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Abstract. Unpiloted aerial system (UAS) light detection
and ranging (lidar) and structure-from-motion (SfM) pho-
togrammetry have emerged as viable methods to map high-
resolution snow depths (∼1 m). These technologies enable
a better understanding of snowpack spatial distribution and
its evolution over time, advancing hydrological and ecolog-
ical applications. This is particularly critical in mixed vege-
tation environments, where both forest canopy and open ar-
eas influence snow accumulation and melt patterns. In this
study, a series of UAS lidar/SfM snow depth maps were
collected during the 2020/2021 winter season in Durham,
New Hampshire, USA, with three objectives: (1) quantify-
ing UAS lidar/SfM snow depth retrieval performance using
in situ magnaprobe measurements, (2) conducting a quan-
titative comparison of lidar and SfM retrievals of shallow
snow depths (<35 cm) throughout the winter, and (3) un-
derstanding the spatial distribution of snow depth and its
relationship with terrain features. Eight UAS surveys were
conducted over approximately 0.35 km2 including both open
fields and a mixed forest. In the field, lidar had a slightly
lower error than SfM, compared with in situ observations,
with a mean absolute difference (MAD) of 3.5 cm for lidar
and 4.0 cm for SfM. Snow depth maps from SfM and li-
dar were fairly consistent in the field, with only marginal

differences on most dates. In the forest, SfM greatly over-
estimated in situ snow depths compared with lidar (lidar
MAD= 6.3 cm, SfM MAD= 31.4 cm). There was no clear
agreement between SfM and lidar snow depth values for in-
dividual 1 m2 pixels in the forest (MAD= 55.7 cm). Using
the concept of temporal stability, we found that the spatial
distribution of snow depth captured by lidar was generally
consistent throughout the period, indicating a strong influ-
ence from static land characteristics. Considering both areas
(forest and field), the spatial distribution of snow depth was
primarily influenced by vegetation type while also reflecting
the effects of soil variables (e.g., soil organic matter). When
the field and forest areas were analyzed separately, the spatial
distribution was distinctly affected by slope and the shadow-
ing effects of the forest canopy.

1 Introduction

Snowpacks are vital to hydrological, climatic, and ecological
processes across multiple scales (Barnett et al., 2005; Clark
et al., 2011). An understanding of snowpack distribution and
its temporal evolution is important to determine snowmelt
runoff, infiltration, and groundwater recharge (Carroll et al.,
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2019; Harpold et al., 2015; Maurer and Bowling, 2014), as
well as energy partitioning processes (Lawrence and Slater,
2010; Stieglitz et al., 2001; Sturm et al., 2017). Snowpacks
also exert a strong control on snow–soil interactions because
the insulating capacities of snowpacks affect the underly-
ing soil freeze–thaw state, influencing soil respiration, nu-
trient retention, and carbon dynamics (Anderton et al., 2002;
Schlögl et al., 2018; Cho et al., 2021; Monson et al., 2006;
Sorensen et al., 2018; Reinmann and Templer, 2018; Wilson
et al., 2020; Yi et al., 2015).

The spatial variability of a snowpack is a function of static
(e.g., slope, aspect, vegetation type, soil properties) and dy-
namic (e.g., solar radiation, wind direction and speed, tem-
perature) variables and fluxes over a range of spatial scales
(Clark et al., 2011; Grayson et al., 2002; Mott et al., 2011;
Trujillo et al., 2007). Over time, spatial patterns may evolve
and change, but many hydrological patterns persist until they
are modified by weather conditions. Spatial snowpack pat-
terns and their consistency, or repeatability, play a crucial
role in various applications, including operational snowmelt
predictions, the downscaling of remotely sensed or model
outputs, the integration of in situ observations through up-
scaling, the assimilation of data to enhance model simu-
lations, and the utilization of snowpack characteristics as
proxies or analogs for similar hydrological units (Pflug and
Lundquist, 2020; Cho et al., 2023). They can also provide
insight into underlying landscape features, biogeochemical
processes, and wildlife habitats (Boelman et al., 2019; Pflug
et al., 2023).

Previous studies have proposed diverse approaches to
characterize snow distribution patterns and their temporal
evolution across a range of climatic and topographic settings
(Sturm and Wagner, 2010; Vögeli et al., 2016; Revuelto et
al., 2020; Pflug et al., 2021). For example, Sturm and Wag-
ner (2010) found that snow depth patterns in an Arctic re-
gion remain stable across years due to persistent topographic
and vegetation influences, highlighting the value of empirical
snow distribution patterns for improving snow model accu-
racy. Vögeli et al. (2016) used high-resolution airborne dig-
ital sensors to refine precipitation scaling in a snow distri-
bution model (Alpine3D), demonstrating the potential of re-
mote sensing data to better simulate complex snow dynamics
in alpine regions. Pflug et al. (2021) examined the interan-
nual consistency of snow patterns and proposed a downscal-
ing approach based on historical snow patterns in the Califor-
nia Tuolumne River Watershed; this approach is particularly
useful for predicting snow distribution in years with lim-
ited observations. Revuelto et al. (2020) introduced a method
combining in situ snow depth measurements with terrestrial
laser scanner and time-lapse photography to produce tempo-
ral snow depth distribution patterns in a subalpine mountain
environment, offering a transferable approach for deriving
spatial snow data from limited ground observations.

Traditionally, field (approximately 100 m) or local-scale
(approximately 1 m) snow features are captured through in

situ observations and field campaigns (Clark et al., 2011;
Trujillo et al., 2007), whereas regional or continental-scale
patterns are typically observed using airborne and satellite
remote sensing techniques (Lievens et al., 2022; Painter et
al., 2016; Derksen et al., 2005). Airborne and satellite re-
mote sensing methods have provided the ability to collect
snowpack data over a large spatial extent, thus expanding the
understanding of snow distribution (Cho et al., 2020; Lievens
et al., 2022; Painter et al., 2016; Tsang et al., 2021). However,
the ability to capture small-scale snow patterns, discerned
through field campaigns or less frequent routine operational
collections, is often hindered by challenges, such as weather
conditions, tree canopies, and site accessibility, which can
lead to infrequent sampling during the winter season.

Unpiloted aerial systems (UASs) have been used to pro-
vide spatially continuous opportunistic snow-covered area
and snow depth observations at scales between in situ and
airborne and satellite remote sensing (Bühler et al., 2016;
De Michele et al., 2016; Harder et al., 2016, 2020; Meyer
et al., 2022; Revuelto et al., 2021a; Geissler et al., 2023).
UAS-based remote sensing enables the acquisition of data
at fine spatial resolutions, reaching scales as precise as cen-
timeters for a designated area. UAS platforms also offer a
cost-effective alternative to aerial surveys, facilitating routine
monitoring of snow conditions (Gaffey and Bhardwaj, 2020).
Hence, the capabilities of UAS platforms equipped with di-
verse sensors can observe snowpack properties and support
analyses of field-scale physical interactions between snow-
packs and land/soil characteristics (Cho et al., 2021).

UAS light detection and ranging (lidar) and structure-
from-motion (SfM) photogrammetry have emerged as viable
methods for mapping high-resolution snow depths (∼1 m),
enabling a better understanding of snowpack spatial distri-
bution and its evolution over time at the field scale (Feng et
al., 2023; Harder et al., 2016; Jacobs et al., 2021; Koutan-
tou, 2022; Geissler et al., 2023). There is a growing need for
new multi-temporal snow datasets, especially during transi-
tion periods characterized by shallow and patchy snow condi-
tions, which pose measurement challenges but are critical for
understanding snowpack dynamics and their hydrological,
ecological, and energy implications (Harrison et al., 2021;
Harpold et al., 2017; Grogan et al., 2020; López-Moreno et
al., 2024). Different UAS-based sensors offer complemen-
tary strengths and weaknesses that warrant further investiga-
tion across diverse environmental settings.

This study aims to achieve three main objectives using a
series of UAS lidar/SfM snow depth maps over a mixed-
use temperate forest landscape: (1) to quantify UAS snow
depth retrieval performance by comparing it with in situ mea-
surements; (2) to conduct a quantitative comparison of li-
dar and SfM snow depths throughout the snow period for a
range of depths that reflect the specific conditions observed
in our dataset (i.e., 0 to 35 cm); and (3) to gain a better un-
derstanding of the spatial distribution of snow depth, its sta-
bility over time, and its relationship with physical terrain fea-
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tures. This paper is organized as follows. Section 2 provides
an overview of the study area, including its land characteris-
tics. Section 3 describes the datasets utilized in the study, in-
cluding UAS lidar, SfM photogrammetry, and field observa-
tions, and the methods employed, such as the relative differ-
ence concept. Section 4 presents the results, with subsections
detailing comparisons between UAS snow depth and in situ
measurements (Sect. 4.1), as well as comparisons between
lidar and SfM snow depth (Sect. 4.2). Sections 4.3 and 4.4
further examine the spatial patterns and temporal dynamics
of snow depth, along with the physical variables influencing
these patterns. Section 5 discusses new insights derived from
the comparison results and spatial patterns of snow depth,
along with the limitations of this study and future perspec-
tives. Finally, conclusions are drawn in Sect. 6.

2 Study area

This study was conducted at the University of New Hamp-
shire Thompson Farm Research Station in southeastern New
Hampshire, the United States (43.10892° N, 70.94853° W,
35 m above sea level), which was chosen for its mixed hard-
wood forest and open field land covers (Cho et al., 2021; Bu-
rakowski et al., 2015; Jacobs et al., 2021), which are charac-
teristic of the region (Fig. 1). Thompson Farm has a rich his-
tory of forest ecology research and data collection. Thomp-
son Farm has an area of 0.83 km2 and little topographic relief
(18 to 36 m a.s.l.). The agricultural fields are actively man-
aged for pasture grass. The deciduous, mixed, and coniferous
forest is composed primarily of white pine (Pinus strobus),
northern red oak (Quercus rubra), red maple (Acer rubrum),
shagbark hickory (Carya ovata), and white oak (Quercus
alba). The forest soils are classified as Hollis/Charlton very
stony fine sandy loam and well-drained; field soils are char-
acterized as Scantic silt loam and poorly drained. There
are two logging access roads running north–south through
the pasture and western forest section. The winter climate
at Thompson Farm has a mean winter air temperature of
−3.0 °C and an annual snowfall of 114 cm, with 3 weeks
to over 3 months of days with snow cover (Burakowski and
Hamilton, 2020; Johnston et al., 2024). Snow depth can range
from a trace up to 94 cm and typical snow density ranges
from 100 to 400 kg m−3 (Burakowski and Hamilton, 2020).
The snowpack at Thompson Farm is short-lived and warm,
and snow climatologies from Sturm and Liston (2021) and
Johnston et al. (2024) both classify the area as ephemeral.
A review of existing research on the snow classes defined
by Sturm and Liston (2021) and Johnston et al. (2024) de-
termined that, despite covering large areas in the northern
hemisphere, the ephemeral snow class is largely understud-
ied, making new research on ephemeral snowpacks valu-
able. López-Moreno et al. (2024) also emphasized the im-
portance of studying these transient snow conditions, high-

lighting their sensitivity to climate variability and their im-
plications for hydrological and ecological processes.

3 Datasets and methods

Series of UAS lidar surveys, UAS SfM photogrammetry
surveys, and in situ sample campaigns were conducted at
Thompson Farm during the winter 2020–2021. Eight snow-
on campaigns were conducted between 10 February and
11 March 2021, during which period UAS lidar, UAS SfM
photogrammetry, and in situ data were collected (Table S1).
The UAS snow-on surveys were conducted prior to in situ
sampling on each of the campaign dates. Because com-
paction of underlying vegetation during snow-on periods
can result in negative snow depths when compared with the
snow-off baseline (Masný et al., 2021), the snow-off baseline
survey was conducted on 2 April 2021 following snowmelt.

3.1 UAS lidar and SfM photogrammetry

The lidar sensor payload consisted of a Velodyne VLP-
16 laser scanner and an Applanix APX-15 inertial naviga-
tion system (INS: global navigation satellite system (GNSS)
+ inertial measurement unit (IMU)). The VLP-16 is a
lightweight (≈830 g) low-power (≈8 W) sensor; this makes
it ideal for UAS deployment. The sensor incorporates 16 ro-
tating infrared (IR) lasers that are arranged and oriented on
the payload to provide a 30° along-track field of view with a
cross-track field of view, limited only by the range of the sen-
sor (approximately 100 m). At an altitude of 65 m, the sen-
sor range produces an effective cross-track field of view of
approximately 98°. Each laser operates at a wavelength of
903 nm.

For these acquisition missions, the VLP-16 was hard-
mounted to a DJI Matrice 600 to maintain constant lever arm
offsets between the inertial navigation system (INS) GNSS
antenna, the lidar sensor, and the INS board. As opposed
to a gimbal-mounted system, this hard-mounted configura-
tion achieves a more tightly coupled system, resulting in im-
proved point cloud geolocation accuracy. The lidar sensor
was set to dual-return mode to improve ground detection in
the forested areas of the field site. The system was flown at
an altitude of 65 m with a flight speed of 3 m s−1 and ≈40 m
spacing between flight lines. Flights produced≈70–140 mil-
lion returns per mission, depending on site ground condi-
tions.

Lidar observations were georeferenced using position and
attitude measurements acquired with the Applanix APX-15
INS. The INS produced 2–5 cm positional, 0.025° roll and
pitch, and 0.08° true heading uncertainties following post-
processing. Post-processing of INS data was performed us-
ing POSPac UAV (v. 8.2.1, Applanix Corporation 2018), cor-
recting differentially against a permanent continuously op-
erating reference station (CORS) at the University of New
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Figure 1. Thompson Farm survey area located in Durham, NH, USA. (a) In situ sample sites and field and forest boundaries are overlain on
the snow-off imagery. The pond, section of dense shrubs, outbuildings, and USCRN station in the western field were not representative of
the field and were removed. (b–g) Maps of (b) vegetation type, (c) slope, (d) shadow hours, (e) soil hydraulic conductivity (Ksat), (f) organic
matter, and (g) aspect are shown for the field and forest areas. The derivation of each of these variables is explained in Sect. 3.

Hampshire in Durham, NH (NHUN). Position and attitude
data were output as a smoothed best estimate of trajectory
(SBET), then time synchronized with lidar returns to pro-
duce a georeferenced point cloud using LidarTools (v. 3.1.4,
Headwall Photonics, Inc.).

Three-dimensional point clouds were processed using a
progressive morphological filter (PMF) within the R pro-
gramming language package “lidR” to identify ground re-
turns. For ground classification, point clouds were chunked
into 100 m square tiles with a 15 m buffer on all sides us-
ing catalog options in lidR to ensure that returns near tile
edges were classified. The PMF was parameterized using
a set of window sizes of 1, 3, 5, and 9 m, and elevation
thresholds of 0.2, 1.5, 3, and 7 m, which were determined
by varying value sets and assessing digital terrain models
(DTMs) to determine the parameter sets that produced a vi-
sually smooth surface over a dense grid (Muir et al., 2017).

Following ground classification for each tile, returns within
the 15 m tile buffers were removed, and all resulting 100 m
square ground classified tiles were merged. The result of us-
ing the PMF is that non-ground returns (i.e., trees, shrubs,
and noise) were filtered out of the point cloud data sets, so
that only returns from ground surfaces remained. The two
data sets, non-ground returns and ground returns from the
original point clouds, were coded according to LAS specifi-
cations and merged. Lidar snow depths were calculated as the
difference between the ground classified snow-on and snow-
off elevations within each pixel. For comparison with in situ
observations, ground returns were extracted for the 1× 1 m
square sampling sites, corresponding to the alignment and
orientation of the transect. The lidar snow depth was calcu-
lated as the difference between the mean snow-on and mean
snow-off elevations within each sampling grid.
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Photogrammetry bare-earth and snow-on elevation models
were constructed from UAS-borne optical imagery. RGB im-
ages were collected using the DJI Phantom 4 real time kine-
matic (RTK) UAS platform equipped with a 20 megapixel
complementary metal oxide semiconductor (CMOS) sensor.
The RTK system integrates a static base station that relays
GNSS corrections to the UAS, enabling approximately 3 cm
accuracy of image geotags. To ensure that photogrammetry
snow depth products aligned correctly with the UAS lidar
products, the RTK base station was placed over a monu-
ment with known coordinates, which were entered into the
DJI flight app. Flights were conducted at an altitude of 65 m
AGL and a flight speed of 8 m s−1. The shutter triggering
interval was set to achieve a forward overlap of 80 % be-
tween image pairs and the flight lines were spaced to achieve
80 % side overlap. Three ground control points (GCPs) were
placed within the area of interest to verify the accuracy of
the photogrammetry products. The GCPs were surveyed us-
ing a Trimble© Geo7X GNSS positioning unit and Zephyr™
antenna with sub-centimeter accuracy.

The acquired image datasets were processed through the
basic photogrammetry workflow using Agisoft Metashape
(v. 1.8.4). Sparse clouds were constructed using the default
key point and tie point limits of 40 000 and 4000, respec-
tively. Points with high errors within the sparse clouds were
then removed using the gradual selection tool. This included
points exceeding the following thresholds: reprojection error
>0.5, reconstruction uncertainty >50, and projection accu-
racy >5. The camera intrinsic/extrinsic parameters were op-
timized following the removal of the poorly localized points.
Dense clouds were produced with the quality setting set
to high and depth filtering set to moderate. Ground returns
were classified using the ground classification tool within
Metashape. A first pass at establishing a ground surface was
done by triangulating the lowest point elevation within 50 m
grid cells. The default thresholds for maximum distance and
angle (1 m and 15°, respectively) of all points relative to the
triangulated surface were used to determine points forming
part of the ground surface. Finally, digital elevation mod-
els (DEMs) were derived from the ground classified points
within the dense clouds. Snow depth products were derived
following the same procedure as for lidar by calculating the
difference between the ground classified snow-on and snow-
off elevations within each pixel. Additional filtering based
on the point confidence metric was completed for the 20 and
24 February snow depth maps to remove points with high
uncertainty. GCPs surveyed using the base/rover equipment
were used to co-register the UAS data. Linear, horizontal,
and vertical shifts were applied to align all SfM and lidar
DEMs to the GCPs.

3.2 Field observations

In situ snow depth sampling was conducted in the field and
forest using a Snow-Hydro LLC magnaprobe (Sturm and

Holmgren, 2018) and three Moultrie Wingscapes Birdcam
Pro field cameras. The magnaprobe sampling followed a sin-
gle long transect (18 points) and two short transects (3 points
each). The long transect was approximately 145 m long and
laid out from east to west (Fig. 1). From east to west, the
transect started in the open field area, then transitioned to the
coniferous, then mixed, and finally, deciduous forested ar-
eas. The two short transects were located in the open field,
one in the northwestern portion and the other in the south-
east. At each point, nine evenly spaced measurements were
taken within 1 m× 1 m grid cells. It is worth noting that some
dates were missing sample points due to disturbance of the
sample area, either by collection on previous days or recre-
ational use at the site or due to personnel and equipment lim-
itations (Table S1). All sampling locations were geolocated
using a Trimble Geo7X GNSS positioning unit and Zephyr
antenna with an estimated horizontal uncertainty of 2.51 cm
(standard deviation, 0.95 cm) in the field and 4.17 cm (stan-
dard deviation, 4.60 cm) in the forest after differential cor-
rection. Field camera snow depths were acquired following
the method used in NASA’s 2020 SnowEx field campaign
in Grand Mesa, CO (personal communication, 16 Novem-
ber 2020). The three cameras were placed in different land
cover types; one in the open field, one in the coniferous
forest, and one in the deciduous forest. Each camera was
mounted approximately 0.85 m above the ground and placed
approximately 5.5 m from its respective 1.5 m marked PVC
pole. Each PVC pole was spray-painted red and marked in 1
and 10 cm increments. The cameras captured images of the
poles every 15 min for the duration of the study period. Snow
depth was derived by manual inspection of the photos and
recorded to the nearest centimeter. Precipitation equivalent
and mean temperature were measured by a NOAA Office
of Oceanic and Atmospheric Research U.S. Climate Refer-
ence Network (USCRN) station (NH Durham 2 SSW) lo-
cated in the western portion of the field. Hourly air tempera-
tures at the USCRN station were averaged from 2 s readings
from three independent thermometers. Hourly precipitation
is computed from 5 min readings of depth change, recorded
by a weighing precipitation gauge.

3.3 Physical land characteristics

Land and soil characteristic variables were investigated as
physical drivers of the field-scale spatial distribution of snow
depth. The variables used in this study were plant functional
type, slope, aspect, shadow hours, saturated hydraulic con-
ductivity (Ksat), and soil organic matter (SOM) (Fig. 1).
Mapped at a 1 m scale, all variables were derived from UAS
snow-off observations except the two soil variables. The two
soil variables, Ksat and SOM, were obtained at soil depths
of 0–5 cm from probabilistic remapping of SSURGO (PO-
LARIS) maps at 30 m spatial resolution (Chaney et al., 2016,
2019). The soil maps were disaggregated to 1 m spatial res-
olution without employing interpolation methods to mitigate
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additional uncertainties. Vegetation cover type (field/forest)
was manually delineated in geographic information system
(GIS) software based on the image orthomosaics created dur-
ing SfM processing. The forested area was further classified
as coniferous or deciduous for the study region by applying
a green leaf index (GLI) (Louhaichi et al., 2001),

GLI=
(green− red)+ (green− blue)

(2 · green)+ red+ blue
, (1)

to the optical three-band (red, green, and blue) orthomosaics
derived from the snow-off DJI Phantom 4 RTK survey.

The GLI algorithm delineated the dense vegetation
(conifer trees) from the less dense vegetation (leaf-off de-
ciduous trees). The direct application of the GLI algorithm
to the three-band orthomosaics was further filtered and re-
fined as follows. The output was clustered using the k-means
algorithm with the number of k classes equal to 2: 1 class
for coniferous trees (high GLI) and 1 class for deciduous
trees (low GLI). Noise within the clustered GLI map was
removed by convolution with a median filter. To establish
continuous delineations of coniferous regions, morpholog-
ical closing was applied to the map to fill in any interior
holes within the delineated regions. Forest classifications for
each of the magnaprobe sample locations were estimated for
a 10 m× 10 m area centered at each sampling grid, based
on the percentage of coniferous pixels (< 40%= deciduous,
40 %–60 %=mixed, > 60%= coniferous). Results from the
binary forest classification and the coarsened 10 m× 10 m
classification are shown in Fig. S1. The slope and aspect were
derived from the UAS lidar 1 m snow-off DEM using Horn’s
method (Horn, 1981). The shadow hours were calculated us-
ing the unfiltered UAS lidar digital terrain model and a static
sun incidence angle based on the average of 4 February and
7 March. Given the minor variation in solar angles between
these dates, any change in shadow hours was considered neg-
ligible for this study.

3.4 Relative difference concept

The relative difference concept, first introduced by Vachaud
et al. (1985), has been widely used in the soil moisture re-
mote sensing community to quantify the spatiotemporal vari-
ability (or stability) of soil moisture at field or regional scales
(Cho and Choi, 2014; Cosh et al., 2004; Jacobs et al., 2004;
Mohanty and Skaggs, 2001; Starks et al., 2006). In this study,
we apply this concept to the UAS lidar snow depth measure-
ments. The relative difference in the snow depth measure-
ments can be expressed as

RDi,t =
SNDi,t − spatialmean(SNDt )

spatialmean(SNDt )
, (2)

where SNDi,t is the individual snow depth measurement at
grid i and date t , and spatial mean (SNDt ) is the spatial
mean value of snow depth at date t . For each grid i, the mean

relative difference (MRDi) is the average relative difference
from each of the N flights and can be calculated as

MRDi =
1
N

∑N

t=1
RDi,t . (3)

4 Results

4.1 In situ vs. UAS-measured snow depths

Daily temperature, daily precipitation, and measured snow
depths in the field and forest for the study period are shown
in Fig. 2. Between 15 December 2020 and 12 March 2021,
the average daily temperature was−2 °C, the maximum daily
temperature was 19 °C on 31 January, and the minimum daily
temperature was −19 °C on 11 March. Average wind speed
was 1.4 m s−1 for the study period. The cumulative precipi-
tation for the same period was 20.4 cm. The largest precip-
itation event was 11 cm and occurred on 16 January when
temperatures were above freezing (2–9 °C). December and
early January had ephemeral snowpacks of less than 10 cm,
which melted within a week. A snowpack was continuously
present from late January through the middle of March. The
maximum snow depth measured by the cameras occurred
on 10 February, with 21 cm in the field, 21 cm in the de-
ciduous forest, and 18 cm in the coniferous forest. A sec-
ond peak snow depth occurred on 20 February, with 20 cm
in the field, 12 cm in the deciduous forest, and 19 cm in the
coniferous forest. A sustained period of warm temperatures
in late February and early March corresponded to a decrease
in snow depth due to the warming temperatures and two rain-
on-snow events. The snowpack was depleted from the entire
study area by 10 March.

Figure 2b and c show that the eight UAS-based SfM and
lidar flights captured both the snow depth peaks and the ab-
lation period following the last peak on 20 February, the
latter referring to the phase in the seasonal snow patterns
when the snowpack begins to melt and decrease in depth.
During the ablation period, UAS measurements typically
showed a decreasing snow depth that matched the progres-
sion from the field camera measurements. The final UAS
surveys on 7 March captured the transition from a snow-
cover-dominated field area on 3 March to predominantly bare
ground. In the field, the UAS-based measurement techniques
yielded similar snow depths throughout the winter and were
able to capture snow depth changes of the order of 5 cm or
less. However, the forest performance often differed between
the two UAS methods. In the forest, the lidar snow depths
tracked the camera observations within 5 cm. However, the
SfM method had inconsistent performance. Notably, on 14
and 20 February, the SfM snow depths exceeded the lidar
depths by more than 50 cm.

UAS-based snow depth retrievals were compared with in
situ snow depths measured by the magnaprobe (Fig. 3; Ta-
ble S2). Field camera observations were not used for val-
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Figure 2. Time series of conditions at the Thompson Farm, Durham, NH, study area during the 2021 winter season including (a) hourly
precipitation equivalent (mm) and temperature (°C) measured by a USCRN station and (b–c) daily camera snow depths and median UAS-
measured snow depths in (b) the field and (c) forest. Dates corresponding to the in situ and UAS sampling campaigns are marked by the
vertical dotted lines. Periods where the temperature was colder than 0 °C are indicated by the blue plot background in (a) and periods warmer
than 0 °C are indicated in pink. Median SfM-measured snow depths in the forest on 4 and 28 February 2021 exceeded 35 cm (172 and 86 cm,
respectively) and are not shown.

idation due to their limited spatial extent compared with
the magnaprobe sample locations (Fig. 3). In the field, both
UAS lidar and UAS SfM snow depths were approximately
1.5 cm deeper on average than the magnaprobe measure-
ments. While both UAS methods tended to follow the 1 : 1
line, SfM had several outliers, in which the SfM snow depth
overestimated the in situ measurements. Overall, the UAS
lidar performance was modestly better in the open field
than the UAS SfM, as compared with the magnaprobe mea-
surements based on the mean absolute difference (MAD)
(SfM= 4.0 cm, lidar= 3.5 cm) and the fitted linear regres-
sion line r2 values (SfM= 0.51, lidar= 0.73). Samples from
the field had better agreement between UAS and magnaprobe
measurements than those from the forest. In the forest, the
MAD values increased modestly for the lidar, but sharply for
the SfM snow depths when compared with the magnaprobe
measurements (SfM= 31.4 cm, lidar= 6.3 cm). In addition,
lidar measurements had a much higher r2 value than SfM
in the forest (SfM= 0.02, lidar= 0.70). The UAS-measured
snow depths in the forest are also shifted to the right of the
1 : 1 line, indicating that the UAS tended to measure snow

depths as being shallower than the magnaprobe. This does
not necessarily indicate an error in the UAS measurements
because a previous study by Proulx et al. (2023) at this study
site demonstrated that the magnaprobe tends to overprobe in
the forest.

4.2 Comparison between lidar and SfM snow depth

Figure 4 shows a direct comparison between the snow depths
at individual 1 m× 1 m pixels measured by lidar and SfM
over the entire study area. The field was divided into three
areas based on an early study (Cho et al., 2021) showing
distinct topographic and soil characteristics in each section.
While there is considerable scatter for the individual pixels
in all field areas, the SfM and lidar snow depths tend to agree
fairly well based on MAD (east= 4.4 cm, west= 2.9 cm,
northwest= 4.3 cm). Compared with the northwestern and
eastern fields, the western field had the most similar snow
depth values for SfM and lidar. In that field, both lidar
and SfM techniques captured relatively deeper snow depths,
ranging from 50 to 100 cm. In the northwestern and eastern
fields, SfM snow depths are frequently much deeper than the
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Figure 3. UAS-based snow depth measurements compared with in situ snow depth measurements from the magnaprobe. UAS-measured
snow depths are shown for pixels overlapping the magnaprobe sample locations. Measurements collected on all dates are shown for (a) the
field and (b) forest. n values indicate the number of samples shown within the plot axes. UAS-measured snow depths that exceeded 50 cm
are not shown (1 SfM field, 6 SfM forest). Magnaprobe sample locations corresponding to UAS pixels with missing snow depth values are
not shown (1 SfM field, 6 SfM forest, 7 lidar forest). UAV denotes unpiloted aerial vehicle.

lidar snow depths. In contrast, there was no clear agreement
between SfM and lidar snow depths at the 1 m resolution in
the forest (MAD= 55.7 cm), largely due to extensive regions
in which SfM snow depths were anomalously high.

Time series of lidar and SfM snow depth maps over the
entire study area are shown in Fig. 5. While the previous
section found that individual locations may have differences,
these maps show that both techniques capture the differences
in snow depth between flights in both the field and forest ar-
eas. The difference between the snow depth maps by sample
date shows where the UAS snow depths tend to agree and
disagree. The difference between SfM and lidar snow depths
was fairly consistent in the field and close to 0 cm on most
dates. However, on 20 and 24 February the southeastern field
showed a negative difference, indicating that the SfM snow
depths were considerably deeper than the lidar snow depths
in parts of the field. On other dates, including 4 February,
the SfM snow depth map was missing data from extended
areas in the field. In the forest, missing or patchy SfM data
occurred on many days (e.g., 4, 20, and 28 February). Lidar
and SfM ground return point count statistics by land cover
type are summarized in Tables S3 to S6. Despite the lim-
ited overlap in the forest, there is limited agreement between
the two methods. Most maps show that the SfM snow depths
were much deeper than the lidar snow depth through most of
the forest, except at the forest and field edge.

4.3 Spatial distribution of snowpack and its temporal
changes

Understanding and quantifying the spatiotemporal variabil-
ity – or stability – of snowpack is essential for identifying
the physical drivers that influence snow accumulation and
ablation across heterogeneous landscapes. To explore these
dynamics in detail, MRD values were mapped to reveal spa-
tial patterns in snow depth across survey dates (Fig. 6). The
average spatial distribution of snow depth across the study
domain based on UAS lidar-derived maps from eight survey
dates shows spatially distinct patterns. The field had rela-
tively deeper snow, by up to 70 % greater than the spatial
mean. Within the field, the snow in northern areas was gen-
erally deeper than that in the southern areas, except for near
the northern edges, where it was shallower. In forested ar-
eas, the snow was shallower by up to −70 % relative to the
spatial mean. Snow in northeastern forest areas was gener-
ally shallower than that in other forest areas. Distinct differ-
ences in the transition zones between field and forest show
edge effects. Immediately south of the tree line at the north-
eastern extent of the field, the snowpack is noticeably shal-
lower. Moving away from the forest edge, there is a transition
zone where snow becomes progressively deeper. In contrast,
the southern portion of the northwestern field exhibits deep
snow.

The relative difference snow depth maps for each date
show that the spatial patterns of relative differences were
fairly consistent throughout the study period (Fig. 7). Gen-
erally, there was deeper snow in the northern part of the field
(about 50 % larger than the spatial mean) and shallower snow
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Figure 4. Comparison of SfM and lidar measurements for all sam-
ple dates by location. Scatterplots (left) compare snow depth for (a,
c, e) the three field areas and (g) the forest. Probability density plots
(right) show the distribution of snow depth values by UAS tech-
nique for (b, d, f) the three field areas and (h) the forest. Measured
snow depths exceeding 50 cm are not shown.

was found in forested areas as well as the central part of the
field. Also, there was shallower snow along the northeastern
boundaries of the field. These patterns were very clear during
the accumulation period before the peak snow depth around
22 February. During the ablation period, consistent spatial
patterns of the relative difference were still observed, partic-
ularly in the northern/eastern field, where snow remained rel-
atively deep, in contrast to the forest areas, which continued
to show shallow snow or exposed ground. These patterns per-
sisted despite the increased presence of patchy snow cover in

some regions. These gaps emerged primarily due to differen-
tial melting, leading to sections with no remaining snow.

4.4 Physical variables characterizing spatial
distribution of snow depth

To evaluate the effect of physical land characteristics on the
spatial distribution of snow depth, the MRD values were an-
alyzed with respect to five land and soil characteristic val-
ues (namely, vegetation type, slope, shadow hours, Ksat, and
SOM) over the study domain. Boxplots of MRD by physi-
cal feature are shown for the combined forest and field ar-
eas, field only, and forest only (Fig. 8). Statistical signifi-
cance results among groups, based on Kruskal–Wallis and
Tukey tests, are summarized in Tables S7 and S8. In the com-
bined areas (i.e., forest+field), relative snow depth signifi-
cantly differs by vegetation type. Coniferous forests have low
MRDs (mean: −0.36), which indicate that snow in those ar-
eas is shallower relative to the spatial mean of snow depth
by around 36 %. For the deciduous forest, the mean MRD
is −0.2, with a wide interquartile range from −0.23 to 0.19.
MRD values in the field are higher compared with the two
forest types, ranging from −0.11 to 0.22 (mean: 0.08). For
the combined areas as well as field and forest only, slope con-
tributes to snowpack spatial patterns, even though the study
area has a gentle slope (less than 20 %). High MRDs are
found in flat areas (0 %–5 % slope) and gradually decrease
with increasing slope. The effect of slope for the forest-only
area is relatively modest. The shadow hours show a clear
but contradictory contribution to snow depth patterns in the
field- and forest-only areas as compared with the combined
area. When the field and forest are separated out, low MRDs
are found in areas where shadow hours are short (e.g., less
than 2 h), and the MRDs gradually increase with increasing
shadow hours. For the combined area, the highest shadow
hours had the lowest snow depth, but this is likely to be the
result of a mixed effect due to the dense shading in the conif-
erous forest. Ksat shows little evidence of contributing to the
spatial distribution of snow depth in the field, but there are
distinct differences in MRDs among lower Ksat groups in the
forest. In the combined areas, MRDs tend to decrease with
increasing Ksat values, except for the highest Ksat group.
Compared with Ksat, SOM exhibits a clearer pattern, with
MRD decreasing as SOM increases in both the combined ar-
eas and field analysis. The forest area does not display con-
sistent MRD patterns with changes in SOM.

5 Discussion

5.1 Comparison with previous findings: UAS SfM and
lidar snow depths

The value of lidar datasets for capturing the horizontal and
vertical structure of forests and snow cover depth is well es-
tablished (Harder et al., 2020; Jacobs et al., 2021; Donager
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Figure 5. Time series of snow depths for UAS lidar and SfM in the field and forest. Difference is calculated as lidar snow depth minus SfM
snow depth. All values are shown in centimeters.

Figure 6. The snow depth mean relative difference (MRD) map
generated by averaging the eight relative difference maps from the
UAS lidar-based snow depth maps from 4 February to 7 March.

et al., 2021; Dharmadasa et al., 2022). However, the technol-
ogy remains expensive and data processing is complex. The
lower cost of SfM techniques compared with lidar make them
a valuable tool for conducting surveys of snowpack change
over time (Fernandes et al., 2018). Post-processing of RGB
imagery is often less complex than lidar data processing and

a variety of SfM software is now available, including some
open-source options. However, our study concurs with early
findings that SfM accuracy for measuring forest snow depths
still cannot match that of lidar (Donager et al., 2021).

In SfM processing, an insufficient number of valid tie
points, used to stitch together overlapping images, may de-
grade the accuracy of SfM snow depth data (Harder et al.,
2016). Due to the reliance on RGB optical imagery, over-
cast skies and poor lighting over relatively homogeneous
snowpacks (e.g., fresh snow) make it difficult for SfM post-
processing software to identify a sufficient number of valid
tie points (Bühler et al., 2016, 2017; Harder et al., 2020; Re-
vuelto et al., 2021b; Miller et al., 2022). A lower number of
valid tie points and higher point uncertainty result in large
data gaps and poor estimation of surface elevations. In this
study, when there was relatively fresh snow and few features,
there were gaps in the SfM snow maps in the eastern field
on 4, 20, and 24 February. Areas in the field with a suffi-
cient number of unique tie points showed better agreement
between SfM and lidar-measured ground surface elevations
than those with fewer tie points (Fig. S2).

SfM performance is also lower in areas with dense vegeta-
tion where the ground surface is blocked by tree branches and
canopies (Harder et al., 2020). Poor penetration of the forest
canopy results in fewer overall ground returns and sparser
point clouds. In Thompson Farm’s mixed forest with dense
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Figure 7. Relative difference maps generated from the UAS lidar-based snow depth maps from 4 February to 7 March. The white areas in
the figures indicate either masked areas (e.g., ponds and facilities) or areas with no snow.

underbrush, SfM post-processing also exhibited numerous
tie point errors due to the lack of unique tie points. This
is likely to be due to a plethora of thin tree branches and
brush that appear as repetitive forest features. The features in
these forests differ from forests with distinct trees and lim-
ited vegetation, such as the Harder et al. (2020) mixed lodge-
pole pine and subalpine fir forests. On all dates in the for-
est, the resampled 1 m× 1 m lidar data had fewer pixels with
missing data than SfM (lidar= 0.4 %–1.6 %, SfM= 3.7 %–
70.5 %). This error is apparent in the profile views of the
ground surface returns for SfM and lidar from 10 February
(Fig. S2) where SfM-measured ground elevations had greater
variability compared with lidar in the forest. Methods for re-
ducing the errors associated with SfM in the forest are lim-
ited. Adjustments to survey techniques, such as changing the
camera angle and flying at lower altitudes and speeds, and
post-processing workflows, such as making selection crite-
ria less restrictive, may improve the number of points some-
what (Lendzioch et al., 2019). However, active remote sens-
ing techniques, including lidar, have better penetration of the
forest canopy than those that rely on passive sensing (Harder
et al., 2020; Bühler et al., 2016).

SfM-derived error values from our study were 4.0 cm
MAD and 6.8 cm root mean square deviation (RMSD) for
the field, and 31 cm MAD and 71 cm RMSD for forested
areas, highlighting a clear vegetation-dependent variation in
accuracy. These findings are consistent with previous studies
comparing UAS SfM and snow probe measurements, which
report RMSD values typically below 31 cm in sparsely vege-
tated or alpine environments, increasing up to 37 cm in areas
with denser vegetation, such as bushes, tall grass, or forests
(De Michele et al., 2016; Bühler et al., 2016; Avanzi et al.,
2018; Belmonte et al., 2021). Studies using UAS SfM along-
side rulers and snow stakes had a root mean square error
(RMSE) of less than 14 cm in both forested and prairie land
cover types (Fernandes et al., 2018; Harder et al., 2016).
Findings were also similar for studies comparing UAS lidar
with rulers or snow stakes, which measured a RMSE less
than 17 cm, with even lower RMSE values in shallow snow
and in sunny areas (Harder et al., 2020; Feng et al., 2023;
Koutantou et al., 2022). Lidar RMSE also tends to increase
in vegetated areas, regardless of the vegetation class or type
(Harder et al., 2020). Much like Harder et al.’s (2016) obser-
vations of erroneously high SfM snow depth measurements
several meters above the snow surface, we observed SfM-
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Figure 8. Boxplots of the snow depth MRD for each physical feature (vegetation type, slope, shadow hours, Ksat, and soil organic matter)
for (a) the combined areas (forest and field), (b) field, and (c) forest only. The 1–5 for each boxplot except for vegetation type represents the
relative range of each physical variable in each area (for example, for slope in the combined areas, 1: 0 %–5 %, 2: 5 %–10 %, 3: 10 %–15 %,
4: 15 %–20 %, and 5: 20 %–25 %).

measured snow depths greater than 150 cm in some forest
locations. Conversely, our lidar-measured snow depths never
exceeded 25 cm, indicating a more consistent performance in
forested areas. We also found that the SfM snow depths did
not consistently agree with the lidar snow depths over the
entire field and on all dates. On most dates, the difference in

UAS-measured snow depths was close to 0 cm in the field.
The best agreement occurred in the western portion of the
field, while the southeastern and northwestern portions had a
larger amount of variability in measured values. The shadow
hours and land cover type in the eastern and western fields are
similar; however, the eastern field has a more gentle and less
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variable slope and fewer unique features (e.g., access road,
USCRN station, pond, dirt piles, footprints) than the west-
ern field. The relatively homogeneous features in the eastern
field indicate that the difference between techniques is likely
to be due to a lack of sufficient valid tie points for SfM. It is
not clear what caused the differences between SfM and lidar
in the NW field that were not present in the other field areas.
Unique features in the NW field are prevalent drainage pat-
terns and shadowing that could be further investigated in the
future.

While it is apparent that the accuracy of SfM-derived snow
depth estimates cannot match that of lidar, the results of
this study indicate that both techniques provide sufficient ac-
curacy for monitoring the median change in shallow snow
depths over time in flat unforested land covers when there
are a sufficient number of unique characteristics for SfM
post-processing. It is clear from the results of this study and
previous ones that, compared with in situ data, UAS lidar
techniques produce lower errors and fewer data gaps than
SfM, especially in forested land cover and over homoge-
neous snowpacks (Bühler et al., 2016, 2017; Harder et al.,
2020; Revuelto et al., 2021b; Miller et al., 2022). While UAS
lidar may be the preferred technique in most cases, UAS SfM
can still provide valuable information on changes in median
snowpack depth across unforested areas at a relatively low
cost and with less complex post-processing compared with
UAS lidar. Regardless of the sampling technique used, the
unique capability of UASs for measuring snowpack prop-
erties at the field scale and at a high temporal resolution
makes them useful for observing snowpack evolution over
time (Fernandes et al., 2018; Harder et al., 2020). Collection
of in situ snow depth time series data is often time- and cost-
prohibitive and may be especially challenging in complex or
avalanche-prone terrain (Bühler et al., 2016; Harder et al.,
2020). Monitoring snow depth changes at the field scale pro-
vided insights into accumulation and ablation patterns across
the entire study area, as well as between different land cover
types (e.g., forest and field).

5.2 Physical variables at the field scale

With limited wind redistribution in the study area, the time
stability analysis indicated that relative differences in the
snowpack were generally consistent throughout both the
accumulation and ablation periods. In addition to previ-
ous findings that snowpack patterns are relatively consistent
from year to year (Pflug and Lundquist, 2020; Revuelto et
al., 2014), this study demonstrates that fixed physical vari-
ables, such as vegetation, topography, and soil characteris-
tics, can sufficiently control the spatial variations of snow-
pack throughout a winter period. By comparing maps of
mean relative difference (MRD) with maps of physical vari-
ables at the site, specific factors influencing snowpack dy-
namics over the winter season were identified. Our find-
ings highlighted that vegetation type is a dominant factor

shaping snow depth patterns. In both combined and field-
only areas, SOM showed a statistically significant relation-
ship, with snow depth decreasing as SOM increased. Fur-
thermore, shadow hours and slope were found to contribute
to the spatial variability of snowpack, even though the study
area features relatively gentle slopes. The findings regard-
ing the influence of vegetation and topographical factors on
the snowpack’s spatial variability align with previously con-
ducted studies (Currier and Lundquist, 2018; Deems et al.,
2006; Trujillo et al., 2007).

As compared with vegetation and terrain characteristics,
few studies have examined the influence of soil charac-
teristics on the snowpack. Our results indicate that snow-
pack depth decreases statistically significantly with increas-
ing SOM (significance level <0.01). This finding aligns with
our previous study, which utilized maximum entropy model-
ing to analyze spatial variations of shallow snowpack over
the same domain but during different periods (Cho et al.,
2021). Even though a clear relationship between Ksat and
snowpack was not found in this study (Fig. 8b), it is acknowl-
edged that soil thermal properties, such as the thermal con-
ductivity of the soil underneath the snowpack, generally in-
fluence the rate of heat transfer between the snow and soil
layers (Kane et al., 2001; Zhang, 2005). Also, the moisture
content of the soil can affect the distribution of soil frost
(Bay et al., 1952) and snowpack because the energy trans-
fer at the snow–soil interface is controlled by the wetness of
the soil (Bay et al., 1952; Fu et al., 2018). Although the spa-
tial distribution of soil moisture is typically considered to be
constant (frozen) during winter, intermediate rainfall events
and freeze–thaw cycles can dramatically change the spatial
patterns of soil moisture and freeze–thaw states in regions
having ephemeral snowpacks. This can be important because
the thermal conductivity in the frozen state is more sensitive
to soil type than the non-frozen condition, because the ther-
mal conductivity of ice is four times larger than that of the
liquid phase (Penner, 1970). However, few studies have in-
vestigated how soil moisture patterns may control the spatial
distribution of snowpack. This is likely to be because of the
difficulty of measuring spatial distributions of soil moisture
and freeze–thaw states beneath the snowpack. Even though
this study did not focus on it, future investigations could mea-
sure spatial patterns of soil moisture and freeze–thaw states
beneath the snowpack to quantify their interactions with the
snowpack. A better understanding of the soil characteristics
and their impact on the snowpack in various environments
would help the snow community to accurately predict and
model snow distribution and snowmelt processes.

Although there are numerous studies that characterize
temporal changes in the spatial distribution of snowpack
across topographically uniform landscapes, encompassing
both open field and forested environments (Hannula et al.,
2016; Clark et al., 2011; Currier and Lundquist, 2018; Maz-
zotti et al., 2023), the concept of “time stability” (or “tem-
poral stability”) using relative difference values, as imple-
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mented in this study, has not been previously applied in snow
hydrology. However, in the soil moisture community, numer-
ous investigations that have examined temporal variability
have been instrumental in developing robust validation sites
and sampling strategies for satellite-based soil moisture as-
sessments (Grayson and Western, 1998; Cosh et al., 2008;
Brocca et al., 2009; Mohanty and Skaggs, 2001; Jacobs et
al., 2004). Similar to its utility in soil moisture studies, the
integration of the time stability concept into snowpack anal-
ysis at the field scale could facilitate the identification of rep-
resentative sampling locations and inform the design of sam-
pling protocols for optimal spatial extrapolation. Extending
this approach to diverse snow environments will contribute to
quantifying spatiotemporal variability in snowpack, thereby
enhancing the establishment of core validation sites for po-
tential snow missions such as the Canadian Terrestrial Snow
Mass Mission (TSMM; Derksen et al., 2021).

5.3 Limitations and future perspectives

Given that our investigation was conducted in a relatively
uniform landscape characterized by a shallow snowpack, it is
imperative to extend the analysis to encompass diverse plant
functional types, climatic zones, or snow classes (Johnston et
al., 2024; Sturm and Liston, 2021) to ascertain the generaliz-
ability of the findings. This is essential as snow depth distri-
butions are influenced by terrain attributes and snow regimes
(Clark et al., 2011; Currier and Lundquist, 2018). In con-
trast to the present study area, where spatial heterogeneity in
snowpack is predominantly influenced by static terrain char-
acteristics and vegetation cover, alpine and prairie regions
experience variability due to wind-driven processes (Elder
et al., 1991). Further investigation incorporating additional
analyses of energy fluxes and meteorological parameters, in-
cluding solar radiation, soil temperature, and wind speed/di-
rection, would enhance the comprehensiveness of the find-
ings concerning the primary determinants of snowpack spa-
tial variability across both static and dynamic variables.

Even though we analyzed the spatiotemporal variability of
the snowpack using well-validated UAS-based snow depth
observations, this may not guarantee that the current findings
also capture the snow water equivalent (SWE) variations nec-
essary for hydrological applications. Snow density, needed to
calculate SWE from snow depth, is affected by snow meta-
morphosis differently than snow depth. Snow density may
change during snowmelt as water percolates into the snow-
pack and refreezes. Also, vegetation and soil characteristics
strongly control turbulent and ground heat fluxes and im-
pact snow properties including snow density (Pomeroy and
Brun, 2001). Studies have used physics-based snow mod-
els, such as SnowModel (Liston and Elder, 2006), Crocus
(Vionnet et al., 2012), and Flexible Snow Model (FSM2; Es-
sery et al., 2024), to understand those physical processes that
cause snowpack spatial variations. However, observational
approaches focusing on spatial distribution of SWE are quite

limited because only now are sensing techniques emerging
that directly observe the spatial distribution of snow density
with a UAS (McGrath et al., 2022). A potential future di-
rection is to develop reliable high-resolution SWE maps by
integrating emerging techniques such as lidar and gamma-
ray spectrometry (Harder et al., 2024), enabling the quantifi-
cation of SWE spatial distribution across diverse snow en-
vironments. Another direction could involve employing an
integrative approach using physical models to maximize in
situ and UAS snow observations through data assimilation
or novel interpolation methods, utilizing machine (or deep)
learning approaches.

6 Conclusions

In this study, UAS lidar and SfM snow depth measurements
were assessed using ground-based magnaprobe data and then
used to confirm that spatial patterns of snowpack depth are
temporally stable. Lidar demonstrated superior performance
compared with SfM when evaluated against in situ obser-
vations, exhibiting lower errors. Both UAS techniques ex-
hibited lower errors in field settings (lidar MAD= 3.5 cm,
SfM MAD= 4.0 cm) than in forested environments (lidar
MAD= 6.3 cm, SfM MAD= 31.4 cm). As expected, differ-
ences between lidar and SfM snow depths were more pro-
nounced in forested regions (MAD= 55.7 cm), with SfM of-
ten registering anomalously deep snow depth values. The
spatial distribution of snow depth captured by lidar remained
consistent throughout the study period. For the entire study
area, deeper snow was found in the field, in locations with
shallow slopes and lower soil organic matter. Within the field,
snow deepened with increasing shadow hours. When exam-
ining combined landscapes including forests and fields, we
observed that the spatial distribution of snow depth was pre-
dominantly shaped by the type of vegetation present. Within
the field, the spatial distribution of snow depth tracked rela-
tively modest local slope variations and shadowing effects at
the forest–field edge. As ephemeral snow conditions expand
in a warming climate, these results are valuable for effec-
tively comparing UAS and in situ sampling techniques for
ephemeral, shallow, seasonal snowpacks. It is also expected
that this study contributes to the enhancement of land sur-
face and snow models by offering insights into parameteriz-
ing subgrid-scale snow depths, downscaling coarse-scale re-
motely sensed snow observations, and comprehending snow-
pack evolution at the field scale, particularly in ephemeral
snow environments.

Data availability. The UAS lidar and SfM-photogrammetry snow
depth maps, along with the topographic variables measured
or derived in this study, are available on Zenodo: see
Cho et al. (2025) (https://doi.org/10.5281/zenodo.17129072, last
access: 16 September 2025). The daily precipitation and
mean temperature data are available in Palecki et al. (2015)
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