Articles | Volume 29, issue 15
https://doi.org/10.5194/hess-29-3405-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-3405-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Towards a global spatial machine learning model for seasonal groundwater level predictions in Germany
Federal Institute for Geosciences and Natural Resources, Berlin, Germany
Alexander Schulz
Berliner Hochschule für Technik, Berlin, Germany
Maria Wetzel
Federal Institute for Geosciences and Natural Resources, Berlin, Germany
Maximilian Nölscher
Federal Institute for Geosciences and Natural Resources, Berlin, Germany
Teodor Chiaburu
Berliner Hochschule für Technik, Berlin, Germany
Felix Biessmann
Berliner Hochschule für Technik, Berlin, Germany
Stefan Broda
Federal Institute for Geosciences and Natural Resources, Berlin, Germany
Related authors
Fabienne Doll, Tanja Liesch, Maria Wetzel, Stefan Kunz, and Stefan Broda
EGUsphere, https://doi.org/10.5194/egusphere-2025-3539, https://doi.org/10.5194/egusphere-2025-3539, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
With the growing use of machine learning for groundwater level (GWL) prediction, proper performance estimation is crucial. This study compares three validation strategies—blocked cross-validation (bl-CV), repeated out-of-sample (repOOS), and out-of-sample (OOS)—for 1D-CNN models using meteorological inputs. Results show that bl-CV offers the most reliable performance estimates, while OOS is the most uncertain, highlighting the need for careful method selection.
Fabienne Doll, Tanja Liesch, Maria Wetzel, Stefan Kunz, and Stefan Broda
EGUsphere, https://doi.org/10.5194/egusphere-2025-3539, https://doi.org/10.5194/egusphere-2025-3539, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
With the growing use of machine learning for groundwater level (GWL) prediction, proper performance estimation is crucial. This study compares three validation strategies—blocked cross-validation (bl-CV), repeated out-of-sample (repOOS), and out-of-sample (OOS)—for 1D-CNN models using meteorological inputs. Results show that bl-CV offers the most reliable performance estimates, while OOS is the most uncertain, highlighting the need for careful method selection.
Marc Ohmer, Tanja Liesch, Bastian Habbel, Benedikt Heudorfer, Mariana Gomez, Patrick Clos, Maximilian Nölscher, and Stefan Broda
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-321, https://doi.org/10.5194/essd-2025-321, 2025
Preprint under review for ESSD
Short summary
Short summary
We present a public dataset of weekly groundwater levels from more than 3,000 wells across Germany, spanning 32 years. It combines weather data and site-specific environmental information to support forecasting groundwater changes. Three benchmark models of varying complexity show how data and modeling approaches influence predictions. This resource promotes open, reproducible research and helps guide future water management decisions.
Raoul A. Collenteur, Ezra Haaf, Mark Bakker, Tanja Liesch, Andreas Wunsch, Jenny Soonthornrangsan, Jeremy White, Nick Martin, Rui Hugman, Ed de Sousa, Didier Vanden Berghe, Xinyang Fan, Tim J. Peterson, Jānis Bikše, Antoine Di Ciacca, Xinyue Wang, Yang Zheng, Maximilian Nölscher, Julian Koch, Raphael Schneider, Nikolas Benavides Höglund, Sivarama Krishna Reddy Chidepudi, Abel Henriot, Nicolas Massei, Abderrahim Jardani, Max Gustav Rudolph, Amir Rouhani, J. Jaime Gómez-Hernández, Seifeddine Jomaa, Anna Pölz, Tim Franken, Morteza Behbooei, Jimmy Lin, and Rojin Meysami
Hydrol. Earth Syst. Sci., 28, 5193–5208, https://doi.org/10.5194/hess-28-5193-2024, https://doi.org/10.5194/hess-28-5193-2024, 2024
Short summary
Short summary
We show the results of the 2022 Groundwater Time Series Modelling Challenge; 15 teams applied data-driven models to simulate hydraulic heads, and three model groups were identified: lumped, machine learning, and deep learning. For all wells, reasonable performance was obtained by at least one team from each group. There was not one team that performed best for all wells. In conclusion, the challenge was a successful initiative to compare different models and learn from each other.
Mariana Gomez, Maximilian Nölscher, Andreas Hartmann, and Stefan Broda
Hydrol. Earth Syst. Sci., 28, 4407–4425, https://doi.org/10.5194/hess-28-4407-2024, https://doi.org/10.5194/hess-28-4407-2024, 2024
Short summary
Short summary
To understand the impact of external factors on groundwater level modelling using a 1-D convolutional neural network (CNN) model, we train, validate, and tune individual CNN models for 505 wells distributed across Lower Saxony, Germany. We then evaluate the performance of these models against available geospatial and time series features. This study provides new insights into the relationship between these factors and the accuracy of groundwater modelling.
Benedikt Heudorfer, Tanja Liesch, and Stefan Broda
Hydrol. Earth Syst. Sci., 28, 525–543, https://doi.org/10.5194/hess-28-525-2024, https://doi.org/10.5194/hess-28-525-2024, 2024
Short summary
Short summary
We build a neural network to predict groundwater levels from monitoring wells. We predict all wells at the same time, by learning the differences between wells with static features, making it an entity-aware global model. This works, but we also test different static features and find that the model does not use them to learn exactly how the wells are different, but only to uniquely identify them. As this model class is not actually entity aware, we suggest further steps to make it so.
Maria Wetzel, Thomas Kempka, and Michael Kühn
Adv. Geosci., 58, 1–10, https://doi.org/10.5194/adgeo-58-1-2022, https://doi.org/10.5194/adgeo-58-1-2022, 2022
Short summary
Short summary
Porosity-permeability relations are simulated for a precipitation-dissolution cycle in a virtual sandstone. A hysteresis in permeability is observed depending on the geochemical process and dominating reaction regime, whereby permeability varies by more than two orders of magnitude. Controlling parameters for this hysteresis phenomenon are the closure and re-opening of micro-scale flow channels, derived from changes in pore throat diameter and connectivity of the pore network.
Morgan Tranter, Maria Wetzel, Marco De Lucia, and Michael Kühn
Adv. Geosci., 56, 57–65, https://doi.org/10.5194/adgeo-56-57-2021, https://doi.org/10.5194/adgeo-56-57-2021, 2021
Short summary
Short summary
Barite formation is an important factor for many use cases of the geological subsurface because it may change the rock.
In this modelling study, the replacement reaction of celestite to barite is investigated.
The steps that were identified to play a role are celestite dissolution followed by two-step precipitation of barite: spontaneous formation of small crystals and their subsequent growth.
Explicitly including the processes improve the usability of the models for quantified prediction.
Andreas Wunsch, Tanja Liesch, and Stefan Broda
Hydrol. Earth Syst. Sci., 25, 1671–1687, https://doi.org/10.5194/hess-25-1671-2021, https://doi.org/10.5194/hess-25-1671-2021, 2021
Maria Wetzel, Thomas Kempka, and Michael Kühn
Adv. Geosci., 54, 33–39, https://doi.org/10.5194/adgeo-54-33-2020, https://doi.org/10.5194/adgeo-54-33-2020, 2020
Cited articles
Addimando, N., Engel, M., Schwarz, F., and Batič, M.: A DEEP LEARNING APPROACH FOR CROP TYPE MAPPING BASED ON COMBINED TIME SERIES OF SATELLITE AND WEATHER DATA, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B3-2022, 1301–1308, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1301-2022, 2022. a
Althoff, D., Rodrigues, L. N., and Bazame, H. C.: Uncertainty quantification for hydrological models based on neural networks: the dropout ensemble, Stoch. Env. Res. Risk A., 35, 1051–1067, https://doi.org/10.1007/s00477-021-01980-8, 2021. a
Amatulli, G., Domisch, S., Tuanmu, M.-N., Parmentier, B., Ranipeta, A., Malczyk, J., and Jetz, W.: A suite of global, cross-scale topographic variables for environmental and biodiversity modeling, Sci. Data, 5, 180040, https://doi.org/10.1038/sdata.2018.40, 2018. a
Bakalowicz, M.: Karst groundwater: a challenge for new resources, Hydrogeol. J., 13, 148–160, https://doi.org/10.1007/s10040-004-0402-9, 2005. a
Beven, K. J. and Kirkby, M. J.: A physically based, variable contributing area model of basin hydrology / Un modèle à base physique de zone d'appel variable de l'hydrologie du bassin versant, Hydrol. Sci. B., 24, 43–69, https://doi.org/10.1080/02626667909491834, 1979. a, b
BGR: Bodenarten in Oberböden Deutschlands 1:1.000.000 (BOART1000), Digitaler Datenbestand, version 2.0, UUID: 410B839B-DCF2-45BE-8788-3C65BBEC2D59, https://geoportal.bgr.de/mapapps/resources/apps/geoportal/index.html?lang=de#/datasets/portal/DADB8BB6-4A7A-4CB7-908D-EA0767B068D7 (last access: 14 October 2024), 2007. a
BGR: Mittlere jährliche Grundwasserneubildung von Deutschland 1:1.000.000 (GWN1000), Digital map data, version 1, https://geoportal.bgr.de/mapapps/resources/apps/geoportal/index.html?lang=de#/datasets/portal/40E14FF1-99D4-43DA-AF7B-C039F0463BF8 (last access: 14 October 2024), 2019. a
BGR and SGD: Hydrogeologische Übersichtskarte von Deutschland 1:250.000 (HÜK250), Digitaler Datenbestand, version 1.0.3, UUID: afbc7573-d18d-453e-bff3-6477af048770, https://geoportal.bgr.de/mapapps/resources/apps/geoportal/index.html?lang=de#/datasets/portal/61ac4628-6b62-48c6-89b8-46270819f0d6 (last access: 14 October 2024), 2019. a, b, c, d
Buchhorn, M., Smets, B., Bertels, L., De Roo, B., Lesiv, M., Tsendbazar, N. E., Linlin, L., and Tarko, A.: opernicus Global Land Service: Land Cover 100m: Version 3 Globe 2015–2019: Product User Manual, Zenodo, https://doi.org/10.5281/zenodo.3938963, 2020. a
Cao, D., Wang, Y., Duan, J., Zhang, C., Zhu, X., Huang, C., Tong, Y., Xu, B., Bai, J., Tong, J., and Zhang, Q.: Spectral Temporal Graph Neural Network for Multivariate Time-series Forecasting, arXiv [preprint], https://doi.org/10.48550/arXiv.2103.07719, 2021. a
Challu, C., Olivares, K. G., Oreshkin, B. N., Garza, F., Mergenthaler-Canseco, M., and Dubrawski, A.: N-HiTS: Neural Hierarchical Interpolation for Time Series Forecasting, arXiv [preprint], https://doi.org/10.48550/arXiv.2201.12886, 2022. a, b, c
Chiaburu, T. and Bießmann, F.: Interpretable Time Series Models for Wastewater Modeling in Combined Sewer Overflows, Proced. Comput. Sci., 237, 155–162, https://doi.org/10.1016/j.procs.2024.05.091, 2024. a
Chidepudi, S. K. R., Massei, N., Jardani, A., and Henriot, A.: Groundwater level reconstruction using long-term climate reanalysis data and deep neural networks, J. Hydrol.-Regional Studies, 51, 101632, https://doi.org/10.1016/j.ejrh.2023.101632, 2024. a
Chidepudi, S. K. R., Massei, N., Jardani, A., Dieppois, B., Henriot, A., and Fournier, M.: Training deep learning models with a multi-station approach and static aquifer attributes for groundwater level simulation: what is the best way to leverage regionalised information?, Hydrol. Earth Syst. Sci., 29, 841–861, https://doi.org/10.5194/hess-29-841-2025, 2025. a
Collenteur, R. A., Haaf, E., Bakker, M., Liesch, T., Wunsch, A., Soonthornrangsan, J., White, J., Martin, N., Hugman, R., de Sousa, E., Vanden Berghe, D., Fan, X., Peterson, T. J., Bikše, J., Di Ciacca, A., Wang, X., Zheng, Y., Nölscher, M., Koch, J., Schneider, R., Benavides Höglund, N., Krishna Reddy Chidepudi, S., Henriot, A., Massei, N., Jardani, A., Rudolph, M. G., Rouhani, A., Gómez-Hernández, J. J., Jomaa, S., Pölz, A., Franken, T., Behbooei, M., Lin, J., and Meysami, R.: Data-driven modelling of hydraulic-head time series: results and lessons learned from the 2022 Groundwater Time Series Modelling Challenge, Hydrol. Earth Syst. Sci., 28, 5193–5208, https://doi.org/10.5194/hess-28-5193-2024, 2024. a
Das, A., Kong, W., Leach, A., Mathur, S., Sen, R., and Yu, R.: Long-term Forecasting with TiDE: Time-series Dense Encoder, arXiv [preprint], https://doi.org/10.48550/arXiv.2304.08424, 2024. a
European Environment Agency: European Digital Elevation Model (EU-DEM) v1.1, European Environment Agency (EEA) [code], 2018. a
Gneiting, T. and Raftery, A. E.: Strictly proper scoring rules, prediction, and estimation, J. Am. Stat. Assoc., 102, 359–378, https://doi.org/10.1198/016214506000001437, 2007. a
Gomez, M., Nölscher, M., Hartmann, A., and Broda, S.: Assessing groundwater level modelling using a 1-D convolutional neural network (CNN): linking model performances to geospatial and time series features, Hydrol. Earth Syst. Sci., 28, 4407–4425, https://doi.org/10.5194/hess-28-4407-2024, 2024. a
Guzman, S. M., Paz, J. O., and Tagert, M. L. M.: The Use of NARX Neural Networks to Forecast Daily Groundwater Levels, Water Resour. Manag., 31, 1591–1603, https://doi.org/10.1007/s11269-017-1598-5, 2017. a
Hermans, T., Goderniaux, P., Jougnot, D., Fleckenstein, J. H., Brunner, P., Nguyen, F., Linde, N., Huisman, J. A., Bour, O., Lopez Alvis, J., Hoffmann, R., Palacios, A., Cooke, A.-K., Pardo-Álvarez, Á., Blazevic, L., Pouladi, B., Haruzi, P., Fernandez Visentini, A., Nogueira, G. E. H., Tirado-Conde, J., Looms, M. C., Kenshilikova, M., Davy, P., and Le Borgne, T.: Advancing measurements and representations of subsurface heterogeneity and dynamic processes: towards 4D hydrogeology, Hydrol. Earth Syst. Sci., 27, 255–287, https://doi.org/10.5194/hess-27-255-2023, 2023. a
Izmailov, P., Podoprikhin, D., Garipov, T., Vetrov, D., and Wilson, A. G.: Averaging Weights Leads to Wider Optima and Better Generalization, arXiv [preprint], https://doi.org/10.48550/arXiv.1803.05407, 2019. a
Jung, H., Saynisch-Wagner, J., and Schulz, S.: Can eXplainable AI Offer a New Perspective for Groundwater Recharge Estimation? – Global-Scale Modeling Using Neural Network, Water Resour. Res., 60, e2023WR036360, https://doi.org/10.1029/2023WR036360, 2024. a
Kan, K., Aubet, F.-X., Januschowski, T., Park, Y., Benidis, K., Ruthotto, L., and Gasthaus, J.: Multivariate Quantile Function Forecaster, arXiv [preprint], https://doi.org/10.48550/arXiv.2202.11316, 2022. a, b
Klotz, D., Kratzert, F., Gauch, M., Keefe Sampson, A., Brandstetter, J., Klambauer, G., Hochreiter, S., and Nearing, G.: Uncertainty estimation with deep learning for rainfall–runoff modeling, Hydrol. Earth Syst. Sci., 26, 1673–1693, https://doi.org/10.5194/hess-26-1673-2022, 2022. a
Koya, S. R. and Roy, T.: Temporal Fusion Transformers for Streamflow Prediction: Value of Combining Attention with Recurrence, arXiv [preprint], https://doi.org/10.48550/arXiv.2305.12335, 2023. a, b
Kratzert, F., Klotz, D., Shalev, G., Klambauer, G., Hochreiter, S., and Nearing, G.: Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets, Hydrol. Earth Syst. Sci., 23, 5089–5110, https://doi.org/10.5194/hess-23-5089-2019, 2019. a
Kratzert, F., Gauch, M., Klotz, D., and Nearing, G.: HESS Opinions: Never train a Long Short-Term Memory (LSTM) network on a single basin, Hydrol. Earth Syst. Sci., 28, 4187–4201, https://doi.org/10.5194/hess-28-4187-2024, 2024. a, b
Kunz, S.: global-groundwater-models-main, GitHub [code], https://github.com/KunzstBGR/global-groundwater-models-main, last access: 14 July 2025. a
Kværner, J. and Snilsberg, P.: Groundwater hydrology of boreal peatlands above a bedrock tunnel – Drainage impacts and surface water groundwater interactions, J. Hydrol., 403, 278–291, https://doi.org/10.1016/j.jhydrol.2011.04.006, 2011. a
Li, X., Khandelwal, A., Jia, X., Cutler, K., Ghosh, R., Renganathan, A., Xu, S., Tayal, K., Nieber, J., Duffy, C., Steinbach, M., and Kumar, V.: Regionalization in a Global Hydrologic Deep Learning Model: From Physical Descriptors to Random Vectors, Water Resour. Res., 58, e2021WR031794, https://doi.org/10.1029/2021WR031794, 2022. a, b
Lim, B., Arık, S. Ö., Loeff, N., and Pfister, T.: Temporal Fusion Transformers for interpretable multi-horizon time series forecasting, Int. J. Forecasting, 37, 1748–1764, https://doi.org/10.1016/j.ijforecast.2021.03.012, 2021. a, b
Linardatos, P., Papastefanopoulos, V., Panagiotakopoulos, T., and Kotsiantis, S.: CO2 concentration forecasting in smart cities using a hybrid ARIMA–TFT model on multivariate time series IoT data, Sci. Rep., 13, 17266, https://doi.org/10.1038/s41598-023-42346-0, 2023. a
Linde, N., Ginsbourger, D., Irving, J., Nobile, F., and Doucet, A.: On uncertainty quantification in hydrogeology and hydrogeophysics, Adv. Water Resour., 110, 166–181, https://doi.org/10.1016/j.advwatres.2017.10.014, 2017. a
Makridakis, S., Spiliotis, E., and Assimakopoulos, V.: The M4 Competition: 100,000 time series and 61 forecasting methods, Int. J. Forecasting, 36, 54–74, https://doi.org/10.1016/j.ijforecast.2019.04.014, 2020. a
Makridakis, S., Spiliotis, E., and Assimakopoulos, V.: M5 accuracy competition: Results, findings, and conclusions, Int. J. Forecasting, 38, 1346–1364, https://doi.org/10.1016/j.ijforecast.2021.11.013, 2022. a
Manzoni, A., Porta, G. M., Guadagnini, L., Guadagnini, A., and Riva, M.: Probabilistic reconstruction via machine-learning of the Po watershed aquifer system (Italy), Hydrogeol. J., 31, 1547–1563, https://doi.org/10.1007/s10040-023-02677-8, 2023. a
Manzoni, A., Porta, G. M., Guadagnini, L., Guadagnini, A., and Riva, M.: A comprehensive framework for stochastic calibration and sensitivity analysis of large-scale groundwater models, Hydrol. Earth Syst. Sci., 28, 2661–2682, https://doi.org/10.5194/hess-28-2661-2024, 2024. a
Nearing, G. S., Kratzert, F., Sampson, A. K., Pelissier, C. S., Klotz, D., Frame, J. M., Prieto, C., and Gupta, H. V.: What Role Does Hydrological Science Play in the Age of Machine Learning?, Water Resour. Res., 57, e2020WR028091, https://doi.org/10.1029/2020WR028091, 2021. a
Nölscher, M., Mutz, M., and Broda, S.: Multiorder hydrologic Position for Europe – a Set of Features for Machine Learning and Analysis in Hydrology, Sci. Data, 9, 662, https://doi.org/10.1038/s41597-022-01787-4, 2022. a, b, c
Olivares, K. G., Challu, C., Marcjasz, G., Weron, R., and Dubrawski, A.: Neural basis expansion analysis with exogenous variables: Forecasting electricity prices with NBEATSx, Int. J. Forecasting, 39, 884–900, https://doi.org/10.1016/j.ijforecast.2022.03.001, 2022. a
Oosterwoud, M., van der Ploeg, M., van der Schaaf, S., and van der Zee, S.: Variation in hydrologic connectivity as a result of microtopography explained by discharge to catchment size relationship, Hydrol. Process., 31, 2683–2699, https://doi.org/10.1002/hyp.11164, 2017. a
Oreshkin, B. N., Carpov, D., Chapados, N., and Bengio, Y.: N-BEATS: Neural basis expansion analysis for interpretable time series forecasting, arXiv [preprint], https://doi.org/10.48550/arXiv.1905.10437, 2020. a
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library, arXiv [preprint], https://doi.org/10.48550/arXiv.1912.01703, 2019. a
Rangapuram, S. S., Seeger, M. W., Gasthaus, J., Stella, L., Wang, Y., and Januschowski, T.: Deep State Space Models for Time Series Forecasting. Advances in Neural Information Processing Systems, 31, https://proceedings.neurips.cc/paper/2018/file/5cf68969fb67aa6082363a6d4e6468e2-Paper.pdf (last access: 14 October 2024), 2018. a
Razafimaharo, C., Krähenmann, S., Höpp, S., Rauthe, M., and Deutschländer, T.: New high-resolution gridded dataset of daily mean, minimum, and maximum temperature and relative humidity for Central Europe (HYRAS), Theor. Appl. Climatol., 142, 1531–1553, https://doi.org/10.1007/s00704-020-03388-w, 2020. a, b, c, d
Salinas, D., Flunkert, V., Gasthaus, J., and Januschowski, T.: DeepAR: Probabilistic forecasting with autoregressive recurrent networks, Int. J. Forecasting, 36, 1181–1191, https://doi.org/10.1016/j.ijforecast.2019.07.001, 2020. a
Schroeter, L. and Gläßer, C.: Analyses and monitoring of lignite mining lakes in Eastern Germany with spectral signatures of Landsat TM satellite data, Int. J. Coal Geol., 86, 27–39, https://doi.org/10.1016/j.coal.2011.01.005, 2011. a
Sen, R., Yu, H.-F., and Dhillon, I. S.: Think Globally, Act Locally: A Deep Neural Network Approach to High-Dimensional Time Series Forecasting, arXiv [preprint], https://doi.org/10.48550/arXiv.1905.03806, 2019. a
Tao, H., Hameed, M. M., Marhoon, H. A., Zounemat-Kermani, M., Heddam, S., Kim, S., Sulaiman, S. O., Tan, M. L., Sa’adi, Z., Mehr, A. D., Allawi, M. F., Abba, S., Zain, J. M., Falah, M. W., Jamei, M., Bokde, N. D., Bayatvarkeshi, M., Al-Mukhtar, M., Bhagat, S. K., Tiyasha, T., Khedher, K. M., Al-Ansari, N., Shahid, S., and Yaseen, Z. M.: Groundwater level prediction using machine learning models: A comprehensive review, Neurocomputing, 489, 271–308, https://doi.org/10.1016/j.neucom.2022.03.014, 2022. a
Wright, L. and Demeure, N.: Ranger21: A synergistic deep learning optimizer, arXiv [preprint], https://doi.org/10.48550/arXiv.2106.13731, 2021. a
Wu, H., Zhou, H., Long, M., and Wang, J.: Interpretable weather forecasting for worldwide stations with a unified deep model, Nature Machine Intelligence, 5, 602–611, https://doi.org/10.1038/s42256-023-00667-9, 2023. a
Wunsch, A., Liesch, T., and Broda, S.: Forecasting groundwater levels using nonlinear autoregressive networks with exogenous input (NARX), J. Hydrol., 567, 743–758, https://doi.org/10.1016/j.jhydrol.2018.01.045, 2018. a
Wunsch, A., Liesch, T., and Broda, S.: Groundwater level forecasting with artificial neural networks: a comparison of long short-term memory (LSTM), convolutional neural networks (CNNs), and non-linear autoregressive networks with exogenous input (NARX), Hydrol. Earth Syst. Sci., 25, 1671–1687, https://doi.org/10.5194/hess-25-1671-2021, 2021. a, b
Wunsch, A., Liesch, T., and Broda, S.: Deep learning shows declining groundwater levels in Germany until 2100 due to climate change, Nat. Commun., 13, 1–13, https://doi.org/10.1038/s41467-022-28770-2, 2022a. a, b, c
Wunsch, A., Liesch, T., and Broda, S.: Feature-based Groundwater Hydrograph Clustering Using Unsupervised Self-Organizing Map-Ensembles, Water Resour. Manag., 36, 39–54, https://doi.org/10.1007/s11269-021-03006-y, 2022b. a, b
Short summary
Accurate groundwater level predictions are crucial for sustainable management. This study applies two machine learning models – Neural Hierarchical Interpolation for Time Series Forecasting (N-HiTS) and the Temporal Fusion Transformer (TFT) – to forecast seasonal groundwater levels for 5288 wells across Germany. N-HiTS outperformed TFT, with both models performing well in diverse hydrogeological settings, particularly in lowlands with distinct seasonal dynamics.
Accurate groundwater level predictions are crucial for sustainable management. This study...