to Chen et al. (2021) and references
therein for an in-depth discussion on separability for spatio-
temporal correlation functions, its application and testing.

3.2.4 Effective Sample Size

When the sample values are spatially correlated, the actual
number of data cannot be taken as such for computing the
degrees of freedom for hypothesis testing. One must instead
assess the correlation between the values and derive an Ef-
fective Sample Size (ESS), which quantifies the number of
independent and identically distributed observations within
the sample under consideration. Let us consider a sample Z
of size n with common marginal expectation p and variance
o2 and with correlation matrix R. Then, under the assump-
tion that R is invertible, Vallejos and Osorio (2014) define the
ESS as ESS = ]”TR’II,I, where T is the transpose operator
and I, is a vector of 1s of length n. There is a enlighten-
ing interpretation to the ESS, in relation to the estimation of
u when R is known. It can be shown that in this case the
best (i.e. unbiased and with minimum variance) estimator of
wis = 1] R™'Z and that its variance is Var(j1) = o2 /ESS
(Chiles and Delfiner, 2012, Sect. 3.4). ESS depends on n and
on the correlation structure of Z which, in a spatio-temporal
context, depends on the space and time coordinates of the
samples and on the spatio-temporal correlation function. ESS
decreases from n to 1 as the correlation strength increases
from no correlation (i.e. R is the identity matrix of size n x n)
to perfect correlation (i.e. R is the n x n matrix of 1s).

In the spatio-temporal context above, the correlation ma-
trix to be considered is of size nsny X nsnt, which can be
too large for an easy inversion (for example, the summer sea-
son in Provence would yield to a 31004 x 31004 matrix).
However, under the separability assumption in Eq. (8), the
computation of the SSE corresponding to one year of data
simplifies to SSE| = SSEg x SSEt, with SSEs = I,IRs_lln
andRg ;j = s (si, s;),with 1 <i, j <ng, and with a similar
expression for SSE7. As an illustration, for the summer sea-
son in Provence, ng = 337 and n = 92. Finally, the SSE of
a given period (e.g. the summer season) for m independent
years is simply SSE,, = mSSE;.

3.2.5 Hypothesis testing

Two types of statistical tests are performed. The first type
aims at testing the absence of bias or differences on global
averages. The basis for this is the two sample ¢ test with un-
equal variances (Snedecor and Cochran, 1989). The second
family aims at testing whether variances and Moran’s [ are
equal or unequal. Fort this, the Fisher’s F tests of equality of
variances, based on the ratio of the variances (Snedecor and
Cochran, 1989), is used. In all cases, an important parame-
ter for these tests is the “degrees of freedom”, equal ton — 1
when the n samples are independent. Here, following the dis-
cussion in the paragraph above, the degrees of freedom is set
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to SSE,, — 1 to take into account the spatio-temporal auto-
correlation.

4 Results

We present here a representative selection of the results al-
lowing for interpretation and discussion. Recall that summer
(JJA) has been selected for analysis in this work. For size
consideration, it is not possible to present all the results for
all combinations of indicators, plant models and regions, nei-
ther in the main text nor as usual Supplement. A complete
and un-commented presentation of all results is accessible in
the technical report Allard et al. (2023), which is freely ac-
cessible at https://hal.inrae.fr/hal-04227826 (last access: 25
September 2025). This reference will serve as Supplement
and as a general rule, whenever not shown results are re-
ported or discussed, they can be found at this URL.

4.1 Phenological stage

Flowering (FLO) stage for the crop studied depends only on
temperature. It is a cumulative indicator, the temporal dy-
namics is thus important. It is worth recalling that for FLO
stage, there is only one value per year, and that in some oc-
casions (locations and/or years) FLO stage is never attained,
thus producing a NaN value in this case. As a consequence,
the statistical tests have less power and higher type II errors
(not rejecting when the null hypothesis is not true) than for
the other indicators. For FLO stage, we shall therefore only
comment the cases for which the hypotheses are rejected and
not comment cases where the p value is higher than 0.1.

Summary statistics for biases, variance ratio and spatial
covariances are shown in Fig. 2 for maize in Ile-de-France
(a possible dominant crop in the future, favored by increased
temperatures) and for vine in Provence (currently, a major
wine producer region in France).

The IPSL climate model shows positive bias in Ile-de-
France for all plant models, around 5d for maize (Fig. 2a
and up to 8d for vine (Allard et al., 2023, Fig. 4.1). This is
partly due to the Paris region heatspot not properly taken into
account in GCMs (see Fig. 1, middle—center).

In Provence, the situation is contrasted. On the one hand
there are some pixels with very high negative bias, mainly
in the mountainous areas where FLO stage is sometimes not
attained due to high elevations, see e.g. Fig. 4.11 in Allard
et al. (2023). On the other hand, there seems to be almost no
bias for the majority of the pixels with low elevation. Overall,
equality of mean is nonetheless rejected.

For all bias correction methods, an almost complete re-
duction of bias can be observed in all regions. For maize in
Ile-de-France, the variance is slightly overestimated for all
methods, except for .dOTC and SI.dOTC for which it is un-
derestimated (Fig. 2b). It is correctly reproduced for vine in
Provence, except again for .dOTC and SI.dOTC (Fig. 2h).

Hydrol. Earth Syst. Sci., 29, 4711-4738, 2025


https://hal.inrae.fr/hal-04227826

4720 D. Allard et al.: MBC through impact models

Table 2. Statistical analysis for FLO in the past: p values for the Welsh ¢ test of absence of bias on the average (first block); Fisher F' test of
equality of variance (second block) and its adaptation to testing the equality of Moran’s I (third block). Non rejection at the confidence level
0.90 is indicated in bold font. Since FLO is univariate, CDF-t and I.R2D2 with Temperature as pivot variable are equivalent.

IPSL CDF-tI.R2D2 [LdOTC S.dOTC S.R2D2/SI.R2D2  SIL.dOTC
p values for “equality-of-means” tests
Britt. wheat  0.052 0.856 0.676 0.976 0.872 0.371
maize 0.626 0.788 0.909 0.981 0.828 0.578
vine 1.000 0.807 0.906 0.931 0.850 0.465
IdF wheat  0.016 0.820 0.953 0.820 0.837 0.978
maize  0.009 0.866 0.765 1.000 0.897 0.583
vine 0.000 0.759 0.993 0.891 0.785 0.988
Prov. wheat 0.000 0.831 0.001 0.243 0.894 0.000
maize  0.000 0.106 0.003 0.018 0.114 0.004
vine 0.000 0.000 0.000 0.001 0.002 0.000
p values for “equality-of-variances” tests
Britt. wheat  0.439 0.973 0.006 0.899 0.869 0.000
maize  0.699 0.160 0.056 0.214 0.334 0.000
vine 1.000 0.062 0.159 0.110 0.195 0.000
IdF wheat  0.887 0.961 0.096 0.975 0.951 0.000
maize 0.594 0.452 0.195 0.520 0.548 0.000
vine 1.000 0.341 0.210 0.405 0.446 0.000
Prov. wheat 0.018 0.002 0.000 0.000 0.000 0.000
maize  0.000 0.368 0.000 0.117 0.397 0.000
vine 1.000 0.058 0.000 0.014 0.033 0.000
p values for “equality-of-Moran’s I” tests
Britt. wheat 0.448 0.964 0.003 0.901 0.882 0.000
maize  0.688 0.147 0.017 0.199 0.299 0.000
vine 1.000 0.051 0.099 0.093 0.163 0.000
IdF wheat  0.865 0.947 0.072 0.990 0.968 0.000
maize 0.556 0.432 0.105 0.502 0.526 0.000
vine 1.000 0.333 0.115 0.395 0.434 0.000
Prov. wheat 0.101 0.012 0.000 0.000 0.000 0.000
maize  0.006 0.655 0.000 0.209 0.577 0.000
vine 1.000 0.058 0.000 0.014 0.033 0.000

Spatial covariances are flat in Ile-de-France (Fig. 2¢) because
values are highly correlated in space. There is more spa-
tial structure in Provence (Fig. 2i), and it is correctly repro-
duced for CDF-t and I.R2D2. The spatial structure is broken
for IPSL, and otherwise well reproduced (up to the variance
multiplicative effect) for all bias correction methods. Over-
all, equality of variance and equality of Moran’s / is always
rejected with SI.dOTC and quite often rejected with .dOTC
(Table 2).

Since FLO stage considers temperature in a cumulative
way, the temporal dynamics of the single variable temper-
ature is key for the interpretation of theses results. Whenever
the results are accurate (in terms of bias or (co-)variance ra-
tio) one can consider that the marginals are well corrected
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with appropriate temporal dynamics from the climate model.
CDF-t (as well as I.LR2D2 which is equivalent in this uni-
variate setting) does not change the dynamics of the model
in terms of ranks. Since CDF-t provides unbiased results for
FLO stage with an accurate variance ratio in both regions,
one can conclude that the dynamics of the IPSL model is in
accordance with the reanalysis for Temperature and hence
for FLO stage and that CDF-t provides the correct correction
of the bias.

By construction, dOTC will try to correct the marginals
and the copulas (intervariable and/or spatial) while not
changing too much the dynamics of the model (Robin et al.,
2019). Therefore, in I.dOTC, S.dOTC and SI.dOTC configu-
rations, the temporal dynamics of Temperature will be modi-
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Figure 2. Results for FLO (unit is day) for maize in Ile-de-France (from a—f) and grapevine in Provence (from g-1). First and third rows (from
a—c and g—i) correspond to past period with: (a, g) boxplots of differences to SAFRAN; (b, h) boxplots of variance ratios to SAFRAN; (c,
i) spatial covariance (colored points, covariance as a function of distance) and Moran’s I (points on the vertical dashed line). Second and
fourth rows (from d—f and j-1) correspond to future period with: (d, j) boxplots of differences between future and past; (e, k) boxplots of
variance ratios between future and past; (f, 1) spatial covariance and Moran’s [ ratios between future and past.
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fied when correcting for the intervariable and/or spatial cop-
ula. As a general rule, it was shown in Francois et al. (2020,
Figs. 1, 5 and S5) that the more the variables are to be cor-
rected using dOTC, the more both the marginals and the tem-
poral dynamics are modified. This result was also partly ob-
served here: as the number of variables to correct increases
from 1.dOTC to SI.dOTC, a slight but significant increasing
bias is observed for maize in Ile-de-France (Fig. 2a). This
also applies for the variance of the .dOTC and SI.dOTC out-
puts that is strongly underestimated in both regions (Fig. 2b).
Nevertheless, quite interestingly, the increasing deterioration
with respect to the dimensional setting is not observed for
S.dOTC. In this setting, each variable is spatially corrected
in turn. Given the high spatial autocorrelation of tempera-
ture, dimensions are then somehow redundant, which poten-
tially reduces the number of “effective dimensions” to adjust
and so the complexity of the correction to provide. Conse-
quently, the impact of dOTC on the temporal rank correla-
tion is less pronounced, and better results are obtained with
S.dOTC. These results illustrate that when using dOTC, one
must take care to correct only the variables that are involved
in the process under study.

Overall, results for all R2D2 methods are good, both in
terms of bias and variance ratio (Fig. 2a, b, g, h). In compari-
son to dOTC, R2D2 preserves the temporal rank structure of
the pivot variable, which here is temperature: at each pixel
for LR2D2 and at the center of the domain for S.R2D2 and
SI.LR2D2. In conjunction with the fact that the spatial rank
autocorrelation for Temperature is very high (not shown), the
temporal rank structure is either exactly (I.R2D2) or partially
well (S.R2D2 and SI.R2D2) preserved. Hence, structures in
the spatial covariances are well reproduced (Fig. 2c, i), but
an overall overestimation in relation to the variance ratio is
observed (Fig. 2b, h). Notice that if a different pivot variable
was chosen, the temporal dynamics would have been stirred,
and therefore less comparable to the reanalysis, see Francois
et al. (2020, Fig. S5) for an illustration of the modification
of the temporal properties of Temperature when Precipita-
tion is the pivot variable. Similar results were obtained for
the other region x plant models configurations (Allard et al.,
2023, Chap. 4 and 5).

When looking at differences and variance ratios in the Fu-
ture, one can observe an important advance of FLO for all
plant models, regions and methods, from about 9 d for maize
in Ile-de-France (Fig. 2d to 2 weeks for vine in Provence
(Fig. 2j). Overall, this difference is similar for all bias cor-
rection methods, which is reminiscent of the very similar
corrections for all bias correction methods in the Past. In
relation with the strong underestimation of the variance for
I.dOTC and SI.dOTC, the variance ratio between future and
past are higher for these methods than for the others (Fig. 2e,
k). When looking at the maps for Future (Allard et al., 2023,
Figs. 5.12 to 5.20), one can see that the Future/Past variance
ratios show a strong pixel pattern for .dOTC and SI.dOTC.
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4.2 Evapotranspiration ET0

ETO is a climatic indicator computed every day using all
variables of that day, except precipitation. It is thus multi-
variate but rather insensitive to the temporal dynamics. Sum-
mary statistics computed in Provence are shown in Fig. 3
and p values in all regions are reported in Table 3. IPSL is
strongly biased with a negative error close to 50 mm, its vari-
ance is strongly underestimated as well as its Moran’s I and
its spatial covariance (Fig. 3, respectively panels a, b, c).

The bias, the variance and the spatial covariance are in
general well corrected for all methods. Differences between
methods are nonetheless visible on the variance ratios and
the spatial covariances. The variance is overestimated with
CDF-t and S.R2D2 (in Provence, p values of Fisher’s F tests
are equal to 0.000 and 0.011, respectively) and the spatial
covariance structure is broken with .LR2D2, as evidenced by
Morans’ I values being divided by a factor ~ 3 with respect
to SAFRAN (Fig. 3c). Similar results were obtained in the
other two regions Allard et al. (2023, Chap. 2) in terms of
bias, variance and spatial covariance structure, but to a lesser
extent: the bias is not as large, equality of variance is not re-
jected and Morans’ I as well as the spatial covariance are
strongly underestimated.

Since CDF-t provides an unbiased correction with a vari-
ance ratio close to one, even in Provence, one can conclude
that the inter-variable copula of the IPSL model is rather sim-
ilar to that of the reanalysis. However, ETO being a multivari-
ate indicator, multivariate correction methods are expected to
lead to improved variance and Moran’s I than CDF-t. It is in-
deed the case in Provence where the p value for the equality
of variance is equal to 0 with CDF-t and larger than 0.1 for
all methods, except for S.R2D2. S.R2D2 reshuffles the ranks
of the IPSL model to match the rank pattern of the reanalysis
(the pivot is at the center of the domain) independently for
each variable. As a result, the variance and the spatial covari-
ance are slightly increased, in particular in Provence, which
is highly non-stationary.

As already pointed out, in Provence, Moran’s I is reduced
by a factor of three when using [.LR2D2 (Fig. 3c). The reason
for [.LR2D2’s poor spatial behavior is that its rank shuffling
is performed separately at each pixel, thereby breaking the
spatial correlation present in the IPSL model for all variables
other than the pivot. In contrast, the spatial structure is well
reproduced with SI.R2D?2 since in this case the inter-variable
and the spatial correlations are taken into account in the cor-
rection. All dOTC bias corrections perform well in terms of
bias, variance and spatial covariance, even for I.dOTC. This
is due to the fact that .dOTC partially preserves the spatial
dependencies of the IPSL model (both Intervariable and spa-
tial) as shown in Robin et al. (2019), which is also evidenced
by the fact that the spatial structure is well reproduced with
CDF-t.

When looking at future ETO values according to the IPSL
model, one can notice that there is almost no difference be-
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tween ETO in the future and ETO in the past (Fig. 3d). In
contrast, for all bias correction methods there is a daily dif-
ference from 7 to 11 mm evapotranspiration in Provence be-
tween Future and Past. This result was also observed in the
other two regions (Allard et al., 2023, Fig. 3.1). As a first
observation, one notices that a rather small positive differ-
ence (around 1 mm) of ETO between future and past with the
IPSL model is amplified to a 7 to 10 mm difference after cor-
rections, depending on the bias correction method. As a con-
sequence, as ETO is expected to increase in a warmer climate
in temperate regions such as France (Lemaitre-Basset et al.,
2022), projected ETO computed from IPSL is thus likely to
be even more biased than in the past. The variance ratio be-
tween future and past ranges between 0.8 and 0.9 for all bias
correction methods, and it is as low as 0.75 according to IPSL
(Fig. 3e). However, the variance underestimation is less pro-
nounced in the other two regions, which are located in the
Northern part of France with less severe evapotranspiration
during the summer (Allard et al., 2023, Fig. 3.1). As a last re-
mark, maps of variance ratios between future and past show
important spatial patterns (Allard et al., 2023, Figs. 3.6 to
3.8). Also, these maps are less regular for dOTC methods
than for R2D2 methods.

4.3 Soil Water Content

The Soil Water Content (SWC) is computed every day using
the SWC of the previous day and all physical variables of the
given day. It is thus multivariate and sensitive to the temporal
dynamics. The usual summary statistics are shown for maize
in Ile-de-France in Fig. 4. IPSL leads to strongly biased val-
ues of SWC and overestimated variances and Moran’s I for
all combinations of plant models and regions, only shown for
maize in Ile-de-France (Fig. 4a).

Table 4 reports the p values for equality of means, vari-
ances and Moran’s I, for all models and regions. In general,
the bias is more easily corrected than the variance, which in
turn is more easily corrected than Moran’s /. According to
the p values, Provence seems to be a more difficult region
to correct than Brittany and Ile-de-France for all methods,
presumably because it is spatially nonstationary. Most bias
correction methods do a fair job at correcting the bias, ex-
cept .LR2D2 and SI.R2D2 in Brittany and Ile-de-France, as
well as CDF-t in Provence. Notice however that even though
equality of means in Provence is rejected at the level 0.90
for maize and vine, it is not rejected at the more conservative
level 0.95.

Overall, SI.dOTC and I1.dOTC methods perform better
than CDF-t and S.dOTC, because the highly multivariate as-
pect of SWC benefits from the multivariate correction with-
out too much perturbation of the temporal dynamics of the
model. In contrast, LR2D2 and SI.R2D2 induce a strong per-
turbation of the temporal dynamics of all variables except the
pivot variable (here Temperature) impairing a proper repro-
duction of the variance and the Moran’s I of SWC, which
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is strongly underestimated for I.LR2D2 (see also Fig. 4b).
Despite many p values lower than 0.1, the boxplots of the
variance ratio for S.R2D2 show however a fairly decent re-
production of the variance and the Moran’s /. Quite inter-
estingly, S.R2D2 leads to a more accurate correction than
L.R2D2 and SI.R2D2 even though it does not adjust the inter-
variable properties. This result might seem counter-intuitive
and it deserves some explanation. When analyzing the out-
puts of a time-integrative and multivariate process such as
SWC, the relative importance of each dimension (time vs. in-
tervariable) plays an important role. It is well known that
L.R2D2 and, to a lesser extent SL.R2D2, alter the temporal
dynamics (Frangois et al., 2020). In contrast, since S.R2D2
is applied to each variable in turn, the temporal dynamics
is not too much altered when the spatial correlation is impor-
tant, which is the case for the CMIP6-IPSL model in Brittany
and Ile-de-France. Our interpretation of this result is that the
time dynamics plays a more important role for SWC than the
multivariate aspect, when it comes to multivariate bias cor-
rections.

The CMIP6-IPSL model indicates lower values of SWC
and decreased variances in the future, see Fig. 4d, e for
maize in Ile-de-France, and Allard et al. (2023, Chap. 7) for
other combinations of plant models and all regions. Gener-
ally speaking, bias correction methods tend to lessen these
differences, in particular for .dAOTC and SI.dOTC. Recall
that these methods where among the most accurate bias cor-
rection methods in the past period. Maps of SWC variance
ratio between future and past (Fig. 5) show that for LR2D2
the variance of SWC is highly variable at short distances, in
accordance with the very low value of Moran’s I metrics in
Fig. 4c. The variance ratio varies much more smoothly when
correcting with SI.dOTC.

4.4 Fire Weather Index

As for SWC, FWI is computed on a daily basis using FWI
of the previous day and all physical variables of the current
day. It is thus also multivariate and sensitive to the temporal
dynamics. Summary statistics are shown in Fig. 6 for Ile-
de-France and Provence. The latter experiences high wild-
fires activity every year. It is not yet the case for the former,
but recent projections show that it will be the case in the fu-
ture (Fargeon et al., 2020; Galizia et al., 2023; Pimont et al.,
2023). Table 5 reports the p values for equality of means,
variances and Moran’s [ for all regions.

There is a positive bias and an overestimation of the vari-
ance in Ile-de-France (Fig. 6a, b, c), a region with currently
low values for FWI and low variance. There is negative bias
and an underestimation of the variance in Provence (Fig. 6g,
h, i), a region with high values for FWI and higher vari-
ance. Brittany shows results very similar to those of Ile-de-
France (Allard et al., 2023, Chap. 8). Overall, the bias is well
corrected for all methods (Fig. 6a, g), except .LR2D2 and
SI.LR2D2 in all regions (all p values for all tests are equal
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4724

D. Allard et al.: MBC through impact models

Table 3. Statistical analysis for summer ETO in the past: p values for the Welsh ¢ test of absence of bias on the average (first block); Fisher
F test of equality of variance (second block) and its adaptation to testing the equality of Moran’s / (third block). Non rejection at the

confidence level 0.90 is indicated in bold font.

IPSL CDF-t ILdOTC IR2D2 S.dOTC S.R2D2 SLAOTC SILR2D2

p values for “equality-of-means” tests

Britt.  0.000  0.396 0.826 0.967 0.817 0.773 0.828 0.966

IdF 0.000  0.468 0.820 0.958 0.923 0.931 0.822 0.951

Prov. 0.000  0.812 0.664 0.804 0.808 0.932 0.609 0.749

p values for “equality-of-variances” tests

Britt.  0.000  0.101 0.883 0.803 0.729 0.877 0.885 0.795

IdF 0.000  0.212 0.891 0.779 0.940 0.625 0.892 0.746

Prov.  0.000  0.000 0.860 0.439 0.163 0.011 0.834 0.324

p values for “equality-of-Moran’s I” tests

Britt.  0.000  0.004 0.962 0.000 0.673 0.771 0.885 0.795

IdF 0.000  0.024 0.706 0.000 0.928 0.631 0.893 0.744

Prov.  0.000  0.000 0.604 0.000 0.120 0.007 0.837 0.330
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Figure 3. Results for summer ETO (unit is mm) in Provence. First row corresponds to past period with: (a) boxplot of differences to SAFRAN
(the bias for IPSL, varying between —45 and —50, lies out of the range of the plot); (b) boxplot of variance ratios to SAFRAN; (c) spatial
covariance (colored points, covariance as a function of distance) and Moran’s I (points on the vertical dashed line). Second row corresponds
to future period with: (d) boxplot of differences between future and past; (e) boxplot of variance ratios between future and past; (f) spatial

covariance and Moran’s [ ratios between future and past.

to 0.0 for these two methods) and S.R2D2 in Provence (the
p value is equal to 0.008). The fact that CDF-t leads to a fair
correction of the mean, in particular in Provence, is the indi-
cation that, once the marginals being corrected, the interde-
pendence between the variables and the temporal dynamics
is well represented in the IPSL model.

Hydrol. Earth Syst. Sci., 29, 4711-4738, 2025

As it was also the case for SWC, 1.dOTC and SI.dOTC
methods perform better than CDF-t and S.dOTC (Fig. 6a,
g and Table 5), because the highly multivariate aspect of
FWI benefits from the multivariate correction without per-
turbing too much the temporal dynamics of the model.
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Figure 4. Results for summer SWC (unit is %) in Ile-de-France and maize. First row corresponds to past period with: (a) boxplot of
differences to SAFRAN; (b) boxplot of variance ratios to SAFRAN; (c¢) spatial covariance (colored points, covariance as a function of
distance) and Moran’s I (points on the vertical dashed line). Second row corresponds to future period with: (d) boxplot of differences
between future and past; (€) boxplot of variance ratios between future and past; (f) spatial covariance and Moran’s [ ratios between future

and past.

S.dOTC, which corrects each variable independently, per-
forms slightly less well in Provence.

In contrast, LR2D2 and SI.R2D2 induce a strong pertur-
bation of the temporal dynamics impairing a proper correc-
tion of both the bias and the variance. In Provence, where
FWI can reach high values and is spatially heterogeneous,
the bias and the variance is less corrected with S.R2D2 than
with the inter-variable versions of R2D2 (Fig. 6g), because
the multivariate copula is perturbed by the independent cor-
rections made by S.R2D2 on each variables. However, in Ile-
de-France where FWI is low and spatially homogeneous, it
is the opposite: S.R2D2 leads to more accurate corrections
than I.R2D2 and SI.LR2D2 (Fig. 6a). As a result, bias correc-
tions on FWI thus behave like bias corrections on SWC in
Ile-de-France due to spatial homogeneity. It is not the case
in Provence, due to the highly non-stationary behavior of all
variables involved. As already seen on all other indicators,
the spatial structure is broken in both regions with I.LR2D2
(Fig. 6c, i) because the rank shuffling is performed at each
location independently.

FWI definitely increases in the Future in all regions, for
the IPSL model, and for all bias correction methods (Fig. 6d,
J)- The same observation can be made for the variance. Fo-
cusing on the Provence region, the average FWI increases
by approximately 1 to 4 units, depending on the bias correc-
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tion method (see also the maps in Fig. 7), and the variance
is roughly multiplied by 2. As a point of comparison, the re-
lationship between the severity of wildfires and FWI change
from linear to exponential when FWI is larger than 20 (Pi-
mont et al., 2021). Figure 8 shows that the variance increases
more in the North-Eastern parts of the region, which are re-
gions of high mountains. As already observed on other out-
puts, the map of the variance ratios between future and past
is much smoother with CDF-t and SI.dOTC than with other
methods.

5 Conclusion and Discussion

In this work, we have tested two MBC methods, namely
R2D2 (Vrac, 2018) and dOTC (Robin et al., 2019), to ad-
just the inter-variable and/or spatial dependence structures of
5 physical variables that are input variables for process mod-
els having different characteristics in terms of inter-variable
dependencies and time integration. For each MBC method,
three different configurations were considered (intervariable,
spatial and a spatial-intervariable) to disentangle the relative
effect of the various dependence structures. A univariate bias
correction method (CDF-t, Michelangeli et al., 2009) was

Hydrol. Earth Syst. Sci., 29, 4711-4738, 2025
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Figure 5. For each bias correction method and for maize: map of summer SWC variance ratio between future and past in Ile-de-France (no
unit). From top to bottom and from left to right: IPSL (no correction), CDF-t, Intervar-dOTC, Intervar-R2D2, spatial-dOTC, spatial R2D2,
spatial-intervar-dOTC, spatial-intervar-R2D2.
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Figure 6. Results for summer FWI (no unit) in Ile-de-France (from a—f) and in Provence (from g-l). First and third rows (from a—c¢ and
g-i) correspond to past period with: (a, g) boxplots of differences to SAFRAN; (b, h) boxplots of variance ratios to SAFRAN; (c, f) spatial
covariance (colored points, covariance as a function of distance) and Moran’s I (points on the vertical dashed line). Second and fourth
rows (from d—f and j-1) correspond to future period with: (d, j) boxplots of differences between future and past; (e, k) boxplots of variance
ratios between future and past; (£, 1) spatial covariance and Moran’s I ratios between future and past. Notice that in panel (g), the boxplot
extends to —4.2 with a lowesy value equal to —6.4.

https://doi.org/10.5194/hess-29-4711-2025

Hydrol. Earth Syst. Sci., 29, 4711-4738, 2025



4728

D. Allard et al.: MBC through impact models

Table 4. Statistical analysis for summer SWC in the past. p values for the Welsh ¢ test of absence of bias on the average (first block); the
Fisher F test of equality of variance (second) block and its adaptation to testing the equality of Moran’s / (third block). Non rejection at the

confidence level 0.90 is indicated in bold font.

IPSL CDF-t I1dOTC 1IR2D2 S.dOTC S.R2D2 SILJdOTC SIR2D2

p values for “equality-of-means”
Britt. wheat 0.000 0.570 0.798 0.005 0.467 0.137 0.151 0.002
maize 0.000  0.053 0.370 0.000 0.446 0.661 0.766 0.000
vine 0.000  0.312 0.634 0.000 0.983 0.335 0.570 0.000

IdF wheat 0.000  0.773 0.770
maize 0.000  0.884 0.778

0.131 0.339 0.567 0.441 0.133
0.002 0.290 0.634 0.620 0.006

vine 0.000  0.407 0.724 0.002 0.503 0.577 0.749 0.000
Prov. wheat 0.000 0.024 0.342 0.598 0.387 0.343 0.982 0.409
maize  0.000  0.091 0.688 0.550 0.728 0.841 0.685 0.000
vine 0.000  0.071 0.726 0.269 0.944 0.988 0.492 0.176
p values for “equality-of-variances”
Britt. wheat 0.000  0.000 0.304 0.000 0.024 0.596 0.000 0.000
maize  0.000  0.000 0.000 0.000 0.000 0.027 0.276 0.000
vine 0.000  0.000 0.955 0.000 0.130 0.053 0.000 0.000
IdF wheat  0.000  0.392 0.016 0.000 0.001 0.016 0.051 0.000
maize 0.000  0.000 0.520 0.000 0.013 0.352 0.825 0.000
vine 0.000  0.000 0.214 0.000 0.007 0.461 0.020 0.000
Prov. wheat 0.000 0.000 0.000 0.050 0.000 0.000 0.526 0.000
maize  0.000  0.000 0.000 0.003 0.000 0.000 0.880 0.000
vine 0.000  0.000 0.012 0.000 0.000 0.007 0.007 0.000
p values for “equality-of-Moran’s I”
Britt. wheat 0.000  0.000 0.737 0.000 0.015 0.828 0.000 0.000
maize  0.000  0.000 0.015 0.000 0.000 0.014 0.282 0.000
vine 0.000  0.000 0.214 0.000 0.116 0.090 0.000 0.000
IdF wheat  0.000  0.143 0.001 0.000 0.001 0.011 0.051 0.007
maize  0.000  0.000 0.036 0.000 0.014 0.403 0.863 0.000
vine 0.000  0.000 0.007 0.000 0.007 0.331 0.017 0.000
Prov. wheat 0.000 0.000 0.000 0.000 0.000 0.000 0.203 0.000
maize 0.000  0.000 0.000 0.003 0.000 0.000 0.570 0.000
vine 0.000  0.000 0.012 0.000 0.000 0.006 0.008 0.000

also included in the study to assess the potential added value
of MBC methods.

We have applied these 7 correction methods to IPSL-
CM6A-LR model simulations with respect to the SAFRAN
reanalysis data over three contrasted regions in France, four
processes (FLO, ET0, SWC and FWI) and three plant mod-
els for FLO and SWC. This work is thus an extension to
plant and forest processes of the study in Francois et al.
(2020), which focused on climate indicators. To assess the
corrections, several statistics have been computed to quan-
tify the differences in means, variances, spatial covariances
and Moran’s I, on all impact indices. Significance of differ-
ences (or ratios) have been formally assessed using statistical
tests. A key element for hypothesis testing on highly corre-

Hydrol. Earth Syst. Sci., 29, 4711-4738, 2025

lated domains is the notion of Effective Sample Size, which
quantifies the number of equivalent independent observations
within the domain of observation. These developments con-
stitute a first methodological result, which can be of great use
in further studies.

Generally speaking, the averages of the model outputs are
better corrected than their variances, which, in turn, are easier
to correct than the associated Morans’ I and spatial covari-
ance. Our study thus highlights that when assessing a bias
correction method, one should not use average differences as
only metric.

Our results show that there is no single best MBC method.
Depending on the process under study and on the metrics
considered, there can be a method performing better (or

https://doi.org/10.5194/hess-29-4711-2025
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Table 5. Statistical analysis for summer FWI in the past: p values for the Welsh ¢ test of absence of bias on the average (first block); Fisher
F test of equality of variance between future and past (second block) and its adaptation to testing the equality of Moran’s I (third block).

Non rejection at the confidence level 0.90 is indicated in bold font.

IPSL CDF-t IdOTC 1IR2D2 S.dOTC SR2D2 SILdOTC SLR2D2
p values for “equality-of-means”
Britt.  0.000  0.000 0.494 0.000 0.144 0.830 0.178 0.000
IdF 0.000  0.058 0.573 0.000 0.232 0.605 0.930 0.000
Prov. 0.000  0.303 0.482 0.040 0.124 0.008 0.265 0.011
p values for “equality-of-variances”
Britt.  0.000  0.000 0.976 0.000 0.071 0.043 0.021 0.000
IdF 0.000  0.000 0.298 0.000 0.004 0.299 0.915 0.000
Prov. 0.000  0.000 0.021 0.002 0.000 0.000 0.004 0.000
p values for “equality-of-Moran’s I”
Britt.  0.000  0.000 0.035 0.000 0.084 0.059 0.028 0.000
IdF 0.000  0.000 0.354 0.000 0.001 0.466 0.803 0.000
Prov. 0.000  0.001 0.000 0.000 0.000 0.000 0.004 0.000

worst) than the other ones — or not. However, as shown
in Sect. 4, it is possible to draw partial conclusions and
to provide useful recommendations regarding the use of
MBCs when multivariate and time dependent processes are
involved. These conclusions and recommendations, summa-
rized in Tables 6 and 7 respectively, are now discussed.

As a first finding, it must be highlighted that CDF-t does
a fair job in many situations. It suffers from no major de-
fects, but it can be improved in some situations: all MBC
methods perform better than CDF-t when the process is mul-
tivariate with no time integration (such as ET0) and SI.dOTC
slightly outperforms CDF-t for multivariate processes with
time integration (such as SWC and FWI). This result can be
interpreted as evidence that the temporal dynamics in IPSL-
CM6A-LR model is mostly well represented. The inter-
variable properties are also fairly well represented (otherwise
CDF-t would perform poorly for multivariate processes) but
multivariate corrections are nonetheless useful, in particular
over spatially heterogeneous regions such as Provence.

When the process is univariate, such as FLO, multivariate
bias correction methods are not recommended. With R2D2
methods, if the pivot variable is the physical variable un-
der consideration (which was the case here), there are un-
necessary computations but otherwise no harm. If the pivot
variable is any other variable, the variable under consider-
ation will be reshuffled, thereby inducing potentially large
errors in the temporal dynamics of the process outputs. With
dOTC methods, the multivariate adjustment entails a less rel-
evant modification of the marginal of the variable under con-
sideration, and hence less accurate corrections, as could be
seen on FLO.

When the process is highly multivariate, such as ETO,
SWC and FWI, multivariate corrections are expected to re-
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duce the bias. However, care must be taken as to which
method should be used for a proper reproduction of the vari-
ance and Moran’s I. Generally speaking, R2D2 methods
have stronger impact on the overall dependence structure
(multivariate copula and/or spatial covariance) than dOTC
methods. Indeed, while dOTC “bends” the whole copula
from the model to the reference, R2D2 does not change the
pivot variable, but makes more dramatic changes to the other
variables. As a consequence:

— When the temporal dynamics is not important (as is the
case for ET0), most methods improve on CDF-t and per-
form well, at the exception of purely spatial configura-
tions (S) when proper intervariable properties are essen-
tial to the process under study.

— When the process is multivariate and the temporal dy-
namics is important (for example for cumulative pro-
cesses such as SWC and FWI), .LR2D2 and SI.R2D2
should be avoided altogether because the Intervariable
correction entails large perturbations in the temporal dy-
namics of the ranks for all variables but the pivot. When
the process is cumulative, the bias and the variance are
not properly corrected with these methods. Note how-
ever that this effect has been partly corrected in a recent
extension of the R2D2 method (Vrac and Thao, 2020,
R2D2 v2.0), for which the analog search is constrained
to improve temporal properties.

— For similar reasons, I.R2D2 and SI.R2D2 should be
avoided when the spatial structure is important, as is
for example the case for SWC and FWI when the focus
is on water and wildfires management at the regional
scale. Indeed, it was found that I.R2D2 and SI.R2D2
break down the spatial structure of the indicator. This

Hydrol. Earth Syst. Sci., 29, 4711-4738, 2025
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Figure 7. For each bias correction method: map of the summer FWI difference between future and past (no unit). From top to bottom and
from left to right: IPSL (no correction), CDF-t, Intervar-dOTC, Intervar-R2D2, spatial-dOTC, spatial R2D2, spatial-intervar-dOTC, spatial-

intervar-R2D2.

effect is clearly visible in Allard et al. (2023, Figs. 7.12
to 7.20 and 9.6 t0 9.9).

When all dimensions are important (multivariate, time cu-

mulative and spatial), there are only few options. As al-
ready mentioned, CDF-t does a fair job because, contrarily

Hydrol. Earth Syst. Sci., 29, 4711-4738, 2025

to the marginals, the temporal dynamics and the intervari-
able copula in the [IPSL-CM6A-LR model are preserved, but
at a coarser spatial resolution. Bias-correcting with univariate
correction methods, such as CDF-t, is a no-risk/no-gain op-
tion. However, SI.dOTC brings improvements in most cases
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Figure 8. For each bias correction method: map of the summer FWI variance ratio between future and past (no unit). From top to bottom
and from left to right: IPSL (no correction), CDF-t, Intervar-dOTC, Intervar-R2D2, spatial-dOTC, spatial R2D2, spatial-intervar-dOTC,

spatial-intervar-R2D2.

and no significant improvement in some rare cases. We did
not find any multivariate cases where SI.dOTC performs less
well than CDF-t.

Despite differences in the experiments (different climate
variables, processes and BC methods), our results concur in
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general with the main findings reported in Galmarini et al.
(2024) and in Ahn et al. (2023), but we also found some im-
portant differences:

— As already underlined above, compared to univariate
bias correction methods, together with these two studies

Hydrol. Earth Syst. Sci., 29, 4711-4738, 2025
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Table 6. Summary of results for the multivariate BC methods to adjust univariate statistics and spatial structures of the different impact
outputs. Note that these results are based on the adjustments of simulated outputs from the IPSL-CM6A-LR model. Checks and crosses
indicate whether BC methods performed well for the metrics and the different statistical characteristics in rows. Tilde symbols indicate cases
for which the added value of BC has been found to be limited in our study. Parentheses indicate that a MBC is not useful, because the process
is univariate.

CDF-t LR2D2 [1dOTC S.R2D2 S.dOTC SLR2D2 SI.dOTC
Correction  Univariate w. Time dep. (FLO) ~ (~) (x) (~) (~) (~) (x)
of 1d-stat. ~ Multivariate dep. (ETO) ~ v v ~ ~ v v
Time and multivariate dep. (SWC, FWI) ~ X v ~ ~ X v
Correction  Univariate w. Time dep. (FLO) ~ (~) (x) (~) (~) (~) (x)
of spatial Multivariate dep. (ET0) ~ X ~ ~ ~ v v
struct. Time and multivariate dep. (SWC, FWI) ~ X ~ ~ ~ X v

Table 7. Summary of recommendations for BC methods to adjust muultivariate statistics and spatial structures of the different impact outputs.

Method Recommendation for multivariate processes (univariate processes should be corrected with a univariate method)

CDF-t Fair but not always optimal corrections for all metrics in all situations. No gain/no risk option

LR2D2 Restricted to processes with no time integration and no spatial analysis

1.dOTC Fairly good corrections of the marginals

S.R2D2  Comparable to CDF-t in most cases

S.dOTC  Comparable to CDF-t in most cases

SILR2D2  Restricted to processes with no time integration. On those, better than S.R2D2 on spatial metrics

SI.dOTC  Outperforms CDF-t for multivariate processes with time integration, both on marginals and on spatial metrics

we found that multivariate methods improve the adjust-
ment of model outputs to the reference in many cases,
but there are exceptions depending on the method con-
sidered, its configuration (I, S or SI) and on the process
under study.

Together with Ahn et al. (2023), we also found that there
is no best performing BC method. Tables 6 and 7 respec-
tively summarize the results obtained in this study and
provide recommendations reported above.

Galmarini et al. (2024) considered a total of 12 crop
models, which are highly multivariate and integrative
in time, but the spatial dimension was not considered at
all. They found that R2D2 (I.R2D2 configuration) was
among the best performing methods, second to CDF-
t. Our results complement this finding with new re-
sults stemming from spatial settings. We also found that
CDF-t is among the methods performing best, but that
R2D2 underperforms in some situations. It must be re-
membered that R2D2 leaves the temporal dynamics of
the pivot variable unchanged. Here, the pivot variable
was temperature, and it was also the case in Galmarini
et al. (2024). In this case, processes that are mostly
driven by temperature will perform fairly well, as re-
ported in Galmarini et al. (2024)). When variables other
than the pivot are important (i.e. for SWC and FWI
which depend highly on precipitation), we found that

Hydrol. Earth Syst. Sci., 29, 4711-4738, 2025

L.R2D2 and SI.R2D2 do not adjust better than CDF-t
for SWC and FWI.

— Ahn et al. (2023) explored MBC methods on hydro-
logical models using only three input climate variables:
minimum and maximum daily temperatures and daily
precipitation. MBC methods were explored in the same
three configurations (I, S, SI) as our study. Notice that
the intervariable setting involves thus much less vari-
ables than ours and that hydrological models are highly
integrative in time and space. They found that dOTC
faces difficulties with increasing number of dimensions,
generating deterioration in univariate correction. This
was also reported in Francois et al. (2020) and it was
visible in our study on FLO (which depends only in
Temperature). However, SI.dOTC was found here to be
the best BC method when the spatial component is im-
portant for highly multivariate and time integrative pro-
cesses, such as SWC and FWI.

For time and computation considerations, we considered a
single climate model (IPSL-CM6A-LR) in this work, and our
analysis was limited to three regions in France. Our findings
should be further confirmed in other parts of the world and
using a larger set of climate models, possibly with higher
resolution than the low-resolution IPSL-CM6A-LR model,
which was available at that time.

In this study, we have considered three areas of rather lim-
ited size containing between 259 and 337 grid points. CDF-
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t and Intervar (I) settings are insensitive to the size of the
domain. R2D2 can in principle handle very large vectors,
hence very large domains, but we have seen that the S and
SI settings are not to be recommended when spatial coher-
ence is important. On multivariate processes with time in-
tegration for which the spatial structure matters, SI.dOTC
brings improvement in all tested situations, i.e. in areas rang-
ing from 4000 to 5000 km”. Further tests are necessary to
assess SI.AOTC on a larger number of grid points.

In the present study, three indicators (phenological stage
FLO, Soil Water Content and Fire Weather Index) depend
on temporal properties. However, none of the bias correction
methods applied here were designed to adjust these prop-
erties. A few studies have developed BC methods for the
adjustments of (some) temporal properties of climate vari-
ables in addition to inter-variable and spatial properties (e.g.,
Mehrotra and Sharma, 2019; Vrac and Thao, 2020; Robin
and Vrac, 2021). However, the adjustment of temporal prop-
erties necessarily leads to modify, at best slightly, univari-
ate, inter-variable and/or spatial properties. Including such
bias correction methods in the present intercomparison study
would provide an even more comprehensive overview of the
performance of bias correction methods for impact studies.

Finally, a particular effort has been made in this study to
explain the performances of correction methods according to
the different statistical characteristics involved in the calcula-
tion of impact indicators. However, statistical characteristics
may contribute in different ways to the values of impact indi-
cators. For example, as already pointed out, values of SWC
and FWI depend (potentially differently) on marginal, inter-
variable and temporal properties of the same input climate
variables. Quantifying the contribution of the different statis-
tical characteristics to the variability of the impact indicators,
for example using variance-based sensitivity analysis meth-
ods, would not only allow us to improve the understanding
of the performances of bias correction methods, but also to
target the simulated properties that need to be corrected and
ultimately to provide a better guidance on how to apply them
for impact studies.
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Appendix A: List of abbreviations

GCM General Circulation Model

RCM Regional Circulation Model

CMIP6 6th Coupled Model
Intercomparison Project

IPSL Institut Pierre-Simon Laplace
(here, IPSL-CM6A-LR model)

SAFRAN French reanalysis system

ETO Reference evapotranspiration (in
mm)

FLO Flowering (in day of the year)

FWI Fire Weather Index (no unit)

SWC Soil Water content (in %)

ESS Effective Sample Size

BC Bias Correction

MBC Multivariate Bias Correction

CDF Cumulative Distribution Function

CDF-t Cumulative Distribution Function —
Transform

R2D2 Rank Resampling for Distributions
and Dependencies (an MBC
method)

dOTC dynamical Optimal Transport

Correction (an MBC method)
Intervariable setting for R2D2 and
dOTC, repsectively

Spatial setting for R2D2 and
dOTC, respectively

Spatial and Intervariable setting for
R2D2 and dOTC, respectively

L.R2D2, I.dOTC
S.R2D2, S.dOTC

SL.R2D2, SI.dOTC
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