Articles | Volume 29, issue 15
https://doi.org/10.5194/hess-29-3405-2025
https://doi.org/10.5194/hess-29-3405-2025
Research article
 | 
01 Aug 2025
Research article |  | 01 Aug 2025

Towards a global spatial machine learning model for seasonal groundwater level predictions in Germany

Stefan Kunz, Alexander Schulz, Maria Wetzel, Maximilian Nölscher, Teodor Chiaburu, Felix Biessmann, and Stefan Broda

Related authors

Data-driven modelling of hydraulic-head time series: results and lessons learned from the 2022 Groundwater Time Series Modelling Challenge
Raoul A. Collenteur, Ezra Haaf, Mark Bakker, Tanja Liesch, Andreas Wunsch, Jenny Soonthornrangsan, Jeremy White, Nick Martin, Rui Hugman, Ed de Sousa, Didier Vanden Berghe, Xinyang Fan, Tim J. Peterson, Jānis Bikše, Antoine Di Ciacca, Xinyue Wang, Yang Zheng, Maximilian Nölscher, Julian Koch, Raphael Schneider, Nikolas Benavides Höglund, Sivarama Krishna Reddy Chidepudi, Abel Henriot, Nicolas Massei, Abderrahim Jardani, Max Gustav Rudolph, Amir Rouhani, J. Jaime Gómez-Hernández, Seifeddine Jomaa, Anna Pölz, Tim Franken, Morteza Behbooei, Jimmy Lin, and Rojin Meysami
Hydrol. Earth Syst. Sci., 28, 5193–5208, https://doi.org/10.5194/hess-28-5193-2024,https://doi.org/10.5194/hess-28-5193-2024, 2024
Short summary
Assessing groundwater level modelling using a 1-D convolutional neural network (CNN): linking model performances to geospatial and time series features
Mariana Gomez, Maximilian Nölscher, Andreas Hartmann, and Stefan Broda
Hydrol. Earth Syst. Sci., 28, 4407–4425, https://doi.org/10.5194/hess-28-4407-2024,https://doi.org/10.5194/hess-28-4407-2024, 2024
Short summary
On the challenges of global entity-aware deep learning models for groundwater level prediction
Benedikt Heudorfer, Tanja Liesch, and Stefan Broda
Hydrol. Earth Syst. Sci., 28, 525–543, https://doi.org/10.5194/hess-28-525-2024,https://doi.org/10.5194/hess-28-525-2024, 2024
Short summary
Hysteresis in permeability evolution simulated for a sandstone by mineral precipitation and dissolution
Maria Wetzel, Thomas Kempka, and Michael Kühn
Adv. Geosci., 58, 1–10, https://doi.org/10.5194/adgeo-58-1-2022,https://doi.org/10.5194/adgeo-58-1-2022, 2022
Short summary
Reactive transport model of kinetically controlled celestite to barite replacement
Morgan Tranter, Maria Wetzel, Marco De Lucia, and Michael Kühn
Adv. Geosci., 56, 57–65, https://doi.org/10.5194/adgeo-56-57-2021,https://doi.org/10.5194/adgeo-56-57-2021, 2021
Short summary

Related subject area

Subject: Groundwater hydrology | Techniques and Approaches: Modelling approaches
The impact of geological structures on groundwater potential assessment in volcanic rocks in the Borena Sayint district, northwestern Ethiopian Plateau: a review
Bishaw Mihret and Ajebush Wuletaw
Hydrol. Earth Syst. Sci., 29, 2951–2959, https://doi.org/10.5194/hess-29-2951-2025,https://doi.org/10.5194/hess-29-2951-2025, 2025
Short summary
Numerical analysis of the effect of heterogeneity on CO2 dissolution enhanced by gravity-driven convection
Yufei Wang, Daniel Fernàndez-Garcia, and Maarten W. Saaltink
Hydrol. Earth Syst. Sci., 29, 2485–2503, https://doi.org/10.5194/hess-29-2485-2025,https://doi.org/10.5194/hess-29-2485-2025, 2025
Short summary
Multivariate and long-term time series analysis to assess the effect of nitrogen management policy on groundwater quality in Wallonia, BE
Elise Verstraeten, Alice Alonso, Louise Collier, and Marnik Vanclooster
Hydrol. Earth Syst. Sci., 29, 1829–1845, https://doi.org/10.5194/hess-29-1829-2025,https://doi.org/10.5194/hess-29-1829-2025, 2025
Short summary
Laboratory heat transport experiments reveal grain-size- and flow-velocity-dependent local thermal non-equilibrium effects
Haegyeong Lee, Manuel Gossler, Kai Zosseder, Philipp Blum, Peter Bayer, and Gabriel C. Rau
Hydrol. Earth Syst. Sci., 29, 1359–1378, https://doi.org/10.5194/hess-29-1359-2025,https://doi.org/10.5194/hess-29-1359-2025, 2025
Short summary
Improvement of the KarstMod modelling platform for a better assessment of karst groundwater resources
Vianney Sivelle, Guillaume Cinkus, Naomi Mazzilli, David Labat, Bruno Arfib, Nicolas Massei, Yohann Cousquer, Dominique Bertin, and Hervé Jourde
Hydrol. Earth Syst. Sci., 29, 1259–1276, https://doi.org/10.5194/hess-29-1259-2025,https://doi.org/10.5194/hess-29-1259-2025, 2025
Short summary

Cited articles

Addimando, N., Engel, M., Schwarz, F., and Batič, M.: A DEEP LEARNING APPROACH FOR CROP TYPE MAPPING BASED ON COMBINED TIME SERIES OF SATELLITE AND WEATHER DATA, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B3-2022, 1301–1308, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1301-2022, 2022. a
Althoff, D., Rodrigues, L. N., and Bazame, H. C.: Uncertainty quantification for hydrological models based on neural networks: the dropout ensemble, Stoch. Env. Res. Risk A., 35, 1051–1067, https://doi.org/10.1007/s00477-021-01980-8, 2021. a
Amatulli, G., Domisch, S., Tuanmu, M.-N., Parmentier, B., Ranipeta, A., Malczyk, J., and Jetz, W.: A suite of global, cross-scale topographic variables for environmental and biodiversity modeling, Sci. Data, 5, 180040, https://doi.org/10.1038/sdata.2018.40, 2018. a
Bakalowicz, M.: Karst groundwater: a challenge for new resources, Hydrogeol. J., 13, 148–160, https://doi.org/10.1007/s10040-004-0402-9, 2005. a
Beven, K. J. and Kirkby, M. J.: A physically based, variable contributing area model of basin hydrology / Un modèle à base physique de zone d'appel variable de l'hydrologie du bassin versant, Hydrol. Sci. B., 24, 43–69, https://doi.org/10.1080/02626667909491834, 1979. a, b
Download
Short summary
Accurate groundwater level predictions are crucial for sustainable management. This study applies two machine learning models – Neural Hierarchical Interpolation for Time Series Forecasting (N-HiTS) and the Temporal Fusion Transformer (TFT) – to forecast seasonal groundwater levels for 5288 wells across Germany. N-HiTS outperformed TFT, with both models performing well in diverse hydrogeological settings, particularly in lowlands with distinct seasonal dynamics.
Share