Articles | Volume 29, issue 17
https://doi.org/10.5194/hess-29-4307-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-4307-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Where can rewetting of forested peatland reduce extreme flows? Model experiment on the hydrology of Sweden
Maria Elenius
Hydrological Research Unit, SMHI, Norrköping, 601 76, Sweden
present address: FOI, Linköping, 583 30, Sweden
Charlotta Pers
Hydrological Research Unit, SMHI, Norrköping, 601 76, Sweden
Sara Schützer
Hydrological Research Unit, SMHI, Norrköping, 601 76, Sweden
Göran Lindström
Hydrological Research Unit, SMHI, Norrköping, 601 76, Sweden
Hydrological Research Unit, SMHI, Norrköping, 601 76, Sweden
Related authors
No articles found.
Léonard Santos, Vazken Andréassian, Torben O. Sonnenborg, Göran Lindström, Alban de Lavenne, Charles Perrin, Lila Collet, and Guillaume Thirel
Hydrol. Earth Syst. Sci., 29, 683–700, https://doi.org/10.5194/hess-29-683-2025, https://doi.org/10.5194/hess-29-683-2025, 2025
Short summary
Short summary
This work investigates how hydrological models are transferred to a period in which climate conditions are different to the ones of the period in which they were set up. The robustness assessment test built to detect dependencies between model error and climatic drivers was applied to three hydrological models in 352 catchments in Denmark, France and Sweden. Potential issues are seen in a significant number of catchments for the models, even though the catchments differ for each model.
Alban de Lavenne, Vazken Andréassian, Louise Crochemore, Göran Lindström, and Berit Arheimer
Hydrol. Earth Syst. Sci., 26, 2715–2732, https://doi.org/10.5194/hess-26-2715-2022, https://doi.org/10.5194/hess-26-2715-2022, 2022
Short summary
Short summary
A watershed remembers the past to some extent, and this memory influences its behavior. This memory is defined by the ability to store past rainfall for several years. By releasing this water into the river or the atmosphere, it tends to forget. We describe how this memory fades over time in France and Sweden. A few watersheds show a multi-year memory. It increases with the influence of groundwater or dry conditions. After 3 or 4 years, they behave independently of the past.
H. E. Markus Meier, Madline Kniebusch, Christian Dieterich, Matthias Gröger, Eduardo Zorita, Ragnar Elmgren, Kai Myrberg, Markus P. Ahola, Alena Bartosova, Erik Bonsdorff, Florian Börgel, Rene Capell, Ida Carlén, Thomas Carlund, Jacob Carstensen, Ole B. Christensen, Volker Dierschke, Claudia Frauen, Morten Frederiksen, Elie Gaget, Anders Galatius, Jari J. Haapala, Antti Halkka, Gustaf Hugelius, Birgit Hünicke, Jaak Jaagus, Mart Jüssi, Jukka Käyhkö, Nina Kirchner, Erik Kjellström, Karol Kulinski, Andreas Lehmann, Göran Lindström, Wilhelm May, Paul A. Miller, Volker Mohrholz, Bärbel Müller-Karulis, Diego Pavón-Jordán, Markus Quante, Marcus Reckermann, Anna Rutgersson, Oleg P. Savchuk, Martin Stendel, Laura Tuomi, Markku Viitasalo, Ralf Weisse, and Wenyan Zhang
Earth Syst. Dynam., 13, 457–593, https://doi.org/10.5194/esd-13-457-2022, https://doi.org/10.5194/esd-13-457-2022, 2022
Short summary
Short summary
Based on the Baltic Earth Assessment Reports of this thematic issue in Earth System Dynamics and recent peer-reviewed literature, current knowledge about the effects of global warming on past and future changes in the climate of the Baltic Sea region is summarised and assessed. The study is an update of the Second Assessment of Climate Change (BACC II) published in 2015 and focuses on the atmosphere, land, cryosphere, ocean, sediments, and the terrestrial and marine biosphere.
Saúl Arciniega-Esparza, Christian Birkel, Andrés Chavarría-Palma, Berit Arheimer, and José Agustín Breña-Naranjo
Hydrol. Earth Syst. Sci., 26, 975–999, https://doi.org/10.5194/hess-26-975-2022, https://doi.org/10.5194/hess-26-975-2022, 2022
Short summary
Short summary
In the humid tropics, a notoriously data-scarce region, we need to find alternatives in order to reasonably apply hydrological models. Here, we tested remotely sensed rainfall data in order to drive a model for Costa Rica, and we evaluated the simulations against evapotranspiration satellite products. We found that our model was able to reasonably simulate the water balance and streamflow dynamics of over 600 catchments where the satellite data helped to reduce the model uncertainties.
Cited articles
Acreman, M. C. and Holden, J.: How wetlands affect floods, Wetlands, 33, 773–786, https://doi.org/10.1007/s13157-013-0473-2, 2013.
Åhlén, I., Thorslund, J., Hambäck, P., Destouni, G., and Jarsjö, J.: Wetland position in the landscape: Impact on water storage and flood buffering, Ecohydrology, 15, e2458, https://doi.org/10.1002/eco.2458, 2022.
Arheimer, B. and Lindström, G.: Implementing the EU water framework directive in Sweden, Runoff Predictions in Ungauged Basins–Synthesis across processes, places and scales, edited by: Blöschl, G., Sivapalan, M., Wagener, T., Viglione, A., and Savenije, H., Cambridge University Press, Cambridge, UK, 465, 353–359, https://doi.org/10.1017/CBO9781139235761.014, 2013.
Arheimer, B. and Pers, B. C.: Lessons learned? Effects of nutrient reductions from constructing wetlands in 1996–2006 across Sweden, Ecol. Eng., 103, 404–414, https://doi.org/10.1016/j.ecoleng.2016.01.088, 2017.
Ballard, C. E., McIntyre, N., and Wheater, H. S.: Effects of peatland drainage management on peak flows, Hydrol. Earth Syst. Sci., 16, 2299–2310, https://doi.org/10.5194/hess-16-2299-2012, 2012.
Bring, A., Thorslund, J., Rosén, L., Tonderski, K., Åberg, C., Envall, I., and Laudon, H.: Effects on groundwater storage of restoring, constructing or draining wetlands in temperate and boreal climates: a systematic review, Environ. Evid., 11, 38, https://doi.org/10.1186/s13750-022-00289-5, 2022.
Daniels, J. and Thunholm, B.: Rikstäckande jorddjupsmodell (National soil depth model), SGU, Rapp. 2014:14, https://resource.sgu.se/dokument/publikation/sgurapport/sgurapport201414rapport/s1414-rapport.pdf (last access: 22 August 2025), 2014.
Davidson, N. C.: How much wetland has the world lost? Long-term and recent trends in global wetland area, Mar. Freshwater Res., 65, 934–941, https://doi.org/10.1071/MF14173, 2014.
Drott, A. and Eriksson, H.: Klimatpåverkan från dikad torvtäckt skogsmark – effekter av dikesunderhåll och återvätning (Kunskapssammanställning och analys) [Climate impacts from drained peat-covered forest – effects from ditch maintenance and rewetting], Skogsstyrelsen, Rapp. 2021/7, https://www.skogsstyrelsen.se/globalassets/om-oss/rapporter/rapporter-20222021202020192018/rapport-2021-7-klimatpaverkan-fran-dikad-torvtackt-skogsmark–effekter-av-dikesunderhall-och-atervatning.pdf (last access: 22 August 2025), 2021.
Edokpa, D., Milledge, D., Allott, T., Holden, J., Shuttleworth, E., Kay, M., Johnston, A., Millin-Chalabi, G., Scott-Campbell, M., and Chandler, D.: Rainfall intensity and catchment size control storm runoff in a gullied blanket peatland, J. Hydrol., 609, 127688, https://doi.org/10.1016/j.jhydrol.2022.127688, 2022.
Elenius, M., Pers, C., Schützer, S., and Arheimer, B.: research data for the article Elenius et al, 'Where can rewetting of forested peatland reduce extreme flows?', Zenodo [data set], https://doi.org/10.5281/zenodo.13472209, 2024.
Erlandsson, M., Laudon, H., and Fölster, J.: Spatiotemporal patterns of drivers of episodic acidification in Swedish streams and their relationships to hydrometeorological factors, Sci. Total Environ., 408, 4633–4643, https://doi.org/10.1016/j.scitotenv.2010.06.010, 2010.
Holden, J.: Peatland hydrology and carbon release: why small-scale process matters, Philos. T. R. Soc., 363, 2891–2913, https://doi.org/10.1098/rsta.2005.1671, 2005.
Holden, J., Wallage, Z., Lane, S., and McDonald, A.: Water table dynamics in undisturbed, drained and restored blanket peat, J. Hydrol., 402, 103–114, https://doi.org/10.1016/j.jhydrol.2011.03.010, 2011.
Holmen, H.: Forest ecological studies on drained peat land in the province of Uppland, Sweden, parts I–III, Skogshögskolan, https://pub.epsilon.slu.se/12768/1/SFS016.pdf (last access: 22 August 2025), 1964.
IPCC: Sections, in: Climate Change 2023: Synthesis Report, Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Core Writing Team, Lee, H., and Romero, J., IPCC, Geneva, Switzerland, 35–115, https://doi.org/10.59327/IPCC/AR6-9789291691647, 2023.
Johansson, B.: Modelling the effects of wetland drainage on high flows, SMHI, RH8, ISSN 0283-1104, https://urn.kb.se/resolve?urn=urn:nbn:se:smhi:diva-2676 (last access: 22 August 2025), 1993.
Karimi, S., Leach, J., Karlsen, R. H., Seibert, J., Bishop, K., and Laudon, H.: Local-and network-scale influence of peatlands on boreal catchment response to rainfall events, Hydrol. Process., 37, e14998, https://doi.org/10.1002/hyp.14998, 2023.
Karimi, S., Hasselquist, E. M., Salimi, S., Järveoja, J., and Laudon, H.: Rewetting impact on the hydrological function of a drained peatland in the boreal landscape, J. Hydrol., 641, 131729, https://doi.org/10.1016/j.jhydrol.2024.131729, 2024.
Lehmann, J., Coumou, D., and Frieler, K.: Increased record-breaking precipitation events under global warming, Climatic Change, 132, 501–515, https://doi.org/10.1007/s10584-015-1434-y, 2015.
Lidberg, W., Paul, S. S., Westphal, F., Richter, K. F., Lavesson, N., Melniks, R., Ivanovs, J., Ciesielski, M., Leinonen, A., and Ågren, A. M.: Mapping drainage ditches in forested landscapes using deep learning and aerial laser scanning, J. Irrig. Drain. Eng., 149, 04022051, https://doi.org/10.1061/JIDEDH.IRENG-9796, 2023.
Lindström, G.: Lake water levels for calibration of the S-HYPE model, Hydrol. Res. 47, 672–682, https://doi.org/10.2166/nh.2016.019, 2016.
Lindström, G.: Hydrologiska aspekter på åtgärder mot vattenbrist och torka inom avrinningsområden [Hydrological aspects on measures against water scarcity and drought in catchments], SMHI, https://urn.kb.se/resolve?urn=urn:nbn:se:smhi:diva-5486 (last access: 22 August 2025), 2019.
Lindström, G., Pers, C., Rosberg, J., Strömqvist, J., and Arheimer, B.: Development and testing of the HYPE (Hydrological Predictions for the Environment) water quality model for different spatial scales, Hydrol. Res., 41, 295–319, https://doi.org/10.2166/nh.2010.007, 2010.
Menberu, M. W., Haghighi, A. T., Ronkanen, A., Marttila, H., and Kløve, B.: Effects of drainage and subsequent restoration on peatland hydrological processes at catchment scale, Water Resour. Res., 54, 4479–4497, https://doi.org/10.1029/2017WR022362, 2018.
Messager, M. L., Lehner, B., Grill, G., Nedeva, I., and Schmitt, O.: Estimating the volume and age of water stored in global lakes using a geo-statistical approach, Nat. Commun., 7, 13603, https://doi.org/10.1038/ncomms13603, 2016.
Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models part I – a discussion of principles, J. Hydrol., 10, 282–290, https://doi.org/10.1016/0022-1694(70)90255-6, 1970.
Olsson, J., Amaguchi, H., Alsterhag, E., Dåverhög, M., Adrian, P.-E., and Kawamura, A.: Adaptation to climate change impacts on urban storm water: A case study in Arvika, Sweden, Climatic Change, 116, 231–247, https://doi.org/10.1007/s10584-012-0480-y, 2013.
Piirainen, S., Finér, L., Andersson, E., Armolaitis, K., Belova, O., Čiuldienė, D., Futter, M., Gil, W., Glazko, Z., Hiltunen, T., Högbom, L., Janek, M., Joensuu, S., Jägrud, L., Libiete, Z. ,Lode, E., Löfgren, S., Pierzgalski, E., Sikström, U., Zarins, J., and Thorell, D.: Forest drainage and water protection in the Baltic Sea Region countries – current knowledge, methods and areas for development, WAMBAF project report, https://www.skogsstyrelsen.se/globalassets/projektwebbplatser/wambaf/drainage/reviews/forest-drainage_short_document_imposed_21032017.pdf (last access: 22 August 2025), 2017.
Schützer, S., Elenius, M., Isberg, K., and Temnerud, J.: Nedströmseffekter från återvätning av dikad skog på torv [Downstream effects from rewetting of ditched forest on peat], SMHI, https://urn.kb.se/resolve?urn=urn:nbn:se:smhi:diva-6417 (last access: 22 August 2025), 2023.
SLU: Rewetting of drained forest wetlands: strategies for implementation and adaptation to future climate, https://www.slu.se/en/research/research-catalogue/projekt/aa/Rewetting-of-drained-forest-wetlands/ (last access: 22 August 2025), (updated June 2025) 2025.
SMHI: HYPE version 5.19.0, Sourceforge [code], https://sourceforge.net/projects/hype/files/release_hype_5_19_0/, (last access: 21 August 2025), 2022.
SMHI: HYPE version 5.19.3, Sourceforge [code], https://sourceforge.net/projects/hype/files/release_hype_5_19_3/, (last access: 21 August 2025), 2023.
SMHI: Vattenweb Arkiv, Version ID V-2024-05-21, SMHI [data set], https://vattenwebb.smhi.se/archive/V-2024-05-21/, (last access: 21 August 2025), 2024.
Sörensen, J. and Mobini, S.: Pluvial, urban flood mechanisms and characteristics–assessment based on insurance claims, J. Hydrol., 555, 51–67, https://doi.org/10.1016/j.jhydrol.2017.09.039, 2017.
Stensen, K., Matti, B., Rasmusson, K., and Hjerdt, N.: Modellstudie för att undersöka åtgärder som påverkar lågflöden:–Delrapport 2 i regeringsuppdrag om åtgärder för att motverkavattenbrist i ytvattentäkter [Model study to investigate measures that affect low flows: Partial report 2 in government assignment on measures to counteract water shortage in surface water sources], SMHI, https://urn.kb.se/resolve?urn=urn:nbn:se:smhi:diva-5435 (last access: 22 August 2025), 2019.
Strömqvist, J., Arheimer, B., Dahné, J., Donnelly, C., and Lindström, G.: Water and nutrient predictions in ungauged basins: set-up and evaluation of a model at the national scale, Hydrolog. Sci. J., 57, 229–247, https://doi.org/10.1080/02626667.2011.637497, 2012.
Strömqvist, J., Elenius, M., Lindström, G., Pers, C., and Temnerud, J.: Beräkning av näringsämnestillförsel till ytvatten och retention i sjöar och vattendrag för PLC8-rapportering [Calculated nutrient transport to surface waters and retention in lakes and rivers for PLC8-reporting], SMHI, SMED Rapp. 24, https://www.smed.se/vatten/5472 (last access: 22 August 2025), 2022.
Swedish Agency for Marine and Water Management: Havs- och vattenmyndighetens föreskrifter om klassificering och miljökvalitetsnormer avseende ytvatten [Swedish Agency for Marine and Water Management regulations on classification and environmental quality norms for surface waters], HVMFS 2019:25, https://www.havochvatten.se/vagledning-foreskrifter-och-lagar/foreskrifter/register-vattenforvaltning/klassificering-och-miljokvalitetsnormer-avseende-ytvatten-hvmfs-201925.html (last access: 22 August 2025), 2019.
Swedish Environmental Protection Agency: Nationella marktäckedata 2018 basskikt [National landuse data 2018 base layer], SNV [data set], https://geodata.naturvardsverket.se/nedladdning/marktacke/NMD2018/ (last access: 22 August 2025), 2023.
Swedish Geological Survey: Produkt: Jordarter 1:25 000–1:100 000 [Product: Soil data 1:25 000–1:100 000], SGU [data set], https://resource.sgu.se/dokument/produkter/jordarter-25-100000-beskrivning.pdf (last access: 22 August 2025), 2024.
Vogel, M. M., Zscheischler, J., Wartenburger, R., Dee, D., and Seneviratne, S. I.: Concurrent 2018 hot extremes across Northern Hemisphere due to human-induced climate change, Earths Future, 7, 692–703, https://doi.org/10.1029/2019EF001189, 2019.
Westra, S., Alexander, L. V., and Zwiers, F. W.: Global increasing trends in annual maximum daily precipitation, J. Climate, 26, 3904–3918, https://doi.org/10.1175/JCLI-D-12-00502.1, 2013.
Wilson, L., Wilson, J., Holden, J., Johnstone, I., Armstrong, A., and Morris, M.: Recovery of water tables in Welsh blanket bog after drain blocking: discharge rates, time scales and the influence of local conditions, J. Hydrol., 391, 377–386, https://doi.org/10.1016/j.jhydrol.2010.07.042, 2010.
Wu, J. and Malmström, M. E.: Nutrient loadings from urban catchments under climate change scenarios: Case studies in Stockholm, Sweden, Sci. Total Environ., 518, 393–406, https://doi.org/10.1016/j.scitotenv.2015.02.041, 2015.
Short summary
Simulations of peatland rewetting in Sweden under various conditions of climate, local hydrology, and rewetting practices showed insubstantial changes in landscape flow extremes due to mixing with runoff from various landcovers. The impacts on local hydrological extremes are governed by groundwater levels prior to rewetting and reduced tree cover; hence wetland allocation and management practices are crucial if the purpose is to reduce flow extremes in peatland streams.
Simulations of peatland rewetting in Sweden under various conditions of climate, local...