Articles | Volume 29, issue 18
https://doi.org/10.5194/hess-29-4539-2025
https://doi.org/10.5194/hess-29-4539-2025
Research article
 | 
22 Sep 2025
Research article |  | 22 Sep 2025

Characterizing the spatial distribution of field-scale snowpack using unpiloted aerial system (UAS) lidar and structure-from-motion (SfM) photogrammetry

Eunsang Cho, Megan Verfaillie, Jennifer M. Jacobs, Adam G. Hunsaker, Franklin B. Sullivan, Michael Palace, and Cameron Wagner

Related authors

Use of multiple reference data sources to cross-validate gridded snow water equivalent products over North America
Colleen Mortimer, Lawrence Mudryk, Eunsang Cho, Chris Derksen, Mike Brady, and Carrie Vuyovich
The Cryosphere, 18, 5619–5639, https://doi.org/10.5194/tc-18-5619-2024,https://doi.org/10.5194/tc-18-5619-2024, 2024
Short summary
Extending the utility of space-borne snow water equivalent observations over vegetated areas with data assimilation
Justin M. Pflug, Melissa L. Wrzesien, Sujay V. Kumar, Eunsang Cho, Kristi R. Arsenault, Paul R. Houser, and Carrie M. Vuyovich
Hydrol. Earth Syst. Sci., 28, 631–648, https://doi.org/10.5194/hess-28-631-2024,https://doi.org/10.5194/hess-28-631-2024, 2024
Short summary
Assimilation of airborne gamma observations provides utility for snow estimation in forested environments
Eunsang Cho, Yonghwan Kwon, Sujay V. Kumar, and Carrie M. Vuyovich
Hydrol. Earth Syst. Sci., 27, 4039–4056, https://doi.org/10.5194/hess-27-4039-2023,https://doi.org/10.5194/hess-27-4039-2023, 2023
Short summary
Evaluating the utility of active microwave observations as a snow mission concept using observing system simulation experiments
Eunsang Cho, Carrie M. Vuyovich, Sujay V. Kumar, Melissa L. Wrzesien, and Rhae Sung Kim
The Cryosphere, 17, 3915–3931, https://doi.org/10.5194/tc-17-3915-2023,https://doi.org/10.5194/tc-17-3915-2023, 2023
Short summary
Brief communication: Comparison of in situ ephemeral snow depth measurements over a mixed-use temperate forest landscape
Holly Proulx, Jennifer M. Jacobs, Elizabeth A. Burakowski, Eunsang Cho, Adam G. Hunsaker, Franklin B. Sullivan, Michael Palace, and Cameron Wagner
The Cryosphere, 17, 3435–3442, https://doi.org/10.5194/tc-17-3435-2023,https://doi.org/10.5194/tc-17-3435-2023, 2023
Short summary

Cited articles

Anderton, S. P., White, S. M., and Alvera, B.: Micro-scale spatial variability and the timing of snow melt runoff in a high mountain catchment, J. Hydrol., 268, 158–176, https://doi.org/10.1016/S0022-1694(02)00179-8, 2002. 
Avanzi, F., Bianchi, A., Cina, A., De Michele, C., Maschio, P., Pagliari, D., Passoni, D., Pinto, L., Piras, M., and Rossi, L.: Centimetric accuracy in snow depth using unmanned aerial system photogrammetry and a multistation, Remote Sens., 10, 765, https://doi.org/10.3390/rs10050765, 2018. 
Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a warming climate on water availability in snow-dominated regions, Nature, 438, 303–309, 2005. 
Bay, C. E., Wunnecke, G. W., and Hays, O. E.: Frost penetration into soils as influenced by depth of snow, vegetative cover, and air temperatures, Eos, 33, 541–546, 1952. 
Belmonte, A., Sankey, T., Biederman, J., Bradford, J., Goetz, S., and Kolb, T.: UAV-based estimate of snow cover dynamics: Optimizing semi-arid forest structure for snow persistence, Remote Sens., 13, 1036, https://doi.org/10.3390/rs13051036, 2021. 
Download
Short summary
Unpiloted aerial system (UAS) lidar and structure-from-motion (SfM) photogrammetry effectively map high-resolution snow depths. Our study found that UAS lidar outperformed SfM, particularly in capturing stable snow distribution patterns. Vegetation type was the primary factor influencing snow depth across forest and field areas, reflecting soil variables, such as organic matter. When analyzed separately, slope and forest canopy shadowing played key roles.
Share