Articles | Volume 29, issue 17
https://doi.org/10.5194/hess-29-4179-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-4179-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Constraining topsoil pesticide degradation in a conceptual distributed catchment model with compound-specific isotope analysis (CSIA)
Sylvain Payraudeau
CORRESPONDING AUTHOR
Institut Terre et Environnement de Strasbourg, Université de Strasbourg, CNRS/ENGEES, ITES UMR 7063, Strasbourg 67084, France
Pablo Alvarez-Zaldivar
Institut Terre et Environnement de Strasbourg, Université de Strasbourg, CNRS/ENGEES, ITES UMR 7063, Strasbourg 67084, France
Paul van Dijk
Chambre Régionale d'Agriculture Grand Est, Espace Européen de l'Entreprise, 2 rue de Rome CS 30022, Schiltigheim 67013, France
Gwenaël Imfeld
Institut Terre et Environnement de Strasbourg, Université de Strasbourg, CNRS/ENGEES, ITES UMR 7063, Strasbourg 67084, France
Related authors
Boris Droz, Guillaume Drouin, Jenna Lohmann, Benoît Guyot, Gwenaël Imfeld, and Sylvain Payraudeau
EGUsphere, https://doi.org/10.5194/egusphere-2025-2309, https://doi.org/10.5194/egusphere-2025-2309, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
How to evaluate pesticide persistence and degradation across an agricultural catchment to improve strategies for preserving aquatic ecosystems? By using a tracing method based on stable isotope signatures of pesticides at the catchment scale, degradation of the herbicide S-metolachlor could be distinguished from other dissipation processes. A limited number of isotopic measurements can provide critical insights for designing efficient strategies to protect aquatic ecosystems.
Boris Droz, Guillaume Drouin, Jenna Lohmann, Benoît Guyot, Gwenaël Imfeld, and Sylvain Payraudeau
EGUsphere, https://doi.org/10.5194/egusphere-2025-2309, https://doi.org/10.5194/egusphere-2025-2309, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
How to evaluate pesticide persistence and degradation across an agricultural catchment to improve strategies for preserving aquatic ecosystems? By using a tracing method based on stable isotope signatures of pesticides at the catchment scale, degradation of the herbicide S-metolachlor could be distinguished from other dissipation processes. A limited number of isotopic measurements can provide critical insights for designing efficient strategies to protect aquatic ecosystems.
Cited articles
Ahuja, L. and Lehman, O.: The extent and nature of rainfall-soil interaction in the release of soluble chemicals to runoff, J. Environ. Qual., 12, 34–40, https://doi.org/10.2134/jeq1983.00472425001200010005x, 1983.
Alvarez-Zaldivar, P., Centler, F., Maier, U., Thullner, M., and Imfeld, G.: Biogeochemical modelling of in situ biodegradation and stable isotope fractionation of intermediate chloroethenes in a horizontal subsurface flow wetland, Ecol. Eng., 90, 170–179, https://doi.org/10.1016/j.ecoleng.2016.01.037, 2016.
Alvarez-Zaldivar, P., Payraudeau, S., Meite, F., Masbou, J., and Imfeld, G.: Pesticide degradation and export losses at the catchment scale: Insights from compound-specific isotope analysis (CSIA), Water Res., 139, 198–207, https://doi.org/10.1016/j.watres.2018.03.061, 2018.
Ammann, L., Doppler, T., Stamm, C., Reichert, P., and Fenicia, F.: Characterizing fast herbicide transport in a small agricultural catchment with conceptual models, J. Hydrol., 586, 124812, https://doi.org/10.1016/j.jhydrol.2020.124812, 2020.
Antelmi, M., Mazzon, P., Hohener, P., Marchesi, M., and Alberti, L.: Evaluation of MNA in A Chlorinated Solvents-Contaminated Aquifer Using Reactive Transport Modeling Coupled with Isotopic Fractionation Analysis, Water-Sui., 13, 2945, https://doi.org/10.3390/w13212945, 2021.
Arias-Estevez, M., Lopez-Periago, E., Martinez-Carballo, E., Simal-Gandara, J., Mejuto, J., and Garcia-Rio, L.: The mobility and degradation of pesticides in soils and the pollution of groundwater resources, Agr. Ecosyst. Environ., 123, 247–260, https://doi.org/10.1016/j.agee.2007.07.011, 2008.
Baartman, J., Jetten, V., Ritsema, C., and de Vente, J.: Exploring effects of rainfall intensity and duration on soil erosion at the catchment scale using openLISEM: Prado catchment, SE Spain, Hydrol. Process., 26, 1034–1049, https://doi.org/10.1002/hyp.8196, 2012.
Barrios, R., Akbariyeh, S., Liu, C., Gani, K., Kovalchuk, M., Li, X., Li, Y., Snow, D., Tang, Z., Gates, J., and Bartelt-Hunt, S.: Climate change impacts the subsurface transport of atrazine and estrone originating from agricultural production activities, Environ. Pollut., 265, 115024, https://doi.org/10.1016/j.envpol.2020.115024, 2020.
Beven, K. and Binley, A.: The future of distributed models – model calibration and uncertainty prediction, Hydrol. Process., 6, 279–298, https://doi.org/10.1002/hyp.3360060305, 1992.
Beven, K., Smith, P., and Freer, J.: Comment on “Hydrological forecasting uncertainty assessment: incoherence of the GLUE methodology” by Pietro Mantovan and Ezio Todini, J. Hydrol., 338, 315–318, https://doi.org/10.1016/j.jhydrol.2007.02.023, 2007.
Blázquez-Pallí, N., Shouakar-Stash, O., Palau, J., Trueba-Santiso, A., Varias, J., Bosch, M., Soler, A., Vicent, T., Marco-Urrea, E., and Rosell, M.: Use of dual element isotope analysis and microcosm studies to determine the origin and potential anaerobic biodegradation of dichloromethane in two multi-contaminated aquifers, Sci. Total Environ., 696, 134066, https://doi.org/10.1016/j.scitotenv.2019.134066, 2019.
Boesten, J. and Vanderlinden, A.: Modeling the influence of sortpion and transformation on pesticide leaching and persitence, J. Environ. Qual., 20, 425–435, https://doi.org/10.2134/jeq1991.00472425002000020015x, 1991.
Bongiorno, G.: Novel soil quality indicators for the evaluation of agricultural management practices: a biological perspective, Front. Agric. Sci. Eng., 7, 257, https://doi.org/10.15302/J-FASE-2020323, 2020.
Bratton, D. and Kennedy, J.: Defining a standard for particle swarm optimization, 2007 IEEE SWARM Intelligence Symposium, Honolulu, USA, 120–127, https://doi.org/10.1109/SIS.2007.368035, 2007.
Broers, H. P., van Vliet, M., Kivits, T., Vernes, R., Brussée, T., Sültenfuß, J., and Fraters, D.: Nitrate trend reversal in Dutch dual-permeability chalk springs, evaluated by tritium-based groundwater travel time distributions, Sci Total. Environ., 951, 175250, https://doi.org/10.1016/j.scitotenv.2024.175250, 2024.
Campolongo, F., Cariboni, J., and Saltelli, A.: An effective screening design for sensitivity analysis of large models, Environ. Modell. Softw., 22, 1509–1518, https://doi.org/10.1016/j.envsoft.2006.10.004, 2007.
Commelin, M. C., Baartman, J., Wesseling, J. G., and Jetten, V.: Simulating Event-Based Pesticide Transport with Runoff and Erosion; Openlisem-Pesticide V.1, Environ. Modell. Softw., 174, 105960, https://doi.org/10.1016/j.envsoft.2024.105960, 2024.
Cruz, M., Jones, J., and Bending, G.: Study of the spatial variation of the biodegradation rate of the herbicide bentazone with soil depth using contrasting incubation methods, Chemosphere, 73, 1211–1215, https://doi.org/10.1016/j.chemosphere.2008.07.044, 2008.
DeMars, C., Zhan, Y., Chen, H., Heilman, P., Zhang, X., and Zhang, M.: Integrating GLEAMS sedimentation into RZWQM for pesticide sorbed sediment runoff modeling, Environ. Modell. Softw., 109, 390–401, https://doi.org/10.1016/j.envsoft.2018.08.016, 2018.
De Schepper, G., Therrien, R., Refsgaard, J., and Hansen, A.: Simulating coupled surface and subsurface water flow in a tile-drained agricultural catchment, J. Hydrol., 521, 374–388, https://doi.org/10.1016/j.jhydrol.2014.12.035, 2015.
Droz, B., Drouin, G., Maurer, L., Villette, C., Payraudeau, S., and Imfeld, G.: Phase Transfer and Biodegradation of Pesticides in Water-Sediment Systems Explored by Compound-Specific Isotope Analysis and Conceptual Modeling, Environ. Sci. Technol., 55, 4720–4728, https://doi.org/10.1021/acs.est.0c06283, 2021.
Dubus, I., Beulke, S., and Brown, C.: Calibration of pesticide leaching models: critical review and guidance for reporting, Pest Manag. Sci., 58, 745–758, https://doi.org/10.1002/ps.526, 2002.
Dubus, I., Brown, C., and Beulke, S.: Sensitivity analyses for four pesticide leaching models, Pest Manag. Sci., 59, 962–982, https://doi.org/10.1002/ps.723, 2003.
Eckert, D., Qiu, S., Elsner, M., and Cirpka, O. A.: Model complexity needed for quantitative analysis of high resolution isotope and concentration data from a toluene-pulse experiment, Environ. Sci. Technol., 47, 6900–6907, https://doi.org/10.1021/es304879d, 2013.
Elsner, M.: Stable isotope fractionation to investigate natural transformation mechanisms of organic contaminants: principles, prospects and limitations, J. Environ. Monitor., 12, 2005–2031, https://doi.org/10.1039/c0em00277a, 2010.
Elsner, M. and Imfeld, G.: Compound-specific isotope analysis (CSIA) of micropollutants in the environment – current developments and future challenges, Curr. Opin. Biotech., 41, 60–72, https://doi.org/10.1016/j.copbio.2016.04.014, 2016.
Fatichi, S., Vivoni, E., Ogden, F., Ivanov, V., Mirus, B., Gochis, D., Downer, C., Camporese, M., Davison, J., Ebel, B., Jones, N., Kim, J., Mascaro, G., Niswonger, R., Restrepo, P., Rigon, R., Shen, C., Sulis, M., and Tarboton, D.: An overview of current applications, challenges, and future trends in distributed process-based models in hydrology, J. Hydrol., 537, 45–60, https://doi.org/10.1016/j.jhydrol.2016.03.026, 2016.
Feigenbrugel, V., Le Calve, S., and Mirabel, P.: Temperature dependence of Henry's law constants of metolachlor and diazinon, Chemosphere, 57, 319–327, https://doi.org/10.1016/j.chemosphere.2004.05.013, 2004.
Fenner, K., Canonica, S., Wackett, L., and Elsner, M.: Evaluating Pesticide Degradation in the Environment: Blind Spots and Emerging Opportunities, Science, 341, 752–758, https://doi.org/10.1126/science.1236281, 2013.
Gan, Y., Duan, Q., Gong, W., Tong, C., Sun, Y., Chu, W., Ye, A., Miao, C., and Di, Z.: A comprehensive evaluation of various sensitivity analysis methods: A case study with a hydrological model, Environ. Modell. Softw., 51, 269–285, https://doi.org/10.1016/j.envsoft.2013.09.031, 2014.
Garratt, J., Capri, E., Trevisan, M., Errera, G., and Wilkins, R.: Parameterisation, evaluation and comparison of pesticide leaching models to data from a Bologna field site, Italy, Pest Manag. Sci., 59, 3–20, https://doi.org/10.1002/ps.596, 2003.
Gassmann, M.: Modelling the Fate of Pesticide Transformation Products From Plot to Catchment Scale-State of Knowledge and Future Challenges, Front. Environ. Sci., 9, 717738, https://doi.org/10.3389/fenvs.2021.717738, 2021.
Gatel, L., Lauvernet, C., Carluer, N., Weill, S., and Paniconi, C.: Sobol Global Sensitivity Analysis of a Coupled Surface/Subsurface Water Flow and Reactive Solute Transfer Model on a Real Hillslope, Water-Sui., 12, 121, https://doi.org/10.3390/w12010121, 2020.
Gilevska, T., Masbou, J., Baumlin, B., Chaumet, B., Chaumont, C., Payraudeau, S., Tournebize, J., Probst, A., Probst, J. L., and Imfeld, G.: Do pesticides degrade in surface water receiving runoff from agricultural catchments? Combining passive samplers (POCIS) and compound-specific isotope analysis, Sci. Total Environ., 842, 156735, https://doi.org/10.1016/j.scitotenv.2022.156735, 2022a.
Gilevska, T., Wiegert, C., Droz, B., Junginger, T., Prieto-Espinoza, M., Borreca, A., and Imfeld, G.: Simple extraction methods for pesticide compound-specific isotope analysis from environmental samples, MethodsX, 9, 101880, https://doi.org/10.1016/j.mex.2022.101880, 2022b.
Gish, T., Prueger, J., Daughtry, C., Kustas, W., McKee, L., Russ, A., and Hatfield, J.: Comparison of Field-scale Herbicide Runoff and Volatilization Losses: An Eight-Year Field Investigation, J. Environ. Qual., 40, 1432–1442, https://doi.org/10.2134/jeq2010.0092, 2011.
Grundmann, S., Fuss, R., Schmid, M., Laschinger, M., Ruth, B., Schulin, R., Munch, J. C., and Schroll, R.: Application of microbial hot spots enhances pesticide degradation in soils, Chemosphere, 68, 511–517, https://doi.org/10.1016/j.chemosphere.2006.12.065, 2007.
Gupta, H., Kling, H., Yilmaz, K., and Martinez, G.: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling, J. Hydrol., 377, 80–91, https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009.
Herman, J. and Usher, W.: SALib: An open-source Python library for Sensitivity Analysis, J. Open Source Softw., 2, 97, https://doi.org/10.21105/joss.00097, 2017.
Herman, J. D., Kollat, J. B., Reed, P. M., and Wagener, T.: Technical Note: Method of Morris effectively reduces the computational demands of global sensitivity analysis for distributed watershed models, Hydrol. Earth Syst. Sci., 17, 2893–2903, https://doi.org/10.5194/hess-17-2893-2013, 2013.
Hofstetter, T. B., Bakkour, R., Buchner, D., Eisenmann, H., Fischer, A., Gehre, M., Haderlein, S. B., Höhener, P., Hunkeler, D., Imfeld, G., Jochmann, M. A., Kümmel, S., Martin, P. R., Pati, S. G., Schmidt, T. C., Vogt, C., and Elsner, M.: Perspectives of compound-specific isotope analysis of organic contaminants for assessing environmental fate and managing chemical pollution, Nat. Water, 2, 14–30, https://doi.org/10.1038/s44221-023-00176-4, 2024.
Höhener, P., Guers, D., Malleret, L., Boukaroum, O., Martin-Laurent, F., Masbou, J., Payraudeau, S., and Imfeld, G.: Multi-elemental compound-specific isotope analysis of pesticides for source identification and monitoring of degradation in soil: a review, Environ. Chem. Lett., 20, 3927–3942, https://doi.org/10.1007/s10311-022-01489-8, 2022.
Honti, M. and Fenner, K.: Deriving Persistence Indicators from Regulatory Water-Sediment Studies – Opportunities and Limitations in OECD 308 Data, Environ. Sci. Technol., 49, 5879–5886, https://doi.org/10.1021/acs.est.5b00788, 2015.
Hrachowitz, M., Benettin, P., van Breukelen, B., Fovet, O., Howden, N., Ruiz, L., van der Velde, Y., and Wade, A.: Transit timesthe link between hydrology and water quality at the catchment scale, WIRes Water, 3, 629–657, https://doi.org/10.1002/wat2.1155, 2016.
Hunkeler, D., Meckenstock, R. U., Sherwood Lollar, B., Schmidt, T. C., Wilson, J. T., Schmidt, T., and Wilson, J.: A guide for assessing biodegradation and source identification of organic ground water contaminants using compound specific isotope analysis (CSIA), US EPA, Ada, ISBN 1288863330, 2008.
Imfeld, G. and Vuilleumier, S.: Measuring the effects of pesticides on bacterial communities in soil: A critical review, Eur. J. Soil Biol., 49, 22–30, https://doi.org/10.1016/j.ejsobi.2011.11.010, 2012.
Jaikaew, P., Malhat, F., Boulange, J., and Watanabe, H.: Aspect of the degradation and adsorption kinetics of atrazine and metolachlor in andisol soil, Hell. Plant Prot. J., 10, 1–14, https://doi.org/10.1515/hppj-2017-0001, 2017.
Jin, X., Xu, C., Zhang, Q., and Singh, V.: Parameter and modeling uncertainty simulated by GLUE and a formal Bayesian method for a conceptual hydrological model, J. Hydrol., 383, 147–155, https://doi.org/10.1016/j.jhydrol.2009.12.028, 2010.
Kaandorp, V. P., Broers, H. P., van der Velde, Y., Rozemeijer, J., and de Louw, P. G. B.: Time lags of nitrate, chloride, and tritium in streams assessed by dynamic groundwater flow tracking in a lowland landscape, Hydrol. Earth Syst. Sci., 25, 3691–3711, https://doi.org/10.5194/hess-25-3691-2021, 2021.
Kling, H., Fuchs, M., and Paulin, M.: Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios, J. Hydrol., 424, 264–277, https://doi.org/10.1016/j.jhydrol.2012.01.011, 2012.
Köhne, J., Köhne, S., and Simunek, J.: A review of model applications for structured soils: (b) Pesticide transport, J. Contam. Hydrol., 104, 36–60, https://doi.org/10.1016/j.jconhyd.2008.10.003, 2009.
König, S., Worrich, A., Banitz, T., Harms, H., Kastner, M., Miltner, A., Wick, L., Frank, K., Thullner, M., and Centler, F.: Functional Resistance to Recurrent Spatially Heterogeneous Disturbances Is Facilitated by Increased Activity of Surviving Bacteria in a Virtual Ecosystem, Front. Microbiol., 9, 734, https://doi.org/10.3389/fmicb.2018.00734, 2018.
Kopinke, F. D., Georgi, A., Imfeld, G., and Richnow, H. H.: Isotope fractionation of benzene during partitioning – Revisited, Chemosphere, 168, 508–513, https://doi.org/10.1016/j.chemosphere.2016.11.029, 2017.
Lange, J., Olsson, O., Sweeney, B., Herbstritt, B., Reich, M., Alvarez-Zaldivar, P., Payraudeau, S., and Imfeld, G.: Fluorescent tracers to evaluate pesticide dissipation and transformation in agricultural soils, Sci. Total Environ., 619, 1682–1689, https://doi.org/10.1016/j.scitotenv.2017.10.132, 2018.
Larsbo, M. and Jarvis, N.: MACRO 5.0. A model of water and solute transport in macroporous soil, Technical description, Emergo 2033.6, Swedish University of Agricultural Sciences, Department of Soil Sciences, Uppsala, Sweden, ISBN 91-576-6592-3, 2003.
Larsbo, M. and Jarvis, N.: Simulating solute transport in a structured field soil: Uncertainty in parameter identification and predictions, J. Environ. Qual., 34, 621–634, https://doi.org/10.2134/jeq2005.0621, 2005.
Lefrancq, M., Van Dijk, P., Jetten, V., Schwob, M., and Payraudeau, S.: Improving runoff prediction using agronomical information in a cropped, loess covered catchment, Hydrol. Process., 31, 1408–1423, https://doi.org/10.1002/hyp.11115, 2017.
Lefrancq, M., Payraudeau, S., Guyot, B., Millet, M., and Imfeld, G.: Degradation and Transport of the Chiral Herbicide S-Metolachlor at the Catchment Scale: Combining Observation Scales and Analytical Approaches (vol. 51, p. 13231, 2017), Environ. Sci. Technol., 52, 5517–5517, https://doi.org/10.1021/acs.est.8b01118, 2018.
Leistra, M., van der Linden, A. M. A., Boesten, J. J. T. I., Tiktak, A., and van der Berg, F.: PEARL model for pesticide behaviour and emissions in soil-plant systems, Description of the processes in FOCUS PEARL v 1.1.1, Report 711401009, ISSN 1566-7197, 2001.
Lewis, K., Tzilivakis, J., Warner, D., and Green, A.: An international database for pesticide risk assessments and management, Hum. Ecol. Risk Assess., 22, 1050–1064, https://doi.org/10.1080/10807039.2015.1133242, 2016.
Lindahl, A. M. L., Söderström, M., and Jarvis, N.: Influence of input uncertainty on prediction of within-field pesticide leaching risks, J. Contam. Hydrol., 98 (3–4), 106–114, https://doi.org/10.1016/j.jconhyd.2008.03.006, 2008.
Long, Y., Li, R., and Wu, X.: Degradation of S-metolachlor in soil as affected by environmental factors, J. Soil Sci. Plant Nut., 14, 189–198, https://doi.org/10.4067/S0718-95162014005000015, 2014.
Lutz, S. R., van Meerveld, H. J., Waterloo, M. J., Broers, H. P., and van Breukelen, B. M.: A model-based assessment of the potential use of compound-specific stable isotope analysis in river monitoring of diffuse pesticide pollution, Hydrol. Earth Syst. Sci., 17, 4505–4524, https://doi.org/10.5194/hess-17-4505-2013, 2013.
Lutz, S. R., Velde, Y. V. D., Elsayed, O. F., Imfeld, G., Lefrancq, M., Payraudeau, S., and van Breukelen, B. M.: Pesticide fate on catchment scale: conceptual modelling of stream CSIA data, Hydrol. Earth Syst. Sci., 21, 5243–5261, https://doi.org/10.5194/hess-21-5243-2017, 2017.
Malone, R., Ahuja, L., Ma, L., Wauchope, R., Ma, Q., and Rojas, K.: Application of the Root Zone Water Quality Model (RZWQM) to pesticide fate and transport: an overview, Pest Manag. Sci., 60, 205–221, https://doi.org/10.1002/ps.789, 2004.
Manfreda, S., Fiorentino, M., and Iacobellis, V.: DREAM: a distributed model for runoff, evapotranspiration, and antecedent soil moisture simulation, Adv. Geosci., 2, 31–39, https://doi.org/10.5194/adgeo-2-31-2005, 2005.
Masbou, J., Höhener, P., Payraudeau, S., Martin-Laurent, F., and Imfeld, G.: Stable isotope composition of pesticides in commercial formulations: The ISOTOPEST database, Chemosphere, 352, 141488, https://doi.org/10.1016/j.chemosphere.2024.141488, 2024.
McGrath, G., Hinz, C., and Sivapalan, M.: Modeling the effect of rainfall intermittency on the variability of solute persistence at the soil surface, Water Resour. Res., 44, W09432 https://doi.org/10.1029/2007WR006652, 2008.
Medici, C., Wade, A., and Frances, F.: Does increased hydrochemical model complexity decrease robustness?, J. Hydrol., 440, 1–13, https://doi.org/10.1016/j.jhydrol.2012.02.047, 2012.
Molénat, J., Gascuel-Odoux, C., Davy, P., and Durand, P.: How to model shallow water-table depth variations: the case of the Kervidy-Naizin catchment, France, Hydrol. Process., 19, 901–920, https://doi.org/10.1002/hyp.5546, 2005.
Morris, M. D.: Factorial sampling plans for preliminary computational experiments, Technometrics, 33, 161–174, https://doi.org/10.2307/1269043, 1991.
Neitsch, S. L., Arnold, J. G., Kiniry, J. R., and Williams, J. R.: Soil and Water Assessment Tool. Theoretical Documentation. Version 2009. Texas Water Resources Institute Technical Report No. 406, Texas A&M University System College Station, Texas, USA, 647 pp., 2011.
Prieto-Espinoza, M., Weill, S., Belfort, B., Muller, E., Masbou, J., Lehmann, F., Vuilleumier, S., and Imfeld, G.: Water table fluctuations affect dichloromethane biodegradation in lab-scale aquifers contaminated with organohalides, Water Res., 203, 117530, https://doi.org/10.1016/j.watres.2021.117530, 2021.
Prueger, J., Gish, T., McConnell, L., McKee, L., Hatfield, J., and Kustas, W.: Solar radiation, relative humidity, and soil water effects on metolachlor volatilization, Environ. Sci. Technol., 39, 5219–5226, https://doi.org/10.1021/es048341q, 2005.
Sander, M., Lu, Y., and Pignatello, J.: Conditioning-annealing studies of natural organic matter solids linking irreversible sorption to irreversible structural expansion, Environ. Sci. Technol., 40, 170–178, https://doi.org/10.1021/es0506253, 2006.
Schmidt, T., Zwank, L., Elsner, M., Berg, M., Meckenstock, R., and Haderlein, S.: Compound-specific stable isotope analysis of organic contaminants in natural environments: a critical review of the state of the art, prospects, and future challenges, Anal. Bioanal. Chem., 378, 283–300, https://doi.org/10.1007/s00216-003-2350-y, 2004.
Schroll, R., Becher, H., Dorfler, U., Gayler, S., Hartmann, H., and Ruoss, J.: Quantifying the effect of soil moisture on the aerobic microbial mineralization of selected pesticides in different soils, Environ. Sci. Technol., 40, 3305–3312, https://doi.org/10.1021/es052205j, 2006.
Schwarzenbach, R. P., Gschwend, P. M., and Imboden, D. M.: Environmental organic chemistry, 2nd edn., Wiley, https://doi.org/10.1002/0471649643, 2003.
Seybold, C., Mersie, W., and McNamee, C.: Anaerobic degradation of atrazine and metolachlor and metabolite formation in wetland soil and water microcosms, J. Environ. Qual., 30, 1271–1277, https://doi.org/10.2134/jeq2001.3041271x, 2001.
Sheikh, V., Visser, S., and Stroosnijder, L.: A simple model to predict soil moisture: Bridging Event and Continuous Hydrological (BEACH) modelling, Environ. Modell. Softw., 24, 542–556, https://doi.org/10.1016/j.envsoft.2008.10.005, 2009.
Sidoli, P., Lassabatere, L., Angulo-Jaramillo, R., and Baran, N.: Experimental and modeling of the unsaturated transports of S-metolachlor and its metabolites in glaciofluvial vadose zone solids, J. Contam. Hydrol., 190, 1–14, https://doi.org/10.1016/j.jconhyd.2016.04.001, 2016.
Steffens, K., Jarvis, N., Lewan, E., Lindstrom, B., Kreuger, J., Kjellstrom, E., and Moeys, J.: Direct and indirect effects of climate change on herbicide leaching – A regional scale assessment in Sweden, Sci. Total Environ., 514, 239–249, https://doi.org/10.1016/j.scitotenv.2014.12.049, 2015.
Stone, W., Gilliom, R., and Ryberg, K.: Pesticides in U. S. Streams and Rivers: Occurrence and Trends during 1992–2011, Environ. Sci. Technol., 48, 11025–11030, https://doi.org/10.1021/es5025367, 2014.
Thouement, H. A. A., Kuder, T., Heimovaara, T. J., and van Breukelen, B. M.: Do CSIA data from aquifers inform on natural degradation of chlorinated ethenes in aquitards?, J. Contam. Hydrol., 226, 103520, https://doi.org/10.1016/j.jconhyd.2019.103520, 2019.
Thullner, M., Fischer, A., Richnow, H., and Wick, L.: Influence of mass transfer on stable isotope fractionation, Appl. Microbiol. Biot., 97, 441–452, https://doi.org/10.1007/s00253-012-4537-7, 2013.
Torabi, E., Wiegert, C., Guyot, B., Vuilleumier, S., and Imfeld, G.: Dissipation of S-metolachlor and butachlor in agricultural soils and responses of bacterial communities: Insights from compound-specific isotope and biomolecular analyses, J. Environ. Sci., 92, 163–175, https://doi.org/10.1016/j.jes.2020.02.009, 2020.
Torrentó, C., Ponsin, V., Lihl, C., Hofstetter, T. B., Baran, N., Elsner, M., and Hunkeler, D.: Triple-Element Compound-Specific Stable Isotope Analysis (3D-CSIA): Added Value of Cl Isotope Ratios to Assess Herbicide Degradation, Environ. Sci. Technol., 55, 13891–13901, https://doi.org/10.1021/acs.est.1c03981, 2021.
Towner, J., Cloke, H. L., Zsoter, E., Flamig, Z., Hoch, J. M., Bazo, J., Coughlan de Perez, E., and Stephens, E. M.: Assessing the performance of global hydrological models for capturing peak river flows in the Amazon basin, Hydrol. Earth Syst. Sci., 23, 3057–3080, https://doi.org/10.5194/hess-23-3057-2019, 2019.
Urbina, C., van den Berg, F., van Dam, J., Tang, D., and Ritsema, C.: Parameter sensitivity of SWAP-PEARL models for pesticide leaching in macroporous soils, Vadose Zone J., 19, 20075, https://doi.org/10.1002/vzj2.20075, 2020.
Van Breukelen, B. M. and Prommer, H.: Beyond the rayleigh equation: Reactive transport modeling of isotope fractionation effects to improve quantification of biodegradation, Environ. Sci. Technol., 42, 2457–2463, https://doi.org/10.1021/es071981j, 2008.
Van Breukelen, B. M. and Rolle, M.: Transverse hydrodynamic dispersion effects on isotope signals in groundwater chlorinated solvents plumes, Environ. Sci. Technol., 46, 7700–7708, https://doi.org/10.1021/es301058z, 2012.
Vorosmarty, C., McIntyre, P., Gessner, M., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S., Sullivan, C., Liermann, C., and Davies, P.: Global threats to human water security and river biodiversity, Nature, 467, 555–561, https://doi.org/10.1038/nature09440, 2010.
Walker, A.: A Simulation Model for Prediction of Herbicide Persistence, J. Environ. Qual., 3, 396–401, https://doi.org/10.2134/jeq1974.00472425000300040021x, 1974.
Wang, Y., Lai, A., Latino, D., Fenner, K., and Helbling, D.: Evaluating the environmental parameters that determine aerobic biodegradation half-lives of pesticides in soil with a multivariable approach, Chemosphere, 209, 430–438, https://doi.org/10.1016/j.chemosphere.2018.06.077, 2018.
Weiler, M.: Macropores and preferential flow-a love-hate relationship, Hydrol. Process., 31, 15–19, https://doi.org/10.1002/hyp.11074, 2017.
Weisner, O., Frische, T., Liebmann, L., Reemtsma, T., Ross-Nickoll, M., Schafer, R., Schaffer, A., Scholz-Starke, B., Vormeier, P., Knillmann, S., and Liess, M.: Risk from pesticide mixtures – The gap between risk assessment and reality, Sci. Total Environ., 796, 149017, https://doi.org/10.1016/j.scitotenv.2021.149017, 2021.
Wendell, A. K., Guse, B., Bieger K., Wagner, P. D., Kiesel, J., Ulrich, U., and Fohrer, N.: A spatio-temporal analysis of environmental fate and transport processes of pesticides and their transformation products in agricultural landscapes dominated by subsurface drainage with SWAT+, Sci. Total Environ., 945, 173629, https://doi.org/10.1016/j.scitotenv.2024.173629, 2024.
Wu, X., Li, M., Long, Y., Liu, R., Yu, Y., Fang, H., and Li, S.: Effects of adsorption on degradation and bioavailability of metolachlor in soil, J. Soil Sci. Plant Nut., 11(3), 83–97, ISSN 0718-9516, 2011.
Xu, Z., Liu, W., and Yang, F.: A new approach to estimate bioavailability of pyrethroids in soil by compound-specific stable isotope analysis, J. Hazard. Mater., 349, 1–9, https://doi.org/10.1016/j.jhazmat.2018.01.038, 2018.
Short summary
Our study focuses on the rising concern of pesticides damaging aquatic ecosystems, which puts drinking water, the environment, and human health at risk. We provided more accurate estimates of how pesticides break down and spread in small water systems, helping to improve pesticide management practices. Using unique chemical markers in our analysis, we enhanced the accuracy of our predictions, offering important insights for better protection of water sources and natural ecosystems.
Our study focuses on the rising concern of pesticides damaging aquatic ecosystems, which puts...