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Abstract. The accurate assessment of the propagation of
drought hazards to socio-economic impacts poses a signifi-
cant challenge and is still less explored. To address this, we
analysed a subnational disaster dataset called Geocoded Dis-
aster (GDIS) and evaluated the skills of multiple drought in-
dices to pinpoint global drought areas identified by GDIS.
For the comparative analysis, a widely used standardised pre-
cipitation index (SPI), normalised difference vegetation in-
dex (NDVI), standardised soil moisture index (SSMI), and
standardised temperature index (STI) were globally com-
puted at the subnational level for the period 2001–2021. Out
of 1641 drought events recorded in GDIS, NDVI identified
1541 (93.9 %), SPI 1458 (88.8 %), STI 1439 (87.7 %), and
SSMI 1376 (83.9 %). NDVI showed better performance in
highly vegetated areas due to its sensitivity to precipitation
and soil moisture and its inverse relationship with tempera-
ture.

Recognising the limitations of single-input drought in-
dices in capturing the complex propagation of droughts, we
also introduced a novel combined drought indicator (CDI),
which integrates meteorological (rainfall and temperature)
and agricultural (NDVI and soil moisture) anomalies using a
weighted approach to identify droughts and plays a key role
in minimising inaccuracies in drought assessment. CDI suc-
cessfully identified 1550 (94.5 %) of the GDIS documented
drought events, outperforming all individual indices. Based
on CDI, the highest frequency of severe droughts (greater
than seven events) was observed in sub-Saharan Africa and

South Asia. It also captured persistent droughts in Argentina,
Brazil, the Horn of Africa, western India, and North China –
areas that are highly vulnerable to socio-economic droughts.
Our findings highlight the importance of using CDI for im-
proved identification of socio-economic drought events and
for prioritising regions at greater risk.

1 Introduction

Droughts are a complex phenomenon and have profound,
long-lasting impacts on various sectors, including agricul-
ture, water resources, industry, energy, and socio-economic
conditions. For instance, in August 2021, a severe drought
event affected 52 % of crop yields in the western United
States, and in June 2019, Chennai, India, declared “day
zero” due to almost no water remaining in all main reser-
voirs (Hossain et al., 2022). Climate projections indicate a
future trend of increased frequency and severity in drought
occurrences worldwide, amplifying their impacts on various
sectors (Vicente-Serrano et al., 2022). These examples em-
phasise the urgent need for enhanced drought preparedness
mechanisms and accurate drought impact assessment tech-
niques in the coming years. When addressing drought assess-
ment, one of the major challenges is understanding the exact
propagation of drought hazard (meteorological/agricultural
or hydrological) to its socio-economic repercussions.
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Droughts do not have a specific, universally accepted def-
inition. They are defined based on their association with dif-
ferent sectors and unique characteristics. Based on drought
types and sectors, a number of drought assessment tech-
niques and indices have been used worldwide to quantify
and monitor drought conditions. To assess meteorological
droughts, several indices such as the standardised precipi-
tation index (SPI) (McKee et al., 1993), standardised pre-
cipitation evaporation index (SPEI) (Vicente-Serrano et al.,
2010), and temperature condition index (TCI) (Kogan, 1995)
have been extensively used. The World Meteorological Or-
ganization (WMO) recommends (Svoboda et al., 2012) SPI,
which is widely used in many regions. For example, SPI has
been used to assess droughts in Greece, the United King-
dom, Iran, India, and China by Bhunia et al. (2020), Blain
et al. (2022), Kazemzadeh et al. (2022), Livada and Assi-
makopoulos (2007), and Zhang et al. (2012), respectively.
SPEI has been incorporated in drought projection studies
across the United Kingdom (Reyniers et al., 2023), the
United States (Costanza et al., 2023), and globally (Vicente-
Serrano et al., 2022), indicating an increase in severe drought
events in these areas in the upcoming years. To assess
agricultural droughts, the standardised soil moisture index
(SSMI), vegetation condition index (VCI), normalised differ-
ence vegetation index (NDVI), and vegetation health index
(VHI) have been widely recognised as effective indicators.
Ding et al. (2022), Sandeep et al. (2021), and Tao et al. (2021)
used the NDVI-based drought indices to perform detailed as-
sessments of vegetation health and vigour in Australia, In-
dia, and China, respectively. Grillakis (2019) applied SSMI
to reveal a significant rise in drought severity across Eu-
rope in recent years. Liu et al. (2022) investigated soil mois-
ture dynamics in East Africa using a space-time perspec-
tive to identify the underlying causes of drought. Through
a novel ecohydrological reanalysis, Sawada (2018) quanti-
fied the drought propagation from soil moisture to vegetation
across the globe, highlighting that deeper soil layers exhibit
delayed recovery from stressful conditions compared to shal-
low layers. To assess hydrological droughts and their impact
on water resources and ecosystems, commonly used metrics
include the standardised streamflow index (SSI), reservoir
storage index (RSI), and standardised runoff index (SRI). To
understand surface water security, Mishra (2020) examined
long-term trends in hydrological droughts across India us-
ing SRI. Forootan et al. (2019) conducted a global assess-
ment of hydrological droughts, highlighting the strong re-
gional impact of the North Atlantic Oscillation and Indian
Ocean Dipole.

The studies mentioned above provided drought indicators
that were based primarily on a single input variable or were
sector-specific (either meteorological, agricultural, or hydro-
logical). However, some works suggested that drought is a
much more complex and multiphase phenomenon, resulting
from various factors rather than just a single variable (Jiao et
al., 2019; Kulkarni and Gedam, 2018; Sepulcre-Canto et al.,

2012). Hence, to understand droughts more accurately, the
integration of multiple variables is needed, and it has a higher
potential than single-variable-based traditional drought in-
dices. This integrated approach can provide a more com-
prehensive understanding of droughts, considering the re-
lationships between various contributing factors and the re-
sulting impacts across different sectors. Recognising the sig-
nificance of combining multiple variables in drought moni-
toring, Svoboda et al. (2002) developed a drought monitor-
ing system (U.S. Drought Monitor) for the United States,
which has been extensively used for regular practices in the
United States. More recently, the near-real-time vegetation
drought response index (VegDRI) was developed and imple-
mented in South Korea (Nam et al., 2018) and the United
States (Brown et al., 2008), demonstrating more detailed
and improved spatial drought patterns compared to multi-
variable-based drought indicators. This VegDRI was devel-
oped by integrating eight climatic and biophysical datasets
(SPI, NDVI Palmer drought severity index, performance of
average seasonal greenness, start of seasonal anomalies, soil
availability water capacity, irrigated agriculture, and eco-
logical regions). In 2023, Guillory et al. (2023) developed
the Australian Drought Monitor, integrating SPI, NDVI, soil
moisture, and evapotranspiration, which has become a valu-
able tool in Queensland’s official drought declaration pro-
cess. Bayissa et al. (2019), Huang et al. (2019), Kulkarni et
al. (2020), and Sepulcre-Canto et al. (2012) have developed
and tested combined drought indicators (CDIs), demonstrat-
ing higher accuracy over Ethiopia, India, China, and Europe,
respectively.

Droughts have significant socio-economic impacts, in-
cluding crop losses, food insecurity, income reduction, wa-
ter shortages, and displacement. The severity of these effects
varies by region, depending on development level, infras-
tructure, and adaptive capacity. In high-income areas, sys-
tems like irrigation and insurance help reduce impacts, while
in low-income regions, even moderate droughts can trigger
crises (Brooks et al., 2005; Pak-Uthai and Faysse, 2018). Re-
cent studies (Kulkarni et al., 2023; Panwar and Sen, 2020;
Udmale et al., 2014) highlight the importance of incorporat-
ing socio-economic vulnerability into drought assessments.
However, the direct link between drought hazards and their
socio-economic repercussions remains underexplored, partly
due to the limited availability of reliable global impact data.
Earlier efforts, such as the U.S. Drought Impact Reporter
(National Drought Mitigation Centre, 2025), the European
Drought Impact Report Inventory (European Drought Cen-
tre, 2025), which monitors drought impacts, and the Euro-
pean Drought Observatory (European Environment Agency,
2025), which monitors agricultural drought conditions, pro-
vides region-specific insights, but does not extend to global
coverage.

Recently, the Geocoded Disaster (GDIS) dataset was de-
veloped based on EM-DAT, offering geocoded disaster lo-
cations at a subnational level (Rosvold and Buhaug, 2021),
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along with detailed data on affected populations, fatalities,
and economic losses. By addressing the limitations of EM-
DAT, the GDIS dataset provides detailed information on
socio-economically affected areas and administrative units in
GIS polygon format. This spatially explicit dataset enables
analysis of drought impacts across diverse socio-economic
contexts. In this paper, we used this newly developed GDIS
dataset and show that it enables us to explore the less-
understood link between drought hazards and their socio-
economic repercussions more accurately and comprehen-
sively.

Despite many works on single-variable and multi-variable
drought indicators, very few have investigated how useful
these indices are in globally exploring the links between
drought hazards and their socio-economic repercussions. In
this study, we globally apply four commonly used drought
indicators, i.e. SPI, standardised temperature index (STI),
NDVI, and SSMI, and compare these four traditional indices
with GDIS to evaluate how well they represent the socio-
economic impacts of droughts. Then, inspired by the suc-
cessful regional examples of a combined drought indicator
(CDI), we also develop a new CDI on a global scale using
two meteorological (rainfall and temperature) and two agri-
cultural (soil moisture and NDVI) variables. To the best of
our knowledge, very few studies (Hao et al., 2014a; Sánchez
et al., 2018; Wang and Sun, 2023) have considered a global
scale for their combined drought indicators, and none have
compared and demonstrated the superior capability of such
indicators over single-parameter-based traditional indices in
global drought assessment. In addition, no studies have as-
sessed the skill of drought indicators in identifying subna-
tional socio-economic impacts globally, although the subna-
tional disaster dataset (i.e. GDIS) recently made it possible.
In the present paper, we address the following key points.

1. Understanding the link between global drought hazards
and their socio-economic impacts at the subnational
scale using GDIS data.

2. Developing a new global combined drought indicator to
enhance the precision and reliability of drought assess-
ment (agro-climatological as well as socio-economic)
and assessing its performance in detecting GDIS
drought events.

3. Checking the performance of the commonly used tradi-
tional drought indicators (SPI, STI, NDVI, and SSMI)
in identifying subnational socio-economic impacts of
droughts (i.e. their association with GDIS).

To achieve the stated objectives, our study is structured
into three main components. Initially, we conduct an analy-
sis of global GDIS data to identify and select drought events
at the subnational level. Later, a new global CDI is devel-
oped, and its performance in identifying GDIS events is
assessed. Following this, we evaluate the effectiveness of

four single-variable-based traditional indicators (SPI, SSMI,
STI, and NDVI) in detecting the GDIS events compared to
CDI. As a result, our research produces a comprehensive
global framework for assessing drought impact, integrating
agro-climatology hazard data with socio-economic impacts.
This framework offers potential benefits for drought-prone
regions worldwide, facilitating improved drought manage-
ment strategies and informed policy and decision-making
processes.

2 Data

We used global observation and simulation data of rain-
fall, temperature, soil moisture, and NDVI to provide var-
ious drought indicators. These datasets were sourced from
a combination of satellites and models and cover the time
span from 2001 to 2021 on a monthly temporal scale. All
the datasets had varying spatial resolutions. To address this
disparity, we applied an inverse distance weighted (IDW)
method and rescaled all the datasets to a consistent resolu-
tion of 0.10°× 0.10°. All datasets were selected based on
factors such as long-term data availability, accessibility, re-
liability, high spatial resolution, and overall data accessibil-
ity. To explore the linkage between drought indicators and
socio-economic impacts, we used subnational disaster data.
The subsequent paragraphs provide a detailed description of
each dataset used in the study, and Table 1 outlines the re-
spective sources of acquisition.

2.1 Rainfall

The monthly rainfall data were obtained from the Climate
Hazards Group Infrared Precipitation with Station (CHIRPS)
data, developed by the U.S. Geological Survey (Climate Haz-
ards Center – U.C. Santa Barbara, 2023). We chose CHIRPS
due to its high accuracy with station data, fine spatial resolu-
tion (0.05°× 0.05°), and extensive temporal coverage from
1981 to the present.

2.2 Temperature

To understand the contribution of temperature to drought,
the ERA5-Land temperature dataset (European Centre for
Medium-Range Weather Forecasts, 2023) was used in this
study. The average monthly gridded dataset was downloaded
from the Copernicus Climate Data Store for the study period
2001 to 2021. The original spatial resolution was 0.1× 0.1°.

2.3 Soil moisture

We used the ERA5-Land soil moisture dataset (European
Centre for Medium-Range Weather Forecasts, 2023) ac-
quired from the Copernicus Climate Data Store for the study
period from 2001 to 2021. The monthly data products, with a
spatial resolution of 0.1× 0.1°, were used for the study. The
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soil moisture datasets were available for different soil depth
levels: first (0–7 cm), second (7–28 cm), third (28–100 cm),
and fourth (100–289 cm). For our analysis, we used the first
three layers (0–100 cm) to represent root-zone soil moisture,
which is widely recognised in the literature (Bolten et al.,
2010; Sawada, 2018; Sehgal et al., 2017) as critical for agri-
cultural drought monitoring. To obtain a single representa-
tive value for soil moisture in the top 1 m, we employed a
weighted averaging method using the respective thicknesses
of the first three layers. The resulting weighted root-zone soil
moisture layer was then standardised (e.g. using z scores) and
integrated into the CDI framework along with other drought-
relevant indicators.

2.4 NDVI

NDVI serves as a significant indicator of vegetation stress
levels. We used monthly NDVI data products from the Mod-
erate Resolution Imaging Spectroradiometer (MODIS) (Di-
dan and Huete, 2023) spanning from 2001 to 2021. These
data were obtained at a spatial resolution of 1 km, which we
resampled to 0.1× 0.1° to align with other data sources for a
comprehensive assessment. The MODIS NDVI dataset was
used due to its global coverage and high temporal resolu-
tion, making it essential for monitoring vegetation health, fa-
cilitating timely detection, and assessing drought conditions
worldwide.

2.5 GDIS/EM-DAT

The Geocoded Disaster (GDIS) dataset is a global geocoded
dataset distributed by SEDAC (NASA) that links disaster
events to specific administrative boundaries (Rosvold and
Buhaug, 2021). It builds upon the EM-DAT database by
adding spatial GIS information, providing polygons for sub-
national regions affected by specific disaster events. Each
event is tagged with the type of hazard (e.g. drought, flood,
cyclone), the time period, and the affected regions at the sub-
national level. In this study, only drought events were ex-
tracted from GDIS for the years 2001 to 2021. The EM-DAT
records a natural disaster when it meets any of the follow-
ing conditions: involves 10 or more fatalities, impacts 100
or more individuals, or prompts a declaration of a state of
emergency along with a request for international aid.

The use of GDIS, instead of relying solely on EM-DAT,
adds spatial specificity and improves the ability to evaluate
drought impacts in different regions, especially in developing
countries where vulnerability is high. However, it is worth
noting that GDIS coverage is not globally uniform and may
be affected by underreporting in certain regions.

To identify any drought events from EM-DAT datasets,
their event identifier (disaster number) information was ex-
tracted. In EM-DAT, disaster events are uniquely distin-
guished by the combination of an eight-digit disaster code
and a three-digit country code, whereas GDIS employs

only the eight-digit disaster code. Considering this com-
mon ground, GDIS drought events were short-listed. In our
study period, from 2001 to 2021, a total of 2142 GDIS-based
drought events were identified. Because GDIS lacks drought
start and end information, the exact yearly start and end in-
formation was acquired from EM-DAT. In some cases (143
events out of 2142, ∼ 6.7 %), due to the unavailability of
monthly details in EM-DAT, we assumed January as the start-
ing month and December as the end month of the respective
event, and further analysis was carried out.

3 Method

3.1 Conventional single-variable-based drought indices

To understand the performance of drought indices in iden-
tifying GDIS drought events, we first employed four com-
monly used individual variable-based traditional drought in-
dices. These included the rainfall-based SPI (computed using
“SPEI” and “raster” packages from R statistical software),
temperature-based STI, soil moisture-SSMI, and vegetation-
stress-related NDVI. Drought assessments were conducted
for all these indices on a monthly scale for the period
from 2001 to 2021. Here, we incorporated the standardisa-
tion method (z-score statistics) during index computation of
SSMI, STI, and NDVI to facilitate comparative analysis and
noted similarities and differences between the results in iden-
tifying GDIS events. z-score values were computed using the
following method:

z score=
X−µ

σ
, (1)

whereX = a specific value of a parameter within the set,µ=
the long-term mean, and σ = the long-term standard devia-
tion.

Further, the results for all four indices were classified and
categorised, as shown in Table 2. The drought categories
applied in this study follow the widely used SPI classifica-
tion, originally developed by McKee et al. (1993). Values
ranging from 0 to −2 or less (negative anomalies) indicate
drought conditions, representing mildly dry to extremely dry
situations. Conversely, values ranging from 0 to 2 or greater
(positive anomalies) depict mildly wet to extremely wet con-
ditions, respectively. In this study, a 1-month accumulation
period was used for SPI, STI, and SSMI to capture short-
term drought dynamics. This timescale is sensitive to rapid
changes in agro-climatic conditions and supports early-stage
drought detection. It also aligns with the monthly resolution
of GDIS data, enabling accurate event-level analysis. The
choice enhances consistency between drought indicators and
the event database.
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Table 1. Details of the datasets used for this study.

Data Description Spatial resolution Source

Rainfall CHIRPS rainfall data Original: 0.05°× 0.05°
Resampled: 0.1°× 0.1°

https://www.chc.ucsb.edu/data/chirps∗

Temperature ERA5-Land monthly temperature 0.1°× 0.1° https://doi.org/10.24381/cds.68d2bb30
(Muñoz Sabater, 2019)

Soil
moisture

ERA5-Land monthly volumetric soil
moisture

0.1°× 0.1° https://doi.org/10.24381/cds.68d2bb30
(Muñoz Sabater, 2019)

NDVI MODIS NDVI (MOD 13A3 product) Original: 1 km× 1 km
Resampled: 0.1°× 0.1°

https://modis.gsfc.nasa.gov/data/
dataprod/mod13.php∗

GDIS Geocoded Disaster dataset based on
EM-DAT, event-wise socio-economic
impact data

Spatial: Subnational
Temporal: Event-wise

https://sedac.ciesin.columbia.edu/data/
set/pend-gdis-1960-2018/data∗

∗ Last access: 11 September 2025

Table 2. Drought categories and specific class values used to evaluate the drought indices.

3.2 Combined drought indicator

Various studies have suggested that drought results from vari-
ations in multiple agro-climatological settings rather than
just a single variable. The socio-economic repercussions of
drought could occur due to combinations of multiple fac-
tors rather than a single one. Hence, in this study, we devel-
oped a new combined drought indicator to assess droughts
by considering multiple agricultural and climatological vari-
ables. We then checked and compared its association with
GDIS events in the method described in Sect. 3.3. The CDI
was developed using two agricultural variables (soil mois-
ture, NDVI) and two climatological variables (rainfall, tem-
perature). The CDI was generated as the weighted average
of four independent drought indices, as shown in Sect. 3.1.
The principal component analysis (PCA) technique was used
to assign weights to all four input indices. PCA has been
widely used in atmospheric and hydrological studies to de-
scribe dominant patterns in multivariate data (Anon, 2002;
Hannachi et al., 2007; Jackson, 1993). The PCA method was
selected for constructing the CDI due to its ability to extract
dominant patterns of variability across multiple input indices
without requiring a dependent variable. This makes it par-
ticularly suitable for integrative assessments across diverse
drought types and geographic regions. Compared to other

commonly used weighting methods, such as the analytic hi-
erarchy process (AHP), which relies on expert judgement
(Saaty, 1980), or entropy weighting, which uses the diver-
sity of information in data (Tang et al., 2023), PCA offers
an objective, data-driven approach that reduces subjectivity.
While regression-based methods have also been explored to
link drought indicators with socio-economic impacts (Hao et
al., 2014b), they typically require clearly defined response
variables and may introduce model-based biases. In contrast,
PCA generates uncorrelated components and assigns weights
based on explained variance, enhancing reproducibility and
generalisability in global-scale assessments.

In this study, the PCA technique was used to assign
monthly weights to the four input indices: SPI, STI, SSMI,
and NDVI. PCA is commonly used in environmental and
climate studies to extract dominant patterns in multivariate
datasets without requiring a dependent variable. In this study,
PCA was conducted separately for each calendar month us-
ing time series data from 2001 to 2021, resulting in 21 obser-
vations per variable. Although the number of observations is
relatively modest, it satisfies the commonly accepted subject-
to-variable ratio of at least 5 : 1 for PCA (Jolliffe, 2002; Gor-
such, 2014), especially when the number of variables is low
and the objective is dimensionality reduction. Through PCA,
new orthogonal (independent of each other) variables, i.e.
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PCs, were constructed using linear combinations of the orig-
inal indices without significant loss of information. The first
principal component (PC1), which captures the highest vari-
ability in the input data, was selected for further analysis.
In PCA, principal components are calculated to maximise
the variance explained, and the total of the squared load-
ings (eigenvectors) equals 1. These squared loadings indicate
each variable’s contribution and were used to derive monthly
weights for each input index. Using this approach, we gener-
ated 48 spatially weighted maps (12 months× 4 variables).
The percentage weights obtained from PCA were then used
to compute the CDI as follows:

Weighted CDI(ij)= WtSPI(i) ·SPI(ij) + WtSTI(i)

·STI(ij) + WtSSMI(i) ·SSMI(ij)
+ WtNDVI(i) ·NDVI(ij), (2)

where WtSPI, WtSTI, WtSSMI, and WtNDVI represent the
weights for the ith month (January to December) for their
respective parameters. These weights were multiplied by the
individual index values for the j th year and ith month, and
then all the values were added to obtain the CDI results for
the ith month and j th year. Finally, all the CDI results were
normalised for comparative analysis. This normalisation pro-
cess was carried out using the following formula:

CDI(ij)=
weighted CDI(i,j)

δ(i)
, (3)

where CDI(i,j) represents the combined drought anomaly
for the ith month and j th year and δ(i) denotes the standard
deviation for the ith month across all years (2001 to 2021).
The CDI results were shown using the same colour scheme
and drought categories, as depicted in Table 2. Figure 1 illus-
trates the schematic flowchart outlining the process for com-
puting PCA-based CDI.

In the later stage, the same process as that for individual
indices (SPI, STI, SSMI, NDVI) outlined in Sect. 3.1 was
followed to assess the association between CDI results and
GDIS drought events. Similarities and differences observed
by CDI in identifying GDIS events compared to SPI, STI,
SSMI, and NDVI across various temporal scales and with
different criteria were examined. Detailed explanations of
these results are provided in the following section.

3.3 Evaluation of the drought indices by GDIS

We assessed the number of events among the short-listed
GDIS drought events (see Sect. 2.5) that were detectable by
each drought index. This analysis suggests how well each
index detects socio-economic stress during droughts. This
analysis was performed using ArcMap 10.8. The GDIS poly-
gons were overlaid onto the gridded drought index (SPI,
STI, SSMI, NDVI, and CDI) layers separately to extract spa-
tial and temporal raster-based information for each drought
event. A total of 2142 events recorded between 2001 and

2021 were analysed. Event-specific details such as location
and start and end dates were obtained from the GDIS and
EM-DAT databases. For each drought event, index values
were extracted from the respective raster datasets based on
the spatial extent (polygon) and duration of the event. For ex-
ample, if a GDIS event occurred in Bihar, India, from March
to December 2012, the relevant monthly raster values for
SPI, STI, SSMI, NDVI, and CDI within the Bihar polygon
during that period were extracted.

To align the gridded drought indices with the spatial scale
of the GDIS events, we computed the monthly spatial aver-
age of each drought index over all grid cells within the corre-
sponding event polygon. This process produced a single time
series per index for each event. The resulting geodatabase ta-
bles were then analysed to assess whether the index values
were consistent with the GDIS records. Following previous
literature (McKee et al., 1993; Bayissa et al., 2019; Kulkarni
et al., 2020), a threshold of ≤−1 was used to define moder-
ate to extreme drought conditions (Table 2). A drought index
was considered consistent with a GDIS event if the average
value of the index within the event polygon was ≤−1 in any
month during the event’s duration. For instance, if the av-
erage STI value within the Bihar polygon fell below −1 in
any month between March and December 2012, STI would
be considered consistent with that GDIS event. To evaluate
sensitivity, a secondary analysis was also conducted using a
threshold of <0. In this case, if any monthly average value
of an index was below 0 during the event, it was also marked
as consistent. This two-threshold approach allowed for both
conservative and more inclusive assessments of drought in-
dex performance against GDIS events. For clarity, a stepwise
procedure of thresholding and spatial averaging is presented
in Appendix A.

The occurrence of GDIS events (socio-economic repercus-
sions) may not solely originate from conditions in a partic-
ular month but could also reflect agro-climatological stress
conditions from the preceding 1, 2, or 3 months. Hence, we
also analysed the GDIS events and their association with all
five indices by adjusting the duration of event occurrences.
We conducted additional analysis by extending the data ex-
traction time frame for all five indices. For example, in Bi-
har, India, for the GDIS drought event from March to De-
cember 2012, we not only extracted index data for March to
December 2012 but also for 1 month before the event (Febru-
ary), 2 months prior (January), and 3 months prior (Decem-
ber 2011) for SPI, STI, SSMI, NDVI, and CDI and checked
if the index anomalies are consistent with GDIS or not in any
of these durations.

Research suggests that the shorter-duration dry periods
have significant importance for various socio-economic ap-
plications, such as water availability and energy sources in
adjacent months (Christian et al., 2021, 2024; Mukherjee and
Mishra, 2022). Hence, during the short-listing process of the
2142 GDIS drought events from the entire natural disaster
dataset, the initial criteria were to consider all the events, in-
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cluding short droughts (droughts lasting more than 1 month
or up to 2 months). Consequently, in the later stage of this re-
search, to comprehend the importance and differences in the
selection of timescales, the initial criteria were slightly ad-
justed. Instead of considering all events, only events lasting
more than or equal to 2 months were examined. This criterion
was established to mitigate the impact of short-term changes
and biases in results caused by short droughts or smaller dry
periods. After the implementation of these criteria, we got
1641 GDIS drought events.

To summarise, a comparative analysis of GDIS with all the
conventional indices (SPI, STI, SSMI, and NDVI) and CDI
was carried out based on (1) two types of drought events,
i.e. those lasting greater than or equal to 2 months and all
events, including those with shorter durations (i.e. less than
2 months). (2) During this process, four temporal data scales
were considered: the actual event period, data from 1 month
prior to the event, data from 2 months prior to the event, and
data from 3 months prior to the event. (3) For all the indices,
events were classified as drought if the values were below
0 (in the first case) and below −1 (in the second case); the
remaining events were marked as non-drought events.

4 Results

4.1 Global drought frequency analysis by GDIS events

The GDIS dataset contains location data for 39 953 events
globally, including various natural disasters such as extreme
temperatures, floods, mass movements, storms, droughts,
and earthquakes. Among these, 2142 events were explic-
itly identified and classified as drought events. Figure 2a il-
lustrates the global spatial distribution of drought frequen-
cies of all 2142 GDIS drought events. The highest num-
bers of these drought events were recorded in Africa (779;
36.37 %) and Asia (710; 33.15 %), followed by the Amer-
icas (477; 22.26 %), Europe (106; 4.95 %), and Oceania
(70; 3.27 %). Analysing drought frequencies at a finer scale,
Djibouti in Africa reported the highest frequency of GDIS
drought events (eight occurrences), followed by Ethiopia
and Kenya (seven occurrences each) and Somalia (six oc-
currences) (Fig. 2b). In the Americas, Bolivia recorded the
highest number of GDIS drought events in South America,
while Honduras had the highest frequency in Central Amer-
ica (seven occurrences). In North America, Kansas County
in the United States documented the highest number of
GDIS drought events (four occurrences), followed by Cal-
ifornia, Arizona, and Illinois, with three occurrences each
(Fig. 2c). In Asia, the Nei Mongol administrative unit in
China documented the highest frequency of GDIS drought
events (seven occurrences). This is followed by several ad-
ministrative units in Thailand, including Chaiyaphum, Loei,
Nan, and Kalasin, which each recorded a high frequency of
GDIS drought events (six occurrences), indicating a signifi-

cant vulnerability to drought in these regions. Additional re-
gions in China (such as Yunnan, Shanxi, and Hebei), India
(Maharashtra and Andhra Pradesh), and Cambodia (Pursat
and Kampong Speu) documented moderate GDIS drought
frequencies (three to five occurrences) (Fig. 2d).

On the temporal scale, parts of Africa and South Amer-
ica experienced the highest extended drought events. The
drought over Burundi, Africa, lasted continuously for 2 years
from 2004 to 2006, whereas the drought in South America,
over Honduras, lasted for around a year in 2009. Some of
these events were very harshly socio-economically devastat-
ing. EM-DAT data showed that, in a major event in Africa,
nearly 2 million people were affected, whereas in Thailand,
around 3 million people faced the impacts of drought.

It is also noteworthy that areas with low population den-
sity, like western Australia or central and western Russia, did
not experience any GDIS events. In contrast, higher popu-
lation areas were more prone to GDIS events, making pop-
ulation density a key factor in socio-economic stress. Addi-
tionally, it was observed that areas with smaller spatial scales
are less likely to experience GDIS events compared to larger
areas.

4.2 Performance of CDI in detecting GDIS events

In the computation of the CDI, one of the initial steps in-
volves assigning weights to all input variables using the PCA
method. Figure B1 shows the pixel-based weights for each
variable for the sample month of April. Similar weights were
computed for all 12 months across four input variables (Ap-
pendix C: rainfall – Fig. C1, temperature – Fig. C2, NDVI
– Fig. C3, and soil moisture – Fig. C4). In April, the high-
est weights were assigned to soil moisture, indicating its
greater contribution to the development of CDI compared to
NDVI, land surface temperature (LST), and rainfall. Lower
weights were assigned to LST, suggesting a weaker correla-
tion with other variables and a lesser role in CDI formation
for April. Significant variations in these weights have been
observed across different global regions, reflecting seasonal
dynamics. In the tropical areas of Southeast Asia and parts
of Africa, rainfall and soil moisture exhibit higher weights
during the monsoon seasons from June to September, while
NDVI becomes more prominent in the subsequent months.
Meanwhile, in parts of North America, NDVI shows higher
weights in September and October, followed by soil moisture
and rainfall (Appendix C).

The CDI maps, as shown in Fig. 3, helped to identify dif-
ferent categories of droughts between 2001 and 2021 over
various regions of the globe. Severe to extreme drought con-
ditions were observed over South African countries such as
Malawi and Zambia, as well as the Horn of Africa, includ-
ing Ethiopia, Kenya, and Somalia, during 2015–2016. In the
United States, the years 2007–2008 and 2012 were marked
as severe to extreme drought years, affecting the southeast-
ern states and the Midwest, respectively. During Novem-
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Figure 1. The general flow of the method followed to compute CDI-based droughts. Here, i represents the month from January to December,
and j indicates the years from 2001 to 2021.

ber 2009, the CDI noted one of the most destructive drought
periods in northern and western China. The year 2015 was
marked by the CDI as a severe drought year in India, affect-
ing 52 % to 67 % of the region and causing massive agrarian
stress. Additionally, the CDI data indicated that during early
2019, areas of Australia, particularly Queensland and New
South Wales, experienced some of the most severe drought
conditions recorded in recent years. Further, overlapping the
GDIS polygons on these CDI results helped to explain the
association between CDI and GDIS drought events.

Figure 4 demonstrates the performance of CDI in detect-
ing GDIS events. Figure 4a shows CDI for North and Central
America in June 2015 overlaid with black polygons repre-
senting GDIS data for the same period. Similarly, Fig. 4b and
c showcase the CDI maps for Africa in June 2009 and South
America in August 2009, respectively, aligning with periods
of reported GDIS events with their corresponding polygons.
In these examples, it is clearly seen that GDIS polygons are
exactly aligned with severe to extreme drought areas, as ev-
ident through the base maps of CDI. Likewise, out of a to-
tal of 2142 GDIS global drought events with an actual event
period (AEP), CDI can detect 1885 (88 %) drought events
when the drought criteria were set to −1 or less and 2117
(98.83 %) when the criteria were set to 0 or less. After adjust-
ing the criteria to consider drought events lasting 2 months
or longer, the total event count was reduced to 1641 GDIS

events. Under this criterion, CDI identified 1550 (94.45 %)
GDIS events when the drought threshold was set to −1 and
1635 (99.63 %) when the threshold was set to 0. Adjusting
the criteria and thresholds more rigorously (1 month prior to
the end of GDIS events, 2 months prior to the end of GDIS
events, and 3 months prior to the end of GDIS events) re-
sulted in a stronger association between GDIS and CDI, with
percentages ranging from 91 % to 100 % (Table 3). In the first
criterion, when considering 1 month prior to the AEP and us-
ing a threshold of −1, CDI detected 1954 events, accounting
for 91.22 % of the total. When the threshold was changed to
0, 2130 events (99.44 %) were identified by CDI, in align-
ment with GDIS. When short-duration drought events were
excluded under the same criterion, CDI detected 1573 events
(95.86 %) at the −1 threshold and 1637 events (99.76 %) at
the 0 threshold.

Under the second criterion, when 2 months prior to AEP,
CDI detected 2010 events (93.84 %) using a threshold of −1
and 2137 events (99.77 %) when the threshold was adjusted
to 0. Excluding short drought events in this scenario, CDI
identified 1587 events (96.71 %) at the −1 threshold and
1637 events (99.76 %) at the 0 threshold. In the final crite-
rion, considering 3 months prior to AEP, CDI detected 2042
events (95.33 %) at the −1 threshold and 100 % of events at
the 0 threshold. After excluding short drought cases, 1589
events (96.83 %) were captured at the −1 threshold, and,
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Figure 2. Spatial distribution of GDIS drought frequencies: (a) global scale, (b) East Africa, (c) the Americas, and (d) Asia. The drought
frequencies range from one to eight, represented by shades from light yellow (low frequency) to dark brown (high frequency). Note: the
colour scheme used here is distinct from the CDI classification shown in Table 2 and represents event frequency, not drought intensity.

again, all events (100 %) were identified at the 0 threshold.
Among the shifting windows, the 3-month prior criterion
with a threshold of 0 demonstrated the highest detection rate,
capturing 100 % of GDIS events. However, this also suggests
a higher likelihood of false alarms, as early indicators may
not always align with actual drought impacts.

These results highlight that GDIS events, which appear to
occur in specific months, may actually be the outcome of
agro-climatic variability occurring 1, 2, or even 3 months
prior to the reported event, rather than being confined to that
specific month alone.

Figure 5 illustrates the performance of CDI in detecting
GDIS drought events across different regions (Fig. D1 rep-
resents the performance of traditional indices). In this anal-
ysis, the drought identification criteria were set as all GDIS
events, including short-duration cases, with a drought thresh-
old set at −1 or less. Out of a total of 2142 GDIS events, the
highest number was observed in Africa, with 779 events, of
which CDI successfully detected 678 (87.03 %). Following
Africa, South and Southeast Asia experienced 613 (78.69 %)
GDIS drought events, with CDI accurately identifying 526
(67.52 %) of these. In South and Central America, there were
434 GDIS drought events, and CDI identified 387 (89.17 %)
of them. East Asia and the Pacific saw 144 GDIS events, with

CDI detecting 138 (95.83 %). Europe and Central Asia, as
well as North America, had the fewest GDIS events. CDI
detected 111 events in Europe and Central Asia and all 53
events in North America. These findings indicate that CDI
exhibits high accuracy in regions with larger subnational
scales compared to areas with smaller scales. The 100 % de-
tection rate of GDIS droughts in North America by CDI may
be attributed to the extensive area extent of the region. In line
with our results, a previous study by Kageyama and Sawada
(2022) also showed that developed countries are easier to de-
tect. These countries did not suffer from droughts without
strong climatological hazard signals, which enhances the ca-
pability of our climatology-based hazard index. The vast sub-
national scale of North America includes a greater number of
CDI image pixels, which likely enhances the correlation with
GDIS events.

Despite the higher association of CDI in detecting GDIS
events, there were a few instances (e.g. Burundi and parts
of Thailand) where CDI failed to capture GDIS events. The
smaller spatial extents (subnational scales in Southeast Asia
or parts of Africa) could be one reason for this discrepancy.
Additionally, these regions might be experiencing other types
of stress beyond agro-climatological factors (as indicated by
CDI) that contribute to the GDIS events. It was also found
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Table 3. Performance of CDI in detecting GDIS events using multiple criteria.

CDI vs GDIS Event Drought Actual event period 1 month prior+AEP 2 months prior+AEP 3 months prior+AEP
total criteria (AEP)

−1 0 −1 0 −1 0 −1 0

Including short 2142 Observed 1885 2117 1954 2130 2010 2137 2042 2142
drought % 88.00 98.83 91.22 99.44 93.84 99.77 95.33 100

Not observed 257 25 188 12 132 5 100 0
% 12 1.17 8.78 0.56 6.16 0.23 4.67 0

No short drought 1641 Observed 1550 1635 1573 1637 1587 1637 1589 1641
(event ≥ 2 months) % 94.45 99.63 95.86 99.76 96.71 99.76 96.83 100

Not observed 91 6 68 4 54 4 52 0
% 5.55 0.37 4.14 0.24 3.29 0.24 3.17 0

that CDI identified stress conditions in some locations that
were not reflected in GDIS. For instance, CDI detected se-
vere drought events in South Argentina during 2014–2015,
Namibia in 2013, and parts of Europe in 2018, which were
not reflected in GDIS event records. These instances high-
light that not all agro-climatic droughts lead to recorded
socio-economic impacts, especially in regions with strong
adaptation and mitigation capacities. Practices such as ad-
vanced irrigation, drought-resistant crop varieties, or effec-
tive early warning systems may help manage the agricul-
tural and societal impacts of climatic stress, thereby reduc-
ing the likelihood of such events being recorded in GDIS. It
is also important to note that GDIS does not comprehensively
capture all real-world drought events, particularly in regions
with limited reporting mechanisms or institutional capacity.
As a result, some drought events, especially in low-income
or remote areas, may go undocumented despite having sig-
nificant local impacts.

4.3 Comparative assessment of CDI and individual
parameter-based traditional indices

Figure 6 presents a comparative analysis of multiple drought
indices, including CDI, in detecting GDIS events using vari-
ous criteria. When considering the initial criteria (Fig. 6a),
which cover the actual event period of GDIS and include
all events, including short-duration droughts, a total of 2142
events were identified in GDIS. Among these, CDI exhib-
ited the highest detection rate with 1885 (88 %) events, fol-
lowed by NDVI with 1867 (87.16 %) events, SSMI with
1770 (82.63 %) events, SPI with 1740 (81.23 %) events, and
STI with 1650 (77.03 %) events. Here, the criterion was set
to consider all events, including short-term drought occur-
rences, with the drought threshold set to −1 or lower. The
number of the GDIS drought events captured by each index
can easily be increased by the lower threshold of drought
identification (Fig. 6a, b, c, d, and subplot 2), although it
inevitably increases the false alarms. This association re-
mained consistent when the drought criteria were further re-
fined to exclude events shorter than 2 months (Fig. 6a, b,
c, d, and subplot 2). It is also notable that the agricultural

indices (NDVI and SSMI) exhibit greater efficacy in identi-
fying GDIS drought events compared to meteorological in-
dices (SPI and STI). This suggests that they may offer a
more accurate representation of socio-economic conditions.
Through this analysis, we observed that NDVI performs bet-
ter in regions with diverse vegetation cover and seasonal vari-
ability, such as the Indian subcontinent and South America
(Fig. E1). In contrast, SSMI detected more drought events
than NDVI in semi-arid areas like Central Asia (e.g. Kyr-
gyzstan, Afghanistan), where NDVI is less informative due
to sparse vegetation.

When considering an alternative criterion that includes
drought data spanning 2 months prior to the onset of the
GDIS event until its end date, with the exclusion of short-
term drought occurrences, a total of 1641 GDIS events were
observed. Out of these 1641 events, CDI demonstrated the
highest efficacy by detecting 1587 (96.71 %) events. Sub-
sequently, NDVI identified 1574 (95.91 %) GDIS events,
while SSMI detected 1580 (96.28 %) events. SPI observed
1550 (94.45 %) events, and STI represented 1510 (92.02 %)
events, showcasing its lesser capability in detecting GDIS
events. It is observed that, across most criteria (Fig. 6b, c,
d), CDI demonstrated a superior capability in identifying
GDIS events compared to other indices. It is also observed
that, across most criteria, CDI has a greater potential to de-
tect GDIS droughts compared to traditional drought indices
based on single input variables (Appendix F: Tables F1, F2,
F3, and F4).

However, there were three instances where CDI lagged
other indices, primarily NDVI or SSMI, in detecting GDIS
events. In the first scenario (Fig. 6b, criterion: 1 month
prior to AEP and including short droughts), CDI detected
1954 (91.22 %) GDIS events, while NDVI identified 1983
(92.58 %) GDIS events. Similarly, in the second scenario
(Fig. 6b, criterion: 2 months prior to AEP and including
short droughts), NDVI maintained its superiority in detect-
ing GDIS events, observing 2028 (94.68 %) events com-
pared to CDI’s detection of 2010 (93.84 %) events. In the
third scenario (Fig. 6c, criterion: 3 months prior to AEP and
no short droughts considered), although CDI detected 1589
(96.83 %) GDIS events, SSMI outperformed by observing
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Figure 3. Major drought events detected by CDI in various global
regions, including: (a) the United States in August 2007 and (b)
July 2012, (c) the Horn of Africa in July 2015, (d) Malawi and Zam-
bia in February 2016, (e) western and northern China in July 2015,
(f) India in July 2015, and (g) Australia in January 2019.

1610 (98.11 %) GDIS events. These discrepancies may be
caused by CDI giving more weight to input parameters such
as SPI and STI, influenced by regional variability, local en-
vironmental conditions, and land cover patterns during these
event periods.

For comparative analysis of drought detection perfor-
mance, recall serves as a crucial metric, as it quantifies the
ability of each index to correctly identify actual drought
events. High recall is especially important in early warning
systems, where missing events can lead to unmitigated im-
pacts. As illustrated in Fig. G1, the CDI index consistently
outperforms others across all time windows, particularly for
events lasting ≥ 2 months, where it achieves recall values

between 0.94 and 0.97, demonstrating robust and reliable
drought detection capability. For a more comprehensive un-
derstanding of detection performance, additional metrics de-
rived from a full confusion matrix, such as precision, speci-
ficity, and F1 score, could provide further insights and repre-
sent a promising direction for future work.

One of the reasons for the superiority of CDI in detect-
ing GDIS drought events is its flexibility. CDI can be tai-
lored to suit local or regional contexts, taking into account
the unique characteristics represented by specific traditional
indices or combinations of multiple indices. Figure 7 pro-
vides examples of such cases, where one or more individ-
ual indices represented GDIS drought events, allowing CDI
to also detect those GDIS events. Figure 7a shows one of
the event cases over Busoni, Burundi, from Africa, where
the GDIS event was observed from April 2014 to Septem-
ber 2014. In this case, the lines for NDVI, SPI, or STI did
not cross the drought threshold (−1) during the particular
period; hence, the GDIS event could not be detected. SSMI
could detect this drought, and CDI has a relatively large
weight on SSMI, so CDI could also detect it. The average
rainfall is low with small variability over this region in this
period, resulting in SPI not detecting this event, whereas the
common hot and semi-arid climate of this region would not
have helped STI and NDVI to detect drought over Burundi.
The decreased availability of groundwater or surface water in
this area likely resulted in reduced soil moisture supply, con-
tributing to SSMI drought. In the second example (Fig. 7b),
a GDIS drought event was observed over Gaya, Bihar, India,
from May to September 2009. This region is located along
the banks of the Ganga River, which is likely to provide am-
ple irrigation. Consequently, SSMI and NDVI did not indi-
cate a drought in this area. However, the insufficient rainfall
over Gaya during this period caused socio-economic stress,
which was detected by both SPI and CDI.

Figure 7c shows the performance of various indices over
Holguin, Cuba, where a GDIS event was reported from Au-
gust 2004 to March 2005. In this case, STI and SPI did
not detect the drought, whereas NDVI and SSMI indicated
drought conditions, leading to the CDI’s detection of the
drought as well. Despite non-drought conditions in precip-
itation and temperature, agricultural stress factors such as
poor vegetation health or subsurface water depletion could
have contributed to this drought, which was effectively cap-
tured by NDVI, SSMI, CDI, and GDIS. In the fourth example
(Fig. 7d), a GDIS event was observed over Nebraska, USA,
from June 2012 to November 2012. All five indices (NDVI,
SSMI, STI, SPI, and CDI) detected this event, highlighting
the extreme drought severity during this period in the United
States.

Figure 8 represents the zonal validation results for drought
index performance across four climate zones (arid, tropi-
cal, temperate, and cold) based on Köppen’s climate (Peel
et al., 2007) classification (threshold criterion: −1). The fig-
ure highlights how different indices perform differently un-
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Figure 4. Assessment of drought using CDI with overlay of GDIS events over North America (June 2015) (a), Africa (June 2009) (b), and
South America (August 2009) (c). The black polygons represent GIS polygons from GDIS, indicating drought-affected administrative units
based on GDIS data. The base maps display CDI results for the respective GDIS drought months, ranging from dark brown (indicating
extreme dry conditions) to dark green (indicating extreme wet conditions). The alignment of GDIS polygons with droughts detected by CDI
demonstrates the CDI’s capability to accurately identify GDIS droughts during the respective periods.

Figure 5. Performance of CDI in detecting GDIS events across different geographic regions. A total of 2142 drought events were identi-
fied from GDIS. CDI successfully detected events marked in blue, with counts indicated by red dotted boxes. Events missed by CDI are
represented in orange. The black triangles indicate the percentage of GDIS events captured by CDI.

der varying climatic conditions, while the CDI demonstrates
consistently high detection accuracy across all zones. In the
arid zone (a), CDI detected 95.4 % of GDIS events (the high-
est among all indices), while SSMI and NDVI also per-
formed well with 93.0 % and 90.5 %, respectively. This out-
come can be attributed to the high sensitivity of NDVI and
SSMI to vegetation and soil moisture stress, which are ob-
vious under arid conditions. However, in the cold zone (d),
individual index performance dropped noticeably, with SPI
detecting only 66.0 % of events, whereas CDI still main-
tained 80.3 % detection. Similarly, in the temperate zone (c),
both CDI and SSMI showed strong association with GDIS at

87.2 % and 89.2 %, respectively, indicating that some indices
may be better suited for certain climate types. In contrast, the
tropical zone (b) showed relatively lower detection percent-
ages for all indices, with CDI still leading at 80.9 %. SSMI
performance in the tropical and cold zones was lower, pos-
sibly due to dense vegetation cover and higher variability in
surface moisture, which can limit the accuracy of soil mois-
ture retrievals. These results emphasise that while individ-
ual indices can perform well in specific climate zones, their
performance is not consistent across all zones. CDI, by inte-
grating multiple indicators, offers more universally reliable
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Figure 6. Comparative assessment of CDI vs traditional drought indices in detecting GDIS droughts (drought identification threshold:−1 or
less). The first subplot of (a), (b), (c), and (d) illustrates the performance of indices in detecting droughts from a total of 2142 GDIS drought
events (considering short drought events). The second subplot of (a), (b), (c), and (d) shows the performance of indices in detecting GDIS
drought events when short drought events are excluded, resulting in a total count of 1641. Actual event period (AEP) is the exact period when
the GDIS event occurred, for which index data have been considered. In (b), (c), and (d), 1 month, 2 months, and 3 months prior + AEP are
the respective previous months relative to GDIS events plus the actual event period from which index data were considered to understand the
lag effect in GDIS event occurrences.

detection, making it better suited for broader applications in
drought monitoring across diverse climatic regions.

Similarly, we performed a zonal validation of drought in-
dex performance across major land cover classes, i.e. for-
est, shrubland and savanna, agriculture and cropland, settle-
ment, and barren lands, based on MODIS land cover data. As
shown in Fig. H1, the results indicate that CDI consistently
outperformed individual indices across all land cover types in
detecting GDIS events. This reinforces the robustness of CDI
in capturing multi-dimensional drought signals, even across
heterogeneous land surface conditions.

To better understand the spatial behaviour of the CDI, a
correlation analysis was performed (Fig. 9) to examine how
consistently each input index aligns with the composite sig-
nal across regions. In general, strong correlations were ob-
served between CDI and SSMI, followed by NDVI, SPI,
and STI among the four single-input-based traditional in-
dices. CDI was highly associated with SSMI over the In-
dian subcontinent, Australia, and South America. However,
these correlations exhibited spatial and temporal variability.

Monthly assessments revealed significant seasonal variations
in the correlations between CDI and other indices. During
monsoon months (June, July, August, and September), CDI
exhibited a higher correlation with SPI over the Indian sub-
continent compared to non-monsoon months. Similarly, in
arid regions of Africa, strong correlations between NDVI,
SSMI, and CDI were observed during rainy months (June
to September), which diminished during dry months. As a
sample example, Figure 9 depicts the spatial correlation be-
tween CDI and other indices in the sample month of April.
On average, NDVI exhibited a higher correlation with CDI,
particularly in North America, southern parts of Africa, and
the Indian subcontinent. Following NDVI, SSMI and SPI
demonstrated stronger associations with CDI. However, in
April, CDI exhibited a lower correlation with STI. Parts of
South America, South Africa, Australia, and the Indian sub-
continent even displayed a negative correlation between CDI
and STI, indicating worsened or more severe drought impacts
during this period.
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Figure 7. Performance of CDI, SPI, STI, SSMI, and NDVI in detecting GDIS events over Burundi, Gaya, Holguin, and Nebraska. The blue
boxes denote the duration of GDIS events, while coloured line graphs represent the index values of NDVI (green), CDI (blue), SSMI (red),
SPI (purple), and STI (yellow). If the line of any index value crosses the drought threshold of −1 (black dotted line) during the specified
GDIS event period (blue box), that index is considered capable of identifying the GDIS drought event.

5 Discussion

One major challenge in drought studies is assessing the after
effects and propagation of specific drought events on soci-
ety and their long-term impacts. Some researchers have at-
tempted to shed light on this issue, using proxies to show
the socio-economic effects. Noel et al. (2020) compared
weekly hazard maps with socio-economic impacts across
the United States, and Bachmair et al. (2016) described
thresholds for hydrometeorological droughts to understand
the socio-economic impacts of droughts in Germany and the
U.K. However, these studies were region-specific and insuf-
ficient to provide a global perspective. Our study addressed
this research gap with the help of GDIS data. The use of
GDIS data in this study allowed us to obtain precise sub-
national information on disaster locations, and instead of re-
lying on proxies, this dataset provided direct on-ground im-
pact information. Consistent with the findings of Kageyama
and Sawada (2022), our study also observed that sub-Saharan
Africa and South Asia experienced a higher number of GDIS
drought events, highlighting the high vulnerability of these
regions to droughts and their socio-economic repercussions.

Previous studies, whether regional or global, often relied
on single-parameter-based indices for drought monitoring,
such as SPI (Ji and Peters, 2003; Kulkarni et al., 2021; Liu
et al., 2022; McKee et al., 1993). Each of these has limita-
tions for understanding drought. For instance, SPI is com-
monly used, but its effectiveness depends heavily on the se-
lected timescale. Shorter timescales, such as SPI-1 and SPI-
3, are effective for detecting meteorological and agricultural
droughts, respectively, while longer timescales (e.g. SPI-6
or SPI-12) are more suitable for identifying hydrological
droughts (World Meteorological Organization, 2012). How-
ever, in regions with distinct wet and dry seasons, SPI can
sometimes misrepresent actual drought conditions; for ex-
ample, a short-term SPI may indicate drought during a nat-
urally dry season, even when annual water availability re-
mains within normal limits. Regarding NDVI, results may
vary depending on the type of vegetation, as different plants
respond differently to drought stress, which may not always
be captured by NDVI. Additionally, particularly in places
with abundant rainfall, NDVI may not be able to differen-
tiate between dense vegetation and healthy vegetation. Soil
moisture index has limitations in its spatial coverage and the
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Figure 8. Zone-wise accuracy of drought indices (CDI, SPI, SSMI, NDVI, STI) in detecting GDIS events across four Köppen climate
zones: arid, tropical, temperate, and cold. The bar heights represent the percentage of GDIS events accurately captured by each index
(threshold=−1), and the numbers inside the bars indicate the absolute number of consistent detections. The total number of GDIS events
considered per zone is as follows: arid – 571, tropical – 949, temperate – 453, and cold – 188 (total= 2161).

Figure 9. Spatial correlation between CDI and single-input-based traditional indices for a sample month (April): (a) CDI vs SPI, (b) CDI vs
STI, (c) CDI vs NDVI, and (d) CDI vs SSMI. Negative correlations are represented in shades from yellow to red, while positive correlations
are shown in shades from light green to dark green.
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variability of its levels over time, which can respond differ-
ently to changing conditions. Hence, the development of CDI
in our study and its analysis on a global scale mark a signif-
icant departure from previous studies (Ji and Peters, 2003;
Liu et al., 2022; McKee et al., 1993) that focused on single
input parameters. By integrating multiple parameters for the
analysis, CDI offers a more comprehensive understanding
of drought conditions, transcending the limitations inherent
in single-parameter approaches. Bayissa et al. (2022), Jiao
et al. (2019), Kulkarni et al. (2020), and others employed
a comprehensive approach, emphasising the importance of
CDI in their regional drought monitoring studies over Sri
Lanka, India, and the United States, respectively. However,
these studies were limited to regional analyses. Hence, in this
study, taking a step ahead, we analysed droughts using the
CDI technique at the subnational level on a global scale.

While some regional studies have used socio-economic
data such as crop prices or agricultural losses for drought
monitoring (Brown and Funk, 2008; Lobell and Burke,
2010; Wang et al., 2022), we exclude such variables to
avoid overlapping with GDIS, which already reflects socio-
economic drought events. Our focus is on evaluating how
well agro-climatological indices capture these events. Ad-
ditionally, globally consistent socio-economic datasets are
limited, making climate-based indicators more practical for
large-scale drought monitoring.

In this study, the computation of CDI-based droughts in-
volved implementing the PCA technique to assign weights
to each input parameter. In contrast, previous researchers
(Kulkarni et al., 2020; Thomas et al., 2016) relied on the ex-
pert judgement method or copula method (Shah and Mishra,
2020; Tosunoglu and Can, 2016) to assign weights for the in-
put parameters. The expert judgement method is highly sub-
jective, and weight assignments can fluctuate based on in-
dividual opinions. Furthermore, the Copula method is more
susceptible to outliers, potentially leading to biased weight
assessments compared to PCA. Our study addressed these
limitations by employing the PCA technique. PCA enhances
the assessment of drought severity by objectively identify-
ing influential variables and capturing data patterns, thereby
enhancing the accuracy and reliability of our findings.

The comparative analysis between the CDI and other in-
dividual parameter-based indices suggests that CDI offers a
strong overall capability for detecting GDIS events, showing
robust performance across time windows and a closer associ-
ation with socio-economic impacts. Inconsistencies between
the CDI and other indicators may stem from the different
mechanisms these indices use to detect droughts versus the
actual ground conditions. One such inconsistency was ob-
served in the Horn of Africa, where the CDI and other indices
identified a GDIS drought event, but the SPI did not. This
discrepancy could be due to less pronounced precipitation
anomalies in the SPI for this region, where baseline rainfall
is already low and may not reflect drought conditions accu-
rately. Additionally, it is possible that the observed impact

was not solely related to meteorological drought but rather
to agricultural or hydrological drought. Factors such as re-
duced soil moisture, land degradation, or soil types with low
water retention capacity captured by SSMI, STI, NDVI, and
CDI may have played a more significant role in triggering
the event. Another example is from North Argentina (South
America), where the SSMI failed to detect a drought that was
identified by other indices. This disparity might be due to
the presence of the Paraná River, the second-largest river in
South America, which provides a significant source of soil
moisture. Therefore, the SSMI might not reflect drought con-
ditions. However, it is also possible that the impact was not
directly related to soil moisture but instead resulted from me-
teorological factors such as reduced rainfall or elevated tem-
peratures, which could lead to drought and socio-economic
stress, as reflected in GDIS. A further example is from Ballia
(Uttar Pradesh, India), where the SPI and SSMI did not detect
a GDIS drought, but the NDVI and CDI did. Ballia is near the
Ganga River, which supplies ample soil moisture to the sur-
rounding areas. However, the NDVI is particularly effective
at identifying droughts in highly vegetated areas due to its
sensitivity to precipitation and soil moisture and its inverse
correlation with temperature. Thus, the drought was detected
by the NDVI and CDI. The current CDI primarily reflects
agro-environmental droughts due to the nature of its input
indices. However, because it combines precipitation, temper-
ature, soil moisture, and vegetation data, it may also cap-
ture broader drought signals relevant to urban systems, such
as water availability and heat stress (Bhanage et al., 2023;
Hao and Singh, 2015; R. et al., 2021; Vicente-Serrano et al.,
2010). In future work, we aim to enhance CDI by incorporat-
ing sector-specific indicators to better assess socio-economic
impacts beyond agriculture.

Through this study, we observed that the relationship be-
tween hazard (CDI) and socio-economic impacts (GDIS) is
significantly more complex than initially anticipated. The re-
lationship between CDI and GDIS, as well as their vulner-
ability to drought, varies markedly between developed and
less developed regions. Despite some areas in North Amer-
ica and Europe having lower CDI values (less than or equal to
−1.5), these regions have not exhibited corresponding GDIS
(socio-economic repercussions of droughts) droughts. Con-
versely, relatively higher CDI values (less than or equal to
−1.0 or even −0.5 in some cases) over South Africa or parts
of Asia and South America have led to noticeable GDIS
events (socio-economic impacts). Hence, the threshold val-
ues of drought impacts (CDI) differ across regions. These
findings align with previous studies (Tanoue et al., 2016;
Tschumi and Zscheischler, 2020), which represent the be-
haviour of developed versus developing nations, showing
that, although developed nations may experience significant
climate anomalies relative to their local climatic norms, they
are generally less socio-economically impacted by droughts
than developing countries, which tend to be more vulnera-
ble due to limited adaptive capacity. To support this notion,
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Tanoue et al. (2016) mentioned that vulnerability is associ-
ated with the gross domestic product (GDP) of a region, with
higher GDP (Europe, North America) indicating less vulner-
ability and lower GDP (South Africa, South America, South
Asia) indicating greater vulnerability.

Similarly, Birkmann et al. (2022), Chen et al. (2020), and
Lavell et al. (2012) claimed that developed regions, with their
robust infrastructure, diversified economies, and social safety
nets, are better equipped to cope with drought impacts com-
pared to less developed regions with limited resources and in-
stitutional capacities. For instance, developed countries may
have access to advanced irrigation systems and drought in-
surance schemes, whereas less developed countries often rely
heavily on rainfed agriculture and face greater challenges
in mitigating drought impacts. By understanding the asso-
ciation between CDI and GDIS, our study helped to high-
light the disparities and complex dynamics of drought haz-
ard and vulnerability between developed and developing na-
tions. These insights could be used to inform area-specific
policy implementation and management practices. By inte-
grating multiple indicators, CDI provides a more comprehen-
sive view of drought conditions that is useful for identifying
at-risk areas. For example, in regions like East Africa or Cen-
tral India, where both rainfall deficits and vegetation stress
are common during droughts, CDI captures these multiple
dimensions more effectively than single-parameter indices.
Its regionalised structure ensures better alignment with local
climate dynamics, enhancing its potential utility in forecast-
ing and policy targeting. With adaptation to near-real-time
inputs, the CDI framework could support early warning sys-
tems and guide proactive measures such as crop insurance
triggers or water allocation planning. While this study fo-
cused on false-negative cases using GDIS as a reference, a
systematic assessment of false-positive cases remains chal-
lenging. This is due not only to the lack of defined temporal
frames for reverse analysis but also to the incomplete cover-
age of drought impacts in GDIS, especially in developing re-
gions where many drought events may go unreported. These
limitations could be addressed in future research using more
comprehensive and high-resolution impact datasets.

Although 96 % of GDIS events aligned with CDI, there
were a few GDIS events that CDI could not capture. This in-
dicates that there was socio-economic stress during these pe-
riods, but it was not due to hydro-climatological drought haz-
ards. Other factors must have contributed to this stress. One
such event was observed in Burundi (Africa) from June 2001
to December 2001 and in Uganda and Eswatini in southern
Africa. Another inconsistent GDIS event was noticed in Peru
(South America) in 2010 and Thailand in 2005, when no
significant CDI anomalies were observed, yet these periods
were noted in the GDIS dataset. These observations demand
a more detailed analysis of these events and an understand-
ing of the regional characteristics that might have led to these
discrepancies.

The association between the CDI and the GDIS is one
of the key takeaway messages of our study, as it directly
addresses the gap in understanding actual drought hazards
and their socio-economic impacts. However, there are some
limitations to this study. One of the primary limitations is
the incompleteness of the GDIS data. Although GDIS pro-
vides valuable information on impacts, the dataset covers
only 60 % of events registered in EM-DAT at the subna-
tional level. Neither EM-DAT nor GDIS can cover all disas-
ter details and impacts comprehensively. Additionally, EM-
DAT data sometimes lack exact start and end dates for cer-
tain disasters, which might mislead the analysis. Hence, there
is still room for improvement in understanding the socio-
economic impacts of hazards using accurate datasets or on-
ground insights. Emerging approaches such as text mining
and natural language processing (NLP) offer promising path-
ways to address this gap by automatically extracting drought
impact information from news articles, institutional reports,
and other social media (Fritz et al., 2019; Sathianarayanan
et al., 2024) and could serve as alternative or supplemen-
tary impact datasets alongside GDIS and EM-DAT. In this
study, we developed and compared CDI with the main widely
used indices; however, CDI should also be compared with
other drought monitoring indices to establish its superior-
ity. One of the other limitations of this research is not con-
sidering hydrological variables (groundwater, surface runoff,
etc.) in the development of CDI. Due to the limited avail-
ability of consistent and high-resolution hydrological data
on a global scale, hydrological variables were not included
in this study. This may have contributed to certain dispari-
ties in detecting GDIS events. While regional high-resolution
modelled datasets (e.g. LISFLOOD in Europe) are avail-
able, the lack of globally consistent and validated hydro-
logical data remains a constraint. In future work, we will
aim to incorporate hydrological variables for computing CDI
weights to further improve drought detection and its link
to socio-economic events. Further, other alternative methods
such as entropy weighting, the analytic hierarchy process,
or machine learning-based feature importance (like random
forests) could be explored to compute weights in CDI, as they
may better capture indicator relevance by incorporating data
variability, expert knowledge, or nonlinear relationships with
observed impacts.

6 Conclusion

Droughts rank among the most dangerous natural dis-
asters, influencing a wide array of factors both directly
and indirectly, with significant impacts on various socio-
economic sectors. Despite numerous techniques and indices
for analysing the physical characteristics of droughts, the
methods for understanding their direct socio-economic im-
pacts remain underexplored, particularly at subnational lev-
els. Our study addressed this research gap by investigat-
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ing the direct propagation of agro-climatological droughts to
socio-economic impacts using the GDIS dataset, which pro-
vides socio-economic disaster information. Although several
indices exist for drought assessment, many rely on single in-
put parameters and fail to consider a comprehensive range
of contributing factors, limiting their effectiveness in repre-
senting the socio-economic impacts of droughts. To address
this limitation, we developed a new combined drought in-
dicator (CDI) that integrates two agricultural (soil moisture
and NDVI) and two meteorological (rainfall and tempera-
ture) variables to assess drought conditions. The compara-
tive analysis indicates that the proposed index performs con-
sistently well across different drought scenarios and offers a
more integrated representation of drought patterns, showing
a strong association with observed GDIS events and poten-
tial links to socio-economic impacts. The takeaway messages
from this study can be summarised as follows:

– Globally, the multiparameter approach of the CDI
proves to be a highly useful tool for assessing agro-
climatological droughts compared to commonly used
single-parameter-based traditional indicators such as
SPI, SSMI, NDVI, and STI.

– CDI-derived drought clusters show strong spatial
and temporal association with GDIS-reported drought
events, with approximately 95 % of GDIS events suc-
cessfully identified using the CDI. This suggests that
the index effectively captures drought conditions that
frequently align with documented socio-economic im-
pacts.

– The GDIS dataset provides direct socio-economic haz-
ard event information and can be a valuable validation
tool for drought indices.

– Regions characterised by the highest frequencies of
drought events, as identified by GDIS and multiple in-
dices, including CDI, are predominantly located in sub-
Saharan Africa, South Asia, South America, and Cen-
tral America, underscoring the heightened vulnerability
of these areas to drought occurrences.

This study underscores the applicability of CDI in analysing
droughts with enhanced precision compared to individual in-
dices, effectively capturing their socio-economic repercus-
sions. The direct usability of this technique worldwide could
advance drought monitoring systems and inform policy de-
velopment aimed at addressing both the socio-economic and
agro-climatological impacts of droughts.
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Appendix A: Consistency assessment workflow

Table A1. Stepwise procedure for assessing the consistency of gridded drought indices with GDIS drought events.

Step Description

1 For each GDIS event, extract the spatial polygon and event time
range (referring to EM-DAT for event details)

2 Extract monthly gridded index values (SPI, STI, SSMI, NDVI,
CDI) within a polygon

3 Compute the monthly spatial average of index values within a
polygon

4 Check if any month in the event has an average value below a
threshold

5 If yes, mark that index as consistent with the GDIS event

Appendix B: CDI input weights by PCA (April)

Figure B1. Example of pixel-based weights for the four input variables of CDI, i.e. rainfall (a), LST (b), soil moisture (c), and NDVI (d),
calculated using the PCA method for a sample month (April). The weights range from 0 to 1, with colours varying from dark red (lower
weights) to dark green (higher weights).
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Appendix C: PCA-derived monthly weight

Figure C1.
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Figure C1. Monthly spatial distribution of PCA-derived weights for rainfall (a); colour scales indicate the relative contribution of each
variable to CDI (brown= low weight, green=moderate weight, blue= high weight). Monthly spatial distribution of PCA-derived weights
for temperature (b); colour scales indicate the relative contribution of each variable to CDI (brown= low weight, green=moderate weight,
blue= high weight). Monthly spatial distribution of PCA-derived weights for NDVI (c); colour scales indicate the relative contribution
of each variable to CDI (brown= low weight, green=moderate weight, blue= high weight). Monthly spatial distribution of PCA-derived
weights for soil moisture (d); colour scales indicate the relative contribution of each variable to CDI (brown= low weight, green=moderate
weight, blue= high weight).
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Appendix D: Drought index comparison across regions

Figure D1. Performance of traditional drought indices in capturing GDIS events across global regions: comparative assessment of (a) NDVI,
(b) SPI, (c) SSMI, and (d) STI.
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Appendix E: Spatial detection of GDIS events by
drought indices

Figure E1. Spatial location-wise performance of CDI (a), SPI (b), NDVI (c), SSMI (d), and STI (e) in detecting GDIS events, where
consistent events detected by each index are shown in pink, while inconsistent GDIS events (not observed) are shown in dark brown. The
drought identification criteria were set to events during the actual drought period without considering short droughts (total GDIS events
count= 1641).

Appendix F: Performance of traditional drought indices
in detecting GDIS events using multiple criteria

Table F1. Performance of SPI in detecting GDIS events using multiple criteria.

SPI vs GDIS Event Drought Actual event period 1 month prior+AEP 2 months prior+AEP 3 months prior+AEP
total criteria (AEP)

−1 0 −1 0 −1 0 −1 0

Including short 2142 Observed 1740 2114 1886 2140 1898 2142 1973 2142
drought %

Not observed 402 28 256 2 206 0 160 0
%

No short drought 1641 Observed 1458 1641 1522 1641 1550 1641 1586 1641
(event ≥ 2 months) %

Not observed 183 0 119 0 91 0 82 0
%
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Table F2. Performance of SSMI in detecting GDIS events using multiple criteria.

SSMI vs GDIS Event Drought Actual event period 1 month prior+AEP 2 months prior+AEP 3 months prior+AEP
total criteria (AEP)

−1 0 −1 0 −1 0 −1 0

Including short 2142 Observed 1770 2106 1912 2130 1936 2140 1988 2142
drought %

Not observed 372 36 230 12 206 2 154 0
%

No short drought 1641 Observed 1376 1632 1572 1640 1580 1641 1610 1641
(event ≥ 2 months) %

Not observed 265 9 69 1 61 0 31 0
%

Table F3. Performance of NDVI in detecting GDIS events using multiple criteria.

NDVI vs GDIS Event Drought Actual event period 1 month prior+AEP 2 months prior+AEP 3 months prior+AEP
total criteria (AEP)

−1 0 −1 0 −1 0 −1 0

Including short 2142 Observed 1867 2104 1983 2116 2028 2125 2003 2142
drought %

Not observed 205 38 159 26 114 17 100 0
%

No short drought 1641 Observed 1541 1622 1561 1626 1574 1627 1576 1641
(event ≥ 2 months) %

Not observed 100 19 80 15 67 14 52 0
%

Table F4. Performance of STI in detecting GDIS events using multiple criteria.

STI vs GDIS Event Drought Actual event period 1 month prior+AEP 2 months prior+AEP 3 months prior+AEP
total criteria (AEP)

−1 0 −1 0 −1 0 −1 0

Including short 2142 Observed 1680 2114 1740 2136 1820 2138 1810 2140
drought %

Not observed 462 28 292 6 272 4 131 2
%

No short drought 1641 Observed 1439 1619 1479 1628 1510 1654 1556 1603
(event ≥ 2 months) %

Not observed 202 22 162 13 131 7 85 0
%
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Appendix G: Recall comparison of drought indices

Figure G1. Comparative performance recall of five drought indices (CDI, NDVI, SSMI, SPI, and STI) across different time windows and
event durations.
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Appendix H: Drought indices accuracy by land cover
type

Figure H1. Land-cover-wise accuracy of drought indices (CDI, SPI, SSMI, NDVI, STI) in detecting GDIS events across five major land
cover classes (forest, shrubland and savanna, agriculture and cropland, settlement, and barren) based on MODIS land cover data. The bar
heights represent the percentage of GDIS events accurately captured, while values inside the bars indicate the absolute number of consistent
detections. The total number of GDIS events considered per land cover class is as follows: forest – 118, shrubland and savanna – 1410,
agriculture and cropland – 562, settlement – 12, and barren – 17.
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Hayes, M., Poděbradská, M., Shield, C., Smith, K., and Svo-
boda, M.: Linking drought impacts to drought severity at
the state level, B. Am. Meteorol. Soc., 101, E1312–E1321,
https://doi.org/10.1175/BAMS-D-19-0067.1, 2020.

Pak-Uthai, S. and Faysse, N.: The risk of second-best adaptive mea-
sures: Farmers facing drought in Thailand, Int. J. Disast. Risk
Re., 28, 711–719, https://doi.org/10.1016/J.IJDRR.2018.01.032,
2018.

Panwar, V. and Sen, S.: Disaster Damage Records of EM-DAT and
DesInventar: A Systematic Comparison, Econ. Disaster Clim.
Chang., 4, 295–317, https://doi.org/10.1007/s41885-019-00052-
0, 2020.

Peel, M. C., Finlayson, B. L., and McMahon, T. A.: Updated world
map of the Köppen-Geiger climate classification, Hydrol. Earth
Syst. Sci., 11, 1633–1644, https://doi.org/10.5194/hess-11-1633-
2007, 2007.

R., L., B. S., M., B. S., S., Bhanage, V., Rathod, A., Tiwari, A., Beig,
G., and Singh, S.: Propagation of cloud base to higher levels
during Covid-19-Lockdown, Sci. Total Environ., 759, 144299,
https://doi.org/10.1016/j.scitotenv.2020.144299, 2021.

Reyniers, N., Osborn, T. J., Addor, N., and Darch, G.: Projected
changes in droughts and extreme droughts in Great Britain
strongly influenced by the choice of drought index, Hydrol. Earth
Syst. Sci., 27, 1151–1171, https://doi.org/10.5194/hess-27-1151-
2023, 2023.

Rosvold, E. and H. Buhaug.: GDIS, a global dataset
of geocoded disaster locations, Sci. Data, 8, 61,
https://doi.org/10.1038/S41597-021-00846-6, 2021.

Sánchez, N., González-Zamora, Á., Martínez-Fernández, J., Piles,
M., and Pablos, M.: Integrated remote sensing approach to
global agricultural drought monitoring, Agr. Forest Meteorol.,
259, 141–153, https://doi.org/10.1016/j.agrformet.2018.04.022,
2018.

Sandeep, P., Obi Reddy, G. P., Jegankumar, R., and Arun Kumar,
K. C.: Monitoring of agricultural drought in semi-arid ecosys-
tem of Peninsular India through indices derived from time-
series CHIRPS and MODIS datasets, Ecol. Indic., 121, 107033,
https://doi.org/10.1016/j.ecolind.2020.107033, 2021.

Saaty, T. L.: Principles of the Analytic Hierarchy Process, edited
by: Mumpower, J. L., Renn, O., Phillips, L. D., Uppuluri, V.
R. R., Expert Judgment and Expert Systems, NATO ASI Series,

Springer, Berlin, Heidelberg, 35, https://doi.org/10.1007/978-3-
642-86679-1_3, 1987.

Sathianarayanan, M., Hsu, P. H., and Chang, C. C.: Extract-
ing disaster location identification from social media images
using deep learning, Int. J. Disast. Risk Re., 104, 104352,
https://doi.org/10.1016/J.IJDRR.2024.104352, 2024.

Sawada, Y.: Quantifying drought propagation from soil mois-
ture to vegetation dynamics using a newly developed eco-
hydrological land reanalysis, Remote Sens (Basel), 10, 1197,
https://doi.org/10.3390/rs10081197, 2018.

Sehgal, V., Sridhar, V., and Tyagi, A.: Stratified drought anal-
ysis using a stochastic ensemble of simulated and in-situ
soil moisture observations, J. Hydrol. (Amst), 545, 226–250,
https://doi.org/10.1016/j.jhydrol.2016.12.033, 2017.

Sepulcre-Canto, G., Horion, S., Singleton, A., Carrao, H., and Vogt,
J.: Development of a Combined Drought Indicator to detect agri-
cultural drought in Europe, Nat. Hazards Earth Syst. Sci., 12,
3519–3531, https://doi.org/10.5194/nhess-12-3519-2012, 2012.

Shah, D. and Mishra, V.: Integrated Drought Index
(IDI) for Drought Monitoring and Assessment in
India, Water Resour. Res., 56, e2019WR026284,
https://doi.org/10.1029/2019WR026284, 2020.

Svoboda, M., Lecomte, D., Hayes, M., Heim, R., Gleason, K.,
Angel, J., Rippey, B., Tinker, R., Palecki, M., Stooksbury, D.,
Miskus, D., and Stephens, S.: The Drought Monitor, B. Am. Me-
teorol. Soc., 83, 1181–1190, 2002.

Svoboda, M., Hayes, M., and Wood, D.: Standardized Precip-
itation Index: User Guide, WMO-No. 1090, World Meteo-
rological Organization, Geneva, Switzerland, 24 pp., ISBN
978-92-63-11091-6, https://library.wmo.int/records/item/
39629-standardized-precipitation-index-user-guide, 2012.

Tang, X., Feng, Y., Gao, C., Lei, Z., Chen, S., Wang, R.,
Jin, Y., and Tong, X.: Entropy-weight-based spatiotemporal
drought assessment using MODIS products and Sentinel-1A
images in Urumqi, China, Natural Hazards 119, 387–408,
https://doi.org/10.1007/s11069-023-06131-6, 2023.

Tanoue, M., Hirabayashi, Y., and Ikeuchi, H.: Global-scale river
flood vulnerability in the last 50 years, Sci. Rep., 6, 36021,
https://doi.org/10.1038/srep36021, 2016.

Tao, L., Ryu, D., Western, A., and Boyd, D.: A new drought in-
dex for soil moisture monitoring based on MPDI-NDVI trape-
zoid space using modis data, Remote Sens. (Basel), 13, 122,
https://doi.org/10.3390/rs13010122, 2021.

Thomas, T., Jaiswal, R. K., Galkate, R., Nayak, P. C., and
Ghosh, N. C.: Drought indicators-based integrated assess-
ment of drought vulnerability: a case study of Bundelk-
hand droughts in central India, Nat. Hazards, 81, 1627–1652,
https://doi.org/10.1007/s11069-016-2149-8, 2016.

Tosunoglu, F. and Can, I.: Application of copulas for regional bi-
variate frequency analysis of meteorological droughts in Turkey,
Nat. Hazards, 82, 1457–1477, https://doi.org/10.1007/s11069-
016-2253-9, 2016.

Tschumi, E. and Zscheischler, J.: Countrywide climate features
during recorded climate-related disasters, Climatic change, 158,
593–609, 2020.

Udmale, P., Ichikawa, Y., S. Kiem, A., and N. Panda, S.: Drought
Impacts and Adaptation Strategies for Agriculture and Rural
Livelihood in the Maharashtra State of India, Open Agric. J., 8,
41–47, https://doi.org/10.2174/1874331501408010041, 2014.

https://doi.org/10.5194/hess-29-4341-2025 Hydrol. Earth Syst. Sci., 29, 4341–4370, 2025

https://doi.org/10.1016/j.jhydrol.2019.124228
https://doi.org/10.1029/2022EF002660
https://doi.org/10.24381/cds.68d2bb30
https://doi.org/10.1080/01431161.2017.1407047
https://doi.org/10.1175/BAMS-D-19-0067.1
https://doi.org/10.1016/J.IJDRR.2018.01.032
https://doi.org/10.1007/s41885-019-00052-0
https://doi.org/10.1007/s41885-019-00052-0
https://doi.org/10.5194/hess-11-1633-2007
https://doi.org/10.5194/hess-11-1633-2007
https://doi.org/10.1016/j.scitotenv.2020.144299
https://doi.org/10.5194/hess-27-1151-2023
https://doi.org/10.5194/hess-27-1151-2023
https://doi.org/10.1038/S41597-021-00846-6
https://doi.org/10.1016/j.agrformet.2018.04.022
https://doi.org/10.1016/j.ecolind.2020.107033
https://doi.org/10.1007/978-3-642-86679-1_3
https://doi.org/10.1007/978-3-642-86679-1_3
https://doi.org/10.1016/J.IJDRR.2024.104352
https://doi.org/10.3390/rs10081197
https://doi.org/10.1016/j.jhydrol.2016.12.033
https://doi.org/10.5194/nhess-12-3519-2012
https://doi.org/10.1029/2019WR026284
https://library.wmo.int/records/item/39629-standardized-precipitation-index-user-guide
https://library.wmo.int/records/item/39629-standardized-precipitation-index-user-guide
https://doi.org/10.1007/s11069-023-06131-6
https://doi.org/10.1038/srep36021
https://doi.org/10.3390/rs13010122
https://doi.org/10.1007/s11069-016-2149-8
https://doi.org/10.1007/s11069-016-2253-9
https://doi.org/10.1007/s11069-016-2253-9
https://doi.org/10.2174/1874331501408010041


4370 S. Kulkarni et al.: Assessing combined versus single drought indicators

Vicente-Serrano, S. M., Beguería, S., and López-Moreno, J. I.: A
multiscalar drought index sensitive to global warming: The stan-
dardized precipitation evapotranspiration index, J. Climate, 23,
1696–1718, https://doi.org/10.1175/2009JCLI2909.1, 2010.

Vicente-Serrano, S. M., Peña-Angulo, D., Beguería, S.,
Domínguez-Castro, F., Tomás-Burguera, M., Noguera, I.,
Gimeno-Sotelo, L., and El Kenawy, A.: Global drought trends
and future projections, Philos. T. R. Soc. A, 380, 20210285,
https://doi.org/10.1098/rsta.2021.0285, 2022.

Wang, H., Liu, H., and Wang, D.: Agricultural Insurance,
Climate Change, and Food Security: Evidence from Chi-
nese Farmers, Sustainability (Switzerland), 14, 9493,
https://doi.org/10.3390/su14159493, 2022.

Wang, T. and Sun, F.: Integrated drought vulnerability
and risk assessment for future scenarios: An indica-
tor based analysis, Sci. Total Environ., 900, 165591,
https://doi.org/10.1016/j.scitotenv.2023.165591, 2023.

World Meteorological Organization: Standardized Pre-
cipitation Index User Guide, edited by: Svoboda,
M., Hayes, M., and Wood, D., WMO-No. 1090, 24,
https://library.wmo.int/viewer/39629/?offset=1&utm_source=
chatgpt.com#page=1&viewer=picture&o=bookmarks&n=0&q=
2012.

Zhang, Q., Li, J., Singh, V. P., and Bai, Y.: SPI-based evaluation of
drought events in Xinjiang, China, Nat. Hazards, 64, 481–492,
https://doi.org/10.1007/s11069-012-0251-0, 2012.

Hydrol. Earth Syst. Sci., 29, 4341–4370, 2025 https://doi.org/10.5194/hess-29-4341-2025

https://doi.org/10.1175/2009JCLI2909.1
https://doi.org/10.1098/rsta.2021.0285
https://doi.org/10.3390/su14159493
https://doi.org/10.1016/j.scitotenv.2023.165591
https://library.wmo.int/viewer/39629/?offset=1&utm_source=chatgpt.com#page=1&viewer=picture&o=bookmarks&n=0&q=
https://library.wmo.int/viewer/39629/?offset=1&utm_source=chatgpt.com#page=1&viewer=picture&o=bookmarks&n=0&q=
https://doi.org/10.1007/s11069-012-0251-0

	Abstract
	Introduction
	Data
	Rainfall
	Temperature
	Soil moisture
	NDVI
	GDIS/EM-DAT

	Method
	Conventional single-variable-based drought indices
	Combined drought indicator
	Evaluation of the drought indices by GDIS

	Results
	Global drought frequency analysis by GDIS events
	Performance of CDI in detecting GDIS events
	Comparative assessment of CDI and individual parameter-based traditional indices

	Discussion
	Conclusion
	Appendix A: Consistency assessment workflow
	Appendix B: CDI input weights by PCA (April)
	Appendix C: PCA-derived monthly weight
	Appendix D: Drought index comparison across regions
	Appendix E: Spatial detection of GDIS events by drought indices
	Appendix F: Performance of traditional drought indices in detecting GDIS events using multiple criteria
	Appendix G: Recall comparison of drought indices
	Appendix H: Drought indices accuracy by land cover type
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Special issue statement
	Acknowledgements
	Financial support
	Review statement
	References

