Articles | Volume 29, issue 18
https://doi.org/10.5194/hess-29-4341-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-4341-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Global assessment of socio-economic drought events at the subnational scale: a comparative analysis of combined versus single drought indicators
Sneha Kulkarni
CORRESPONDING AUTHOR
Department of Civil Engineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
Yohei Sawada
Department of Civil Engineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
Yared Bayissa
Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX 77843, USA
Brian Wardlow
School of Natural Resources, Center for Advanced Land Management Information Technologies, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
Related authors
No articles found.
Yohei Sawada
EGUsphere, https://doi.org/10.48550/arXiv.2403.06371, https://doi.org/10.48550/arXiv.2403.06371, 2024
Preprint archived
Short summary
Short summary
It is generally difficult to control large-scale and complex systems, such as Earth systems, using small forces. In this paper, a new method to control such systems is proposed. The new method is inspired by the similarity between simulation-observation integration methods in geoscience and model predictive control theory in control engineering. The proposed method is particularly suitable to find the efficient strategies of weather modification.
Le Duc and Yohei Sawada
Hydrol. Earth Syst. Sci., 27, 1827–1839, https://doi.org/10.5194/hess-27-1827-2023, https://doi.org/10.5194/hess-27-1827-2023, 2023
Short summary
Short summary
The Nash–Sutcliffe efficiency (NSE) is a widely used score in hydrology, but it is not common in the other environmental sciences. One of the reasons for its unpopularity is that its scientific meaning is somehow unclear in the literature. This study attempts to establish a solid foundation for NSE from the viewpoint of signal progressing. This approach is shown to yield profound explanations to many open problems related to NSE. A generalized NSE that can be used in general cases is proposed.
Yuya Kageyama and Yohei Sawada
Hydrol. Earth Syst. Sci., 26, 4707–4720, https://doi.org/10.5194/hess-26-4707-2022, https://doi.org/10.5194/hess-26-4707-2022, 2022
Short summary
Short summary
This study explores the link between hydrometeorological droughts and their socioeconomic impact at a subnational scale based on the newly developed disaster dataset with subnational location information. Hydrometeorological drought-prone areas were generally consistent with socioeconomic drought-prone areas in the disaster dataset. Our analysis clarifies the importance of the use of subnational disaster information.
Yohei Sawada, Rin Kanai, and Hitomu Kotani
Hydrol. Earth Syst. Sci., 26, 4265–4278, https://doi.org/10.5194/hess-26-4265-2022, https://doi.org/10.5194/hess-26-4265-2022, 2022
Short summary
Short summary
Although flood early warning systems (FEWS) are promising, they inevitably issue false alarms. Many false alarms undermine the credibility of FEWS, which we call a cry wolf effect. Here, we present a simple model that can simulate the cry wolf effect. Our model implies that the cry wolf effect is important if a community is heavily protected by infrastructure and few floods occur. The cry wolf effects get more important as the natural scientific skill to predict flood events is improved.
Futo Tomizawa and Yohei Sawada
Geosci. Model Dev., 14, 5623–5635, https://doi.org/10.5194/gmd-14-5623-2021, https://doi.org/10.5194/gmd-14-5623-2021, 2021
Short summary
Short summary
A new method to predict chaotic systems from observation and process-based models is proposed by combining machine learning with data assimilation. Our method is robust to the sparsity of observation networks and can predict more accurately than a process-based model when it is biased. Our method effectively works when both observations and models are imperfect, which is often the case in geoscience. Therefore, our method is useful to solve a wide variety of prediction problems in this field.
Yohei Sawada and Risa Hanazaki
Hydrol. Earth Syst. Sci., 24, 4777–4791, https://doi.org/10.5194/hess-24-4777-2020, https://doi.org/10.5194/hess-24-4777-2020, 2020
Short summary
Short summary
In socio-hydrology, human–water interactions are investigated. Researchers have two major methodologies in socio-hydrology, namely mathematical modeling and empirical data analysis. Here we propose a new method for bringing the synergic effect of models and data to socio-hydrology. We apply sequential data assimilation, which has been widely used in geoscience, to a flood risk model to analyze the human–flood interactions by model–data integration.
Cited articles
Bachmair, S., Stahl, K., Collins, K., Hannaford, J., Acreman, M., Svoboda, M., Knutson, C., Smith, K. H., Wall, N., Fuchs, B., Crossman, N. D., and Overton, I. C.: Drought indicators revisited: the need for a wider consideration of environment and society, WIREs Water, 3, 516–536, https://doi.org/10.1002/wat2.1154, 2016.
Bayissa, Y., Srinivasan, R., Joseph, G., Bahuguna, A., Shrestha, A., Ayling, S., Punyawardena, R., and Nandalal, K. D. W.: Developing a Combined Drought Index to Monitor Agricultural Drought in Sri Lanka, Water (Switzerland), 14, 3317, https://doi.org/10.3390/w14203317, 2022.
Bayissa, Y. A., Tadesse, T., Svoboda, M., Wardlow, B., Poulsen, C., Swigart, J., and Van Andel, S. J.: Developing a satellite-based combined drought indicator to monitor agricultural drought: a case study for Ethiopia, GIsci. Remote Sens., 56, 718–748, https://doi.org/10.1080/15481603.2018.1552508, 2019.
Bhanage, V., Lee, H. S., Kubota, T., Pradana, R. P., Fajary, F. R., Arya Putra, I. D. G., and Nimiya, H.: City-Wise Assessment of Suitable CMIP6 GCM in Simulating Different Urban Meteorological Variables over Major Cities in Indonesia, Climate, 11, 100, https://doi.org/10.3390/cli11050100, 2023.
Bhunia, P., Das, P., and Maiti, R.: Meteorological Drought Study Through SPI in Three Drought Prone Districts of West Bengal, India, Earth Systems and Environment, 4, 43–55, https://doi.org/10.1007/s41748-019-00137-6, 2020.
Birkmann, J., Jamshed, A., McMillan, J. M., Feldmeyer, D., Totin, E., Solecki, W., Ibrahim, Z. Z., Roberts, D., Kerr, R. B., Poertner, H. O., Pelling, M., Djalante, R., Garschagen, M., Leal Filho, W., Guha-Sapir, D., and Alegría, A.: Understanding human vulnerability to climate change: A global perspective on index validation for adaptation planning, Sci. Total Environ., 803, 150065, https://doi.org/10.1016/j.scitotenv.2021.150065, 2022.
Blain, G. C., da Rocha Sobierajski, G., Weight, E., Martins, L. L., and Xavier, A. C. F.: Improving the interpretation of standardized precipitation index estimates to capture drought characteristics in changing climate conditions, Int. J. Climatol., 42, 5586–5608, https://doi.org/10.1002/joc.7550, 2022.
Bolten, J. D., Crow, W. T., Jackson, T. J., Zhan, X., and Reynolds, C. A.: Evaluating the Utility of Remotely Sensed Soil Moisture Retrievals for Operational Agricultural Drought Monitoring, IEEE J. Sel. Top. Appl., 3, 57–66, https://doi.org/10.1109/JSTARS.2009.2037163, 2010.
Brooks, N., Adger, W. N., and Kelly, P. M.: The determinants of vulnerability and adaptive capacity at the national level and the implications for adaptation, Global Environmental Change, 15, 151–163, https://doi.org/10.1016/J.GLOENVCHA.2004.12.006, 2005.
Brown, J. F., Wardlow, B. D., Tadesse, T., Hayes, M. J., and Reed, B. C.: The Vegetation Drought Response Index (VegDRI): A new integrated approach for monitoring drought stress in vegetation, GIsci. Remote Sens., 45, 16–46, https://doi.org/10.2747/1548-1603.45.1.16, 2008.
Brown, M. E. and Funk, C. C.: Food security under climate change, Science (1979), 319, 580–581, https://doi.org/10.1126/SCIENCE.1154102, 2008.
Chen, Z., Wang, W., Yu, Z., Xia, J., and Schwartz, F. W.: The collapse points of increasing trend of vegetation rain-use efficiency under droughts, Environ. Res. Lett., 15, 104072, https://doi.org/10.1088/1748-9326/abb332, 2020.
Christian, J. I., Basara, J. B., Hunt, E. D., Otkin, J. A., Furtado, J. C., Mishra, V., Xiao, X., and Randall, R. M.: Global distribution, trends, and drivers of flash drought occurrence, Nat. Commun., 12, 6330, https://doi.org/10.1038/s41467-021-26692-z, 2021.
Christian, J. I., Hobbins, M., Hoell, A., Otkin, J. A., Ford, T. W., Cravens, A. E., Powlen, K. A., Wang, H., and Mishra, V.: Flash drought: A state of the science review, WIREs Water, 11, e1714, https://doi.org/10.1002/wat2.1714, 2024.
Climate Hazards Center – UC Santa Barbara: CHIRPS: Rainfall Estimates from Rain Gauge and Satellite Observations, https://www.chc.ucsb.edu/data/chirps, last access: 20 September 2023.
Costanza, J. K., Koch, F. H., and Reeves, M. C.: Future exposure of forest ecosystems to multi-year drought in the United States, Ecosphere, 14, e4525, https://doi.org/10.1002/ecs2.4525, 2023.
Didan, K. and Huete, A.: MOD13A3 MODIS/Terra Vegetation Indices Monthly L3 Global 1 km SIN Grid (Version 6.1) [Data set], NASA Land Processes Distributed Active Archive Center, https://doi.org/10.5067/MODIS/MOD13A3.061 2023.
Ding, Y., He, X., Zhou, Z., Hu, J., Cai, H., Wang, X., Li, L., Xu, J., and Shi, H.: Response of vegetation to drought and yield monitoring based on NDVI and SIF, Catena (Amst), 219, 106328, https://doi.org/10.1016/j.catena.2022.106328, 2022.
National Drought Mitigation Center Drought Impact Reporter (DIR): In Drought.gov. U.S. National Integrated Drought Information System, https://www.drought.gov/data-maps-tools/drought-impact-reporter-dir (last access: 26 March 2025), 2025.
European Centre for Medium-Range Weather Forecasts.: ERA5-Land monthly mean surface air temperature, Copernicus Climate Change Service (C3S) Climate Data Store (CDS), https://cds.climate.copernicus.eu/datasets/reanalysis-era5-land-monthly-means (last access: 9 September 2025), 2023.
European Drought Centre.: European Drought Impact Report Inventory (EDII) and European Drought Reference (EDR) database, https://europeandroughtcentre.com/news/european-drought-impact-report-inventory-edii-and-european-drought-reference-edr-database/, last access: 26 March 2025.
European Environment Agency.: European Drought Observatory (EDO), https://www.eea.europa.eu/policy-documents/european-drought-observatory-edo, last access: 26 March 2025.
Forootan, E., Khaki, M., Schumacher, M., Wulfmeyer, V., Mehrnegar, N., van Dijk, A. I. J. M., Brocca, L., Farzaneh, S., Akinluyi, F., Ramillien, G., Shum, C. K., Awange, J., and Mostafaie, A.: Understanding the global hydrological droughts of 2003–2016 and their relationships with teleconnections, Sci. Total Environ., 650, 2587–2604, https://doi.org/10.1016/j.scitotenv.2018.09.231, 2019.
Fritz, S., See, L., Carlson, T., Haklay, M. (Muki), Oliver, J. L., Fraisl, D., Mondardini, R., Brocklehurst, M., Shanley, L. A., Schade, S., Wehn, U., Abrate, T., Anstee, J., Arnold, S., Billot, M., Campbell, J., Espey, J., Gold, M., Hager, G., He, S., Hepburn, L., Hsu, A., Long, D., Masó, J., McCallum, I., Muniafu, M., Moorthy, I., Obersteiner, M., Parker, A. J., Weissplug, M., and West, S.: Citizen science and the United Nations Sustainable Development Goals, Nature Sustainability, 2, 922–930, https://doi.org/10.1038/s41893-019-0390-3, 2019.
Gorsuch, R. L.: Factor analysis: Classic edition, Routledge, 2014.
Grillakis, M. G.: Increase in severe and extreme soil moisture droughts for Europe under climate change, Sci. Total Environ., 660, 1245–1255, https://doi.org/10.1016/j.scitotenv.2019.01.001, 2019.
Guillory, L., Pudmenzky, C., Nguyen-Huy, T., Cobon, D., and Stone, R.: A drought monitor for Australia, Environ. Modell. Softw., 170, 105852, https://doi.org/10.1016/j.envsoft.2023.105852, 2023.
Hannachi, A., Jolliffe, I. T., and Stephenson, D. B.: Empirical orthogonal functions and related techniques in atmospheric science: A review, Int. J. Climatol., 27, 1119–1152, https://doi.org/10.1002/JOC.1499, 2007.
Hao, Z. and Singh, V. P.: Drought characterization from a multivariate perspective: A review, J. Hydrol. (Amst), 527, 668–678, https://doi.org/10.1016/J.JHYDROL.2015.05.031, 2015.
Hao, Z., AghaKouchak, A., Nakhjiri, N., and Farahmand, A.: Global integrated drought monitoring and prediction system, Sci. Data, 1, 140001, https://doi.org/10.1038/sdata.2014.1, 2014a.
Hao, Z., AghaKouchak, A., Nakhjiri, N., and Farahmand, A.: Global integrated drought monitoring and prediction system, Sci. Data, 1, 140001, https://doi.org/10.1038/sdata.2014.1, 2014b.
Hossain, A. T. MacMurchy, K., Shah, J., and Swatuk, L.: Creating Water-Secure Futures in Megacities: A Comparative Case Study of “Day Zero” Cities–Bangalore and Chennai, in: The Political Economy of Urban Water Security under Climate Change, edited by: Swatuk, L. and Cash, C., Springer International Publishing, Cham, 105–134, https://doi.org/10.1007/978-3-031-08108-8_5, 2022.
Huang, S., Wang, L., Wang, H., Huang, Q., Leng, G., Fang, W., and Zhang, Y.: Spatio-temporal characteristics of drought structure across China using an integrated drought index, Agr. Water Manage., 218, 182–192, https://doi.org/10.1016/j.agwat.2019.03.053, 2019.
Jackson, D. A.: Stopping Rules in Principal Components Analysis: A Comparison of Heuristical and Statistical Approaches, Ecology, 74, 2204–2214, https://doi.org/10.2307/1939574, 1993.
Ji, L. and Peters, A. J.: Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices, Remote Sens. Environ., 87, 85–98, https://doi.org/10.1016/S0034-4257(03)00174-3, 2003.
Jiao, W., Tian, C., Chang, Q., Novick, K. A., and Wang, L.: A new multi-sensor integrated index for drought monitoring, Agr. Forest Meteorol., 268, 74–85, https://doi.org/10.1016/j.agrformet.2019.01.008, 2019.
Jolliffe, I. T.: Principal component analysis (2nd ed.), Springer, https://doi.org/10.1007/b98835, 2002.
Kageyama, Y. and Sawada, Y.: Global assessment of subnational drought impact based on the Geocoded Disasters dataset and land reanalysis, Hydrol. Earth Syst. Sci., 26, 4707–4720, https://doi.org/10.5194/hess-26-4707-2022, 2022.
Kazemzadeh, M., Noori, Z., Alipour, H., Jamali, S., Akbari, J., Ghorbanian, A., and Duan, Z.: Detecting drought events over Iran during 1983–2017 using satellite and ground-based precipitation observations, Atmos. Res., 269, 106052, https://doi.org/10.1016/j.atmosres.2022.106052, 2022.
Kogan, F. N.: Application of vegetation index and brightness temperature for drought detection, Adv. Space Res., 15, 91–100, https://doi.org/10.1016/0273-1177(95)00079-T, 1995.
Kulkarni, S. and Gedam, S.: Geospatial approach to categorize and compare the agro-climatological droughts over marathwada region of Maharashtra, India, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-5, 279–285, https://doi.org/10.5194/isprs-annals-IV-5-279-2018, 2018.
Kulkarni, S., Gedam, S., and Dhorde, A.: District Wise Comparative Analysis of Rainfall Trends in Konkan-Goa and Marathwada Meteorological Subdivision of India, Applied Ecology and Environmental Sciences, 9, 885–894, https://doi.org/10.12691/aees-9-10-6, 2021.
Kulkarni, S., Kumar, V., Bhanage, V., and Gedam, S.: Exploring the Association between Changing Crop Types and Water Scarcity: A Case Study over West-Central India, Climate, 11, 93, https://doi.org/10.3390/cli11050093, 2023.
Kulkarni, S. S., Wardlow, B. D., Bayissa, Y. A., Tadesse, T., Svoboda, M. D., and Gedam, S. S.: Developing a remote sensing-based combined drought indicator approach for agricultural drought monitoring over Marathwada, India, Remote Sens. (Basel), 12, 2091, https://doi.org/10.3390/rs12132091, 2020.
Lavell, A., Oppenheimer, M., Diop, C., Hess, J., Lempert, R., Li, J., Muir-Wood, R., Myeong, S., Moser, S., Takeuchi, K., Cardona, O. D., Hallegatte, S., Lemos, M., Little, C., Lotsch, A., and Weber, E.: Climate change: New dimensions in disaster risk, exposure, vulnerability, and resilience, in: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change, edited by: Field, C. B., Barros, V., Stocker, T. F., Qin, D., Dokken, D., Ebi, K. L., Mastrandrea, M. D., Mach, K. J., Plattner, G.-K., Allen, S. K., Tignor, M., and Midgley, P. M., Cambridge University Press, Cambridge, UK, 25–64, https://doi.org/10.1017/CBO9781139177245.004, 2012.
Liu, Y., Liu, Y., Wang, W., Fan, X., and Cui, W.: Soil moisture droughts in East Africa: Spatiotemporal patterns and climate drivers, J. Hydrol. Reg. Stud., 40, 101013, https://doi.org/10.1016/j.ejrh.2022.101013, 2022.
Livada, I. and Assimakopoulos, V. D.: Spatial and temporal analysis of drought in Greece using the Standardized Precipitation Index (SPI), Theor. Appl. Climatol., 89, 143–153, https://doi.org/10.1007/s00704-005-0227-z, 2007.
Lobell, D. B. and Burke, M. B.: On the use of statistical models to predict crop yield responses to climate change, Agr. Forest Meteorol., 150, 1443–1452, https://doi.org/10.1016/J.AGRFORMET.2010.07.008, 2010.
McKee, T. B., Doesken, N. J., and Kleist, J.: The Relationship of Drought Frequency and Duration to Time Scales, in: Proceedings of the 8th Conference on Applied Climatology, American Meteorological Society, Anaheim, California, USA, 17–22 January 1993, 179–184, https://climate.colostate.edu/pdfs/relationshipofdroughtfrequency.pdf, 1993.
Mishra, V.: Long-term (1870–2018) drought reconstruction in context of surface water security in India, J. Hydrol. (Amst), 580, 124228, https://doi.org/10.1016/j.jhydrol.2019.124228, 2020.
Mukherjee, S. and Mishra, A. K.: Global Flash Drought Analysis: Uncertainties From Indicators and Datasets, Earth's Future, 10, e2022EF002660, https://doi.org/10.1029/2022EF002660, 2022.
Muñoz Sabater, J.: ERA5-Land monthly averaged data from 1950 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.68d2bb30, 2019.
Nam, W. H., Tadesse, T., Wardlow, B. D., Hayes, M. J., Svoboda, M. D., Hong, E. M., Pachepsky, Y. A., and Jang, M. W.: Developing the vegetation drought response index for south korea (Vegdri-skorea) to assess the vegetation condition during drought events, Int. J. Remote Sens., 39, 1548–1574, https://doi.org/10.1080/01431161.2017.1407047, 2018.
Noel, M., Bathke, D., Fuchs, B., Gutzmer, D., Haigh, T., Hayes, M., Poděbradská, M., Shield, C., Smith, K., and Svoboda, M.: Linking drought impacts to drought severity at the state level, B. Am. Meteorol. Soc., 101, E1312–E1321, https://doi.org/10.1175/BAMS-D-19-0067.1, 2020.
Pak-Uthai, S. and Faysse, N.: The risk of second-best adaptive measures: Farmers facing drought in Thailand, Int. J. Disast. Risk Re., 28, 711–719, https://doi.org/10.1016/J.IJDRR.2018.01.032, 2018.
Panwar, V. and Sen, S.: Disaster Damage Records of EM-DAT and DesInventar: A Systematic Comparison, Econ. Disaster Clim. Chang., 4, 295–317, https://doi.org/10.1007/s41885-019-00052-0, 2020.
Peel, M. C., Finlayson, B. L., and McMahon, T. A.: Updated world map of the Köppen-Geiger climate classification, Hydrol. Earth Syst. Sci., 11, 1633–1644, https://doi.org/10.5194/hess-11-1633-2007, 2007.
R., L., B. S., M., B. S., S., Bhanage, V., Rathod, A., Tiwari, A., Beig, G., and Singh, S.: Propagation of cloud base to higher levels during Covid-19-Lockdown, Sci. Total Environ., 759, 144299, https://doi.org/10.1016/j.scitotenv.2020.144299, 2021.
Reyniers, N., Osborn, T. J., Addor, N., and Darch, G.: Projected changes in droughts and extreme droughts in Great Britain strongly influenced by the choice of drought index, Hydrol. Earth Syst. Sci., 27, 1151–1171, https://doi.org/10.5194/hess-27-1151-2023, 2023.
Rosvold, E. and H. Buhaug.: GDIS, a global dataset of geocoded disaster locations, Sci. Data, 8, 61, https://doi.org/10.1038/S41597-021-00846-6, 2021.
Sánchez, N., González-Zamora, Á., Martínez-Fernández, J., Piles, M., and Pablos, M.: Integrated remote sensing approach to global agricultural drought monitoring, Agr. Forest Meteorol., 259, 141–153, https://doi.org/10.1016/j.agrformet.2018.04.022, 2018.
Sandeep, P., Obi Reddy, G. P., Jegankumar, R., and Arun Kumar, K. C.: Monitoring of agricultural drought in semi-arid ecosystem of Peninsular India through indices derived from time-series CHIRPS and MODIS datasets, Ecol. Indic., 121, 107033, https://doi.org/10.1016/j.ecolind.2020.107033, 2021.
Saaty, T. L.: Principles of the Analytic Hierarchy Process, edited by: Mumpower, J. L., Renn, O., Phillips, L. D., Uppuluri, V. R. R., Expert Judgment and Expert Systems, NATO ASI Series, Springer, Berlin, Heidelberg, 35, https://doi.org/10.1007/978-3-642-86679-1_3, 1987.
Sathianarayanan, M., Hsu, P. H., and Chang, C. C.: Extracting disaster location identification from social media images using deep learning, Int. J. Disast. Risk Re., 104, 104352, https://doi.org/10.1016/J.IJDRR.2024.104352, 2024.
Sawada, Y.: Quantifying drought propagation from soil moisture to vegetation dynamics using a newly developed ecohydrological land reanalysis, Remote Sens (Basel), 10, 1197, https://doi.org/10.3390/rs10081197, 2018.
Sehgal, V., Sridhar, V., and Tyagi, A.: Stratified drought analysis using a stochastic ensemble of simulated and in-situ soil moisture observations, J. Hydrol. (Amst), 545, 226–250, https://doi.org/10.1016/j.jhydrol.2016.12.033, 2017.
Sepulcre-Canto, G., Horion, S., Singleton, A., Carrao, H., and Vogt, J.: Development of a Combined Drought Indicator to detect agricultural drought in Europe, Nat. Hazards Earth Syst. Sci., 12, 3519–3531, https://doi.org/10.5194/nhess-12-3519-2012, 2012.
Shah, D. and Mishra, V.: Integrated Drought Index (IDI) for Drought Monitoring and Assessment in India, Water Resour. Res., 56, e2019WR026284, https://doi.org/10.1029/2019WR026284, 2020.
Svoboda, M., Lecomte, D., Hayes, M., Heim, R., Gleason, K., Angel, J., Rippey, B., Tinker, R., Palecki, M., Stooksbury, D., Miskus, D., and Stephens, S.: The Drought Monitor, B. Am. Meteorol. Soc., 83, 1181–1190, 2002.
Svoboda, M., Hayes, M., and Wood, D.: Standardized Precipitation Index: User Guide, WMO-No. 1090, World Meteorological Organization, Geneva, Switzerland, 24 pp., ISBN 978-92-63-11091-6, https://library.wmo.int/records/item/39629-standardized-precipitation-index-user-guide, 2012.
Tang, X., Feng, Y., Gao, C., Lei, Z., Chen, S., Wang, R., Jin, Y., and Tong, X.: Entropy-weight-based spatiotemporal drought assessment using MODIS products and Sentinel-1A images in Urumqi, China, Natural Hazards 119, 387–408, https://doi.org/10.1007/s11069-023-06131-6, 2023.
Tanoue, M., Hirabayashi, Y., and Ikeuchi, H.: Global-scale river flood vulnerability in the last 50 years, Sci. Rep., 6, 36021, https://doi.org/10.1038/srep36021, 2016.
Tao, L., Ryu, D., Western, A., and Boyd, D.: A new drought index for soil moisture monitoring based on MPDI-NDVI trapezoid space using modis data, Remote Sens. (Basel), 13, 122, https://doi.org/10.3390/rs13010122, 2021.
Thomas, T., Jaiswal, R. K., Galkate, R., Nayak, P. C., and Ghosh, N. C.: Drought indicators-based integrated assessment of drought vulnerability: a case study of Bundelkhand droughts in central India, Nat. Hazards, 81, 1627–1652, https://doi.org/10.1007/s11069-016-2149-8, 2016.
Tosunoglu, F. and Can, I.: Application of copulas for regional bivariate frequency analysis of meteorological droughts in Turkey, Nat. Hazards, 82, 1457–1477, https://doi.org/10.1007/s11069-016-2253-9, 2016.
Tschumi, E. and Zscheischler, J.: Countrywide climate features during recorded climate-related disasters, Climatic change, 158, 593–609, 2020.
Udmale, P., Ichikawa, Y., S. Kiem, A., and N. Panda, S.: Drought Impacts and Adaptation Strategies for Agriculture and Rural Livelihood in the Maharashtra State of India, Open Agric. J., 8, 41–47, https://doi.org/10.2174/1874331501408010041, 2014.
Vicente-Serrano, S. M., Beguería, S., and López-Moreno, J. I.: A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index, J. Climate, 23, 1696–1718, https://doi.org/10.1175/2009JCLI2909.1, 2010.
Vicente-Serrano, S. M., Peña-Angulo, D., Beguería, S., Domínguez-Castro, F., Tomás-Burguera, M., Noguera, I., Gimeno-Sotelo, L., and El Kenawy, A.: Global drought trends and future projections, Philos. T. R. Soc. A, 380, 20210285, https://doi.org/10.1098/rsta.2021.0285, 2022.
Wang, H., Liu, H., and Wang, D.: Agricultural Insurance, Climate Change, and Food Security: Evidence from Chinese Farmers, Sustainability (Switzerland), 14, 9493, https://doi.org/10.3390/su14159493, 2022.
Wang, T. and Sun, F.: Integrated drought vulnerability and risk assessment for future scenarios: An indicator based analysis, Sci. Total Environ., 900, 165591, https://doi.org/10.1016/j.scitotenv.2023.165591, 2023.
World Meteorological Organization: Standardized Precipitation Index User Guide, edited by: Svoboda, M., Hayes, M., and Wood, D., WMO-No. 1090, 24, https://library.wmo.int/viewer/39629/?offset=1&utm_source=chatgpt.com#page=1&viewer=picture&o=bookmarks&n=0&q= 2012.
Zhang, Q., Li, J., Singh, V. P., and Bai, Y.: SPI-based evaluation of drought events in Xinjiang, China, Nat. Hazards, 64, 481–492, https://doi.org/10.1007/s11069-012-0251-0, 2012.
Short summary
How drought impacts communities is complex and not yet fully understood. We examined a disaster dataset and compared various drought measures to pinpoint affected regions. Our new combined drought indicator (CDI) was found to be the most effective in identifying drought events compared to other traditional drought indices. This underscores the CDI's importance in evaluating drought risks and directing attention to the most impacted areas.
How drought impacts communities is complex and not yet fully understood. We examined a disaster...