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Abstract. Reliable predictions of groundwater levels are
crucial for sustainable groundwater resource management,
which needs to balance diverse water needs and to address
potential ecological consequences of groundwater depletion.
Machine learning (ML) approaches for time series forecast-
ing have shown promising accuracy for groundwater level
prediction and, furthermore, offer scalability advantages over
traditional numerical methods when sufficient data are avail-
able. Global ML architectures enable predictions across nu-
merous monitoring wells concurrently using a single model,
allowing predictions over a broad range of hydrogeological
and meteorological conditions and simplifying model man-
agement. In this contribution, groundwater levels for 5288
monitoring wells across Germany were forecasted up to
12 weeks using two state-of-the-art ML approaches, the Tem-
poral Fusion Transformer (TFT) and the Neural Hierarchical
Forecasting for Time Series (N-HiTS) algorithm. The mod-
els were provided with historical groundwater levels, mete-
orological features, and a wide range of static features de-
scribing hydrogeological and soil properties at the monitor-
ing sites. To determine the conditions under which the model
achieves good performance and whether it aligns with hydro-
geological system understanding, the model’s performance
was evaluated spatially and correlations with both static in-
put features and time series features from hydrograph data
were examined.

The N-HiTS model outperformed the TFT model, achiev-
ing a median Nash-Sutcliffe efficiency (NSE) of 0.5 for
the 12-week prediction over all 5288 monitoring wells. Per-
formance varied widely: 25 % of wells achieved an NSE

> 0.68, while 15 % had an NSE < 0 with the best N-HiTS

model. A tendency for better predictions in areas with high
data density was observed. Moreover, the models achieved
higher performance in lowland areas with distinct seasonal
groundwater dynamics, in monitoring wells located in porous
aquifers, and at sites with moderate permeabilities, which
aligns with theoretical expectations. Overall, the findings
highlight that global ML models can facilitate accurate sea-
sonal groundwater predictions over large, hydrogeological
diverse areas, potentially informing future groundwater man-
agement practices at a national scale.

1 Introduction

The growing availability of large datasets for hydrogeolog-
ical applications has led to increased use of machine learn-
ing (ML) approaches in the hydrogeological domain for tasks
such as groundwater level prediction (Tao et al., 2022; Col-
lenteur et al., 2024) and groundwater level reconstruction
(Chidepudi et al., 2024), as well as related tasks such as
predicting groundwater recharge rates (Jung et al., 2024) or
the 3D characterisation of aquifer systems (Manzoni et al.,
2023). In recent years, an expanding field of research has
demonstrated the potential of ML methods for groundwater
level prediction, both in smaller areas (Guzman et al., 2017;
Chidepudi et al., 2025; Wunsch et al., 2021, 2018) and for
monitoring wells distributed throughout Germany (Heudor-
fer et al., 2024; Wunsch et al., 2022a). ML approaches aim
to implicitly learn the underlying dynamics from measured
data by modelling the statistical relationships between input
features (e.g. precipitation) and target features (e.g. ground-
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water levels). These models are based on the data at the re-
spective groundwater monitoring wells and are thus easy to
scale spatially and effective for groundwater level prediction
over larger areas.

Single-well (local) models are the state of the art in ML-
based groundwater level prediction, where for each monitor-
ing well, an individual model has to be trained. In contrast,
the class of so-called “global ML models” allows the creation
of one ML model capable of predicting groundwater levels
for multiple monitoring wells. These models train on dif-
ferent time series to learn underlying patterns shared across
multiple time series, potentially enhancing the overall fore-
casting performance. Compared to single-well models, using
multiple monitoring wells at once increases the diversity of
training data, thereby widening the training envelope, which
can result in improved performance during inference, e.g. be-
cause the model had access to rare observations such as ex-
treme precipitation events (Kratzert et al., 2024). Further-
more, global ML approaches simplify model development
and maintenance in comparison to single-well models. Be-
sides incorporating time-dependent (dynamic) input features
such as precipitation and temperature, these ML approaches
can also make use of temporally static features that describe
physical or environmental properties at the monitoring sites
(e.g. permeability coefficient). These static features enable
information sharing within groups of time series with similar
static variable levels, aiming to enhance the model’s ability
to generalise to locations with similar static feature levels.
By incorporating static features, these global models possess
the potential for generalisation and regionalisation (Heudor-
fer et al., 2024; Kratzert et al., 2019). To assess the uncer-
tainty in the predicted target feature from ML approaches for
time series prediction, different methods are used, such as en-
sembling, Monte Carlo dropout (Althoff et al., 2021), quan-
tile forecasting (Kan et al., 2022), or directly predicting a
distribution of the target feature (Klotz et al., 2022), while in
numerical groundwater models stochastic model calibration
methods are often employed, which may involve sensitivity
analyses of model parameters (Manzoni et al., 2024; Linde
et al., 2017).

So far, in forecasting competitions, such as M4 (Makri-
dakis et al., 2020) and M5 (Makridakis et al., 2022), global
time series models have been successfully applied to fore-
casting problems in finance, retail, and economics and out-
performed their competing local models. Recently, several
new neural network architectures for global time series pre-
diction were proposed. Among these architectures are DSSM
(Rangapuram et al., 2018), DeepGLO (Sen et al., 2019),
DeepAR (Salinas et al., 2020), StemGNN (Cao et al., 2021),
TFT (Temporal Fusion Transformer) (Lim et al., 2021),
N-HiTS (Neural Hierarchical Forecasting for Time Series)
(Challu et al., 2022), and TiDE (Das et al., 2024). The re-
cently developed TFT, a combination of recurrent neural net-
works and self-attention layers, and N-HiTS, a time series
decomposition algorithm based on multilayer perceptrons
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(MLPs), have shown promising predictive capabilities. The
TFT architecture has already been successfully applied in
the environmental sciences, e.g. for forecasting CO, emis-
sions from 1h up to 1 week using about 6 million CO;
measurements and other time-dependent (dynamic) variables
(Linardatos et al., 2023). Furthermore, the TFT was also used
for streamflow prediction on 2610 basins across the world us-
ing 38 dynamic and 211 static features, thereby outperform-
ing models based on long-short term memory (LSTM) and
other transformer architectures (Koya and Roy, 2023). In en-
vironmental research, the N-HiTS architecture has been suc-
cessfully applied to predict wastewater levels in rain tanks
over a 10h prediction horizon (Chiaburu and BieBmann,
2024). Furthermore, N-HiTS was compared to other models
in a study on global weather forecasting (Wu et al., 2023).

For predicting groundwater levels in Germany, a recent
study by Heudorfer et al. (2024) used a global LSTM ar-
chitecture integrating both dynamic (meteorological) and
static input features. Their optimal models achieved a Nash—
Sutcliffe efficiency (NSE) of above 0.8 in the test period
across a selected set of 108 monitoring wells, which were
relatively evenly distributed throughout Germany. This study
seeks to expand upon this research by using a larger number
of monitoring wells and exploring more complex ML archi-
tectures. The key contributions of this study include (1) intro-
ducing and evaluating modern ML architectures for ground-
water modelling, complementing classical architectures such
as LSTM; (2) providing a comprehensive empirical evalu-
ation of various models performance using a dataset larger
than those of previous studies; (3) investigating the impor-
tance of input features, with a specific focus on static fea-
tures, in influencing the prediction accuracy; and (4) assess-
ing the capability of these models to align with hydrogeo-
logical system understanding. We hypothesise that the large
amount of time series data used in combination with static
input features will help to improve predictive performance
and enhance hydrogeological system understanding. In this
study, the two state-of-the-art global ML time series archi-
tectures, TFT and N-HiTS, are applied to seasonally predict
groundwater levels up to 12 weeks for the so far most com-
prehensive groundwater dataset covering large parts of Ger-
many (5288 monitoring wells). To the best of our knowledge,
this is the first study that attempts to make groundwater level
predictions on a national scale for such a high number of
monitoring wells and one of the first studies that uses global
ML architectures to predict groundwater levels.

The remainder of the paper is organised as follows: first
we introduce the dataset (Sect. 2.1) and the deep learning
architectures (Sect. 2.2) along with the experimental design
(Sect. 2.3). Then, the predictive performance is reported for
both architectures and analysed with respect to factors af-
fecting the predictive performance. To quantify the impact
of static features on the prediction accuracy, model variants
with and without static features are examined for both ar-
chitectures. Moreover, the interpretable nature of the TFT is
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used to understand the importance of the input features and
important past time steps for the model performance. Finally,
the results are discussed in terms of general and spatial model
performance as well as the feature importance to demon-
strate the potential of modern ML approaches for ground-
water level prediction and to determine if the models reflect
our understanding of the hydrogeological system (Sects. 3
and 4).

2 Data and methods
2.1 Data
2.1.1 Groundwater level time series and preprocessing

Groundwater level measurements in the period from 1990 to
2016 were provided by the environmental agencies and the
geological surveys of most of the German federal states at
a weekly resolution. The preprocessing of the groundwater
levels was kept simple, mainly for two reasons: first, simple
and few preprocessing steps allow retaining as many training
data points as possible; second, it allows assessing the pre-
dictive performance under realistic conditions with hetero-
geneous data distributions. For each groundwater level time
series jumps between two time points greater than 50 times
the average change of the given time series were removed
and gaps up to 4 weeks were linearly interpolated. Time se-
ries with gaps greater than 4 weeks were truncated at the gap.

The preprocessing resulted in groundwater time series of
5288 monitoring wells, which corresponds to approximately
4.5 million records for model training. These monitoring
wells are distributed throughout Germany, with the excep-
tion of some federal states, where only few (Mecklenburg—
Western Pomerania, Bremen, Hamburg) or no monitoring
wells (Thuringia and Saarland) satisfied the preprocessing
criteria. Nevertheless, all major hydrogeological and cli-
matic conditions of Germany are represented in the dataset.
For example, in the hydrogeological district encompassing
Thuringia, common aquifer types include fractured, frac-
tured and karstified, and fractured and porous aquifers. Mon-
itoring wells located in these aquifer types are also present in
other regions covered in the dataset (e.g. over 612 monitoring
wells are located in fractured aquifers; Table B7).

2.1.2 Dynamic features

An overview of the dynamic input features can be found
in Table 1. Besides being the target to predict, the ground-
water level was also used as a dynamic input feature. Fur-
ther dynamic input features were precipitation, relative hu-
midity, and temperature, which have been successfully used
in previous modelling studies (see Heudorfer et al., 2024,
and citations therein) and should theoretically exert a strong
influence on groundwater levels. These meteorological dy-
namic features were extracted from HYRAS 5.0 (Razafima-
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haro et al., 2020). Moreover, a sinusoidal curve fitted to
the temperature was used, which was a good predictor for
groundwater levels in previous studies (Wunsch et al., 2021).
The HYRAS dataset is a raster product published by the Na-
tional German Weather Service and holds gridded meteoro-
logical data for Germany over the period from 1951 to 2022
for temperature, to 2023 for humidity, and to 2024 for precip-
itation (status as of October 2024). Additional dynamic input
features were the leaf area index (LAI) (Pistocchi, 2015) and
the day of the year expressed in sine and cosine values.

The meteorological input features and the LAI were ex-
tracted within a 1 km buffer around the groundwater wells.
Thereby, a weighted average was calculated based on the area
covered by the pixels within the buffer.

2.1.3 Static features

The static features used in the study cover environmental
characteristics from the domains hydrogeology, soil, topog-
raphy, and land cover (see Table 2). They describe dominant
physical factors that control groundwater dynamics at the
well locations, aiming to facilitate the generalisation of rela-
tionships between monitoring sites with similar environmen-
tal characteristics. All static input features except the land-
form Shannon index and the elevation were extracted within
a 1 km buffer around the groundwater wells. For the values
of the numerical features, a weighted average was calculated
based on the area covered by the pixels within the buffer. For
categorical features, the category with the largest area share
within the buffer was used. The landform Shannon index and
elevation were extracted directly at the well. The topographic
wetness index (TWI) was calculated according to Beven and
Kirkby (1979). Additionally, the mean and the standard de-
viation of each groundwater level time series computed on
the respective training data periods were used as static input
time series features.

2.2 Global machine learning algorithms
2.2.1 Temporal Fusion Transformer (TFT)

The TFT is an attention-based neural network architecture
for time series forecasting and has achieved good results on
various forecasting tasks, often outperforming other models
like LSTMs and transformers (Lim et al., 2021). The main
building blocks of the TFT are gating mechanisms, variable
selection networks (VSNs), static covariate encoders, LSTM
encoder—decoders, and multi-head self-attention layers.

The gating mechanisms regulate the degree of non-linear
processing of the input by employing gated residual networks
(GRNs), allowing the model to skip entire layers when nec-
essary. VSNs help to remove noisy inputs and can be used to
assess the importance of input features. Thereby, feature im-
portance is assessed separately for static and dynamic inputs
(i.e. past and future inputs) on the test set. At each time step, a
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Figure 1. (a) Split into training, validation, and test data. (b) Spatial distribution of the 5288 wells used for groundwater level prediction.
The colour scale indicates the length of the individual groundwater level time series in the training dataset.

Table 1. Description of the dynamic input features.

Type Name Description Source
Hydrogeology = Groundwater levels Groundwater hydrographs aggregated to weekly values  Provided by the environmental
agencies and geological
surveys in Germany
(unpublished)
Meteorology Temperature Mean temperature (°C), daily values aggregated to Razafimaharo et al. (2020)
weekly, grid size: Skm x 5km
Sinus temperature -
Precipitation Sum of precipitation (mm), daily values aggregated to Razafimaharo et al. (2020)
weekly, grid size: 1 x 1 km
Relative humidity Mean relative humidity (%), daily values aggregated to  Razafimaharo et al. (2020)
weekly, grid size: 5 x 5km
Vegetation Leaf area index (LAI) The LAI describes the area of leaves per unit ground Pistocchi (2015)
area and is related to the evapotranspiration in an area.
It is reported in monthly averaged values. Grid size:
I x 1km
Annual cycle Sinus day -

Cosinus day

flattened feature vector is fed into a GRN followed by a Soft-
max layer, producing an output vector with so-called variable
selection weights. The importance of each feature is then rep-
resented by the average of the variable selection weights over
all time steps. After the VSN is applied, static covariate en-
coders integrate static information with the dynamic infor-
mation using a GRN. The dynamic outputs of the VSN are
passed to the LSTM encoder—decoder, which captures short-
term dependencies by learning past data representations (en-
coder) to predict future values (decoder). Self-attention is
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then applied to the output by the LSTM encoder—decoder to
weigh the different time steps of input sequences and dynam-
ically adjust how they affect the output. Self-attention layers
enable the model to identify important time steps and approx-
imate long-term dependencies across the input sequences.
The attention weights can be visualised for interpretability.
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Table 2. Description of the static input features.
Type Name Description Source
Hydrogeology = Hydrogeological spatial Classification of areas with similar hydrogeological BGR and SGD (2019)
structure of Germany characteristics, groundwater conditions, and geologic
genesis in Germany; the 10 major hydrogeological districts
are used
Aquifer type Five aquifer type categories (e.g. porous or karstified) BGR and SGD (2019)
Permeability coefficient Six categories (e.g. high (> 0.001-0.01 m g1 ) BGR and SGD (2019)
Groundwater recharge Mean annual groundwater recharge rates 1961-1990 BGR (2019)
(mm a1 )
Mean groundwater level -
Standard deviation -
groundwater level
Soil Soil texture 13 categories (e.g. sandy loam) BGR (2007)
Land cover Land cover Nine categories (e.g. herbaceous vegetation) Buchhorn et al. (2020)
Topography Topographic wetness index  Terrain-driven wetness potential Beven and Kirkby
(TWI) (1979)

Elevation

Elevation at the groundwater well

European Environment
Agency (2018)

Shannon index landforms

Diversity index of landform types: higher values indicate
more landform types and/or landform types having more
similar proportions within the aggregation window

(10 x 10km)

Amatulli et al. (2018)

Divide to stream distance
(EUMOHP_DSD1)

Distance from hypothetical groundwater catchment divide
to nearest stream (hydrologic order 1) at the monitoring
well location

Nolscher et al. (2022)

Lateral position
(EUMOHP_LP1)

Relative position of the monitoring well laterally along the
divide-to-stream stretch (hydrologic order 1)

Nolscher et al. (2022)

Stream distance
(EUMOHP_DSI1)

Distance from the monitoring well to the nearest stream
(hydrologic order 1)

Nolscher et al. (2022)

2.2.2 Neural Hierarchical Interpolation for Time Series
Forecasting (N-HiTS)

N-HiTS (Challu et al., 2022) is a state-of-the-art deep learn-
ing model for time series forecasting, improving upon its
predecessors, the N-BEATS and N-BEATSx models (Ore-
shkin et al., 2020; Olivares et al., 2022), by enhancing
long-term forecasting capabilities and computational effi-
ciency. N-HiTS outperformed its predecessors and several
transformer-based methods on various forecasting tasks, es-
pecially for long-term horizons, and also required less mem-
ory and computational power (Challu et al., 2022).

The N-HiTS architecture is composed of so-called blocks
organised into different stacks. Each block consists of a Max-
Pool layer and several multilayer perceptrons (MLPs). The
MaxPool layers subsample the series at different resolutions
(e.g. daily, weekly), allowing each stack to focus on different
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frequencies (short-term to long-term) within the data. Fre-
quencies are projected onto a basis of simple functions such
as sine waves and step functions (related concepts are short-
time Fourier transform or wavelets). Each subsampled ver-
sion of the series is processed by a series of MLPs that learn
patterns within the data at their respective frequencies. Each
MLP block outputs a backcast and forecast, where the back-
cast is subtracted from the input and the remaining signal is
passed to the next block through residual connections. The
partial predictions obtained from each block are combined
through hierarchical interpolation. The final predictions con-
sist of the summed-up partial predictions from each stack.

2.3 Experimental design and training

For every well, groundwater level time series were split into a
training, validation, and test dataset. The validation and test

Hydrol. Earth Syst. Sci., 29, 3405-3433, 2025
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datasets comprise a period of 3 years starting in 2010 and
2013, respectively. The training data only included time se-
ries that were at least 6 years long and available from 2004
onwards to the validation period starting in 2010 (Fig. 1).
Thus, the length of the training period varied (descriptive
statistics in Table Al), whereby 54 % of all time series
spanned the entire period of available data until 1990 (Fig. 1).
Time series characteristics such as the mean and standard de-
viation of all included groundwater level time series were rel-
atively comparable between the training, validation, and test
period (Fig. Al). The exogenous dynamic features were di-
vided into training, validation, and test data based on the split
of the groundwater level time series.

In order to assess the impact of the static features on the
predictive quality of the global models, two model variants
were considered: the models were provided with (1) all dy-
namic and static feature and (2) solely dynamic features (re-
ferred to as purely dynamic models hereafter). For compari-
son, TFT models using exogenous features but excluding his-
torical groundwater levels as input features were trained for
both variants. However, the models’ performance was much
worse compared to the models trained with the groundwater
levels as an input feature. Hence, we decided not to pursue
further analyses in this regard. The results for this analysis
are reported in Appendix B (Table B6). As a baseline for the
1-week prediction horizon, a naive forecast was used.

Both ML architectures used in this study are designed
for sequence-to-sequence predictions. During training, the
models processed an input sequence autoregressively and
predicted an output sequence of groundwater levels. For
each time step, a look-back window (i.e. sequence length)
of 52 weeks for the dynamic features was used to repre-
sent one annual cycle. Groundwater levels were predicted
for 12 weeks. During the 12-week prediction the model has
access to the exogenous dynamic features, but not to the
groundwater level (Fig. 2).

All model variants were trained for 10 epochs and with
10 different random seeds to account for the stochasticity in
the initialisation of model weights. Large batch sizes were
used (TFT: 4096, N-HiTS: 1024) to avoid overfitting and to
accelerate the training. The risk of overfitting was further
reduced by the application of early stopping on the valida-
tion loss, a dropout rate of 0.2, and learning rate schedul-
ing using stochastic weight averaging after the second epoch
(Izmailov et al., 2019). Thus, the selected hyperparameter
values were based on empirical heuristics recommended by
domain experts, aiming to reduce overfitting and minimise
training time. All model variants were trained for a max-
imum of 10 epochs, a duration sufficient to ensure model
convergence. In many cases, training terminated earlier due
to the implementation of the early stopping criteria. Dur-
ing training, models were optimised with the Ranger opti-
miser (Wright and Demeure, 2021). For both architectures
the multivariate quantile loss function was used (Kan et al.,
2022). Thereby, each model learns to predict different parts
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Dynamic Features

Decoder (exogenous): future values
pr, t, sin_t, rh, day_sin,
day_cos
(12 timestpes per sequence)
C (Context
vector)
Dynamic Features (endogenous +
exogenous): historic values
Encoder gwl, pr, t, sin_t, rh, day_sin, day_cos
(52 timesteps per sequence)
* * * * Static Features

Xl xz x x™ . -

Figure 2. Abstract depiction of the modelling process for seasonal
groundwater level predictions. Both ML architectures used follow
an encoder—decoder structure. The encoder creates a latent repre-
sentation of the input features, which is denoted as a context vector
(c¢). The decoder is conditioned on this context vector to generate
predictions. Historical values of groundwater levels (gwl), precipi-
tation (pr), temperature (¢), sinus of the temperature (sin_t), relative
humidity (RH), the annual cycle (day_sin, day_cos), and the static
features are processed as sequences in the encoder (input per time
step denoted by x). In the decoder, the exogenous dynamic features
are used for the prediction horizon, while groundwater levels are
not used.

of the conditional distribution simultaneously. Accordingly,
prediction intervals were obtained with one model. The quan-
tile loss was chosen because it has a linear relationship with
the error magnitude, making it more robust towards outliers
than metrics with a quadratic relationship, such as the mean
squared error (MSE). Outliers may arise e.g. from extreme
precipitation events.

2.4 Model evaluation

For the predicted groundwater levels, the 0.5 quantile is re-
ported as a point forecast. The prediction intervals are based
on the 0.10 and 0.90 quantiles. All models were evaluated
with the NSE on the test data. In addition, the root mean
square error (RMSE), the relative mean bias error (rtMBE),
and, for evaluating prediction intervals, the interval score are
reported for comparison. The rMBE is defined as the mean
deviance divided by a constant, for which the standard devia-
tion of the groundwater levels is chosen. The interval score is
a proper scoring rule that combines two properties of a pre-
diction interval: (1) the sharpness, which refers to the con-
centration of the predictive distribution and is a property of
the prediction only, and (2) the calibration, which denotes
how much the true value is outside of the predicted interval
(Gneiting and Raftery, 2007). Smaller values indicate a bet-
ter estimate and a narrower prediction interval. Details on the
calculation of both metrics are given in Appendix Sect. A3.
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To compare model performances, we aggregated the error
metrics to the median for each well across the 10 initiali-
sations. Additionally, we also show the median NSE values
across the 5288 monitoring wells for each individual initiali-
sation (Fig. 4).

To investigate if certain hydrogeological conditions allow
better predictions, the NSE values of each monitoring well
were evaluated for a prediction horizon of 12 weeks across
the categorical static features, including the large hydrogeo-
logical districts of Germany (Fig. B5). Additionally, Spear-
man correlations of the static numeric features and the NSE
of each monitoring well were calculated. Areas with a high
data density were identified using kernel density estimation
(KDE), and median NSE values for the monitoring wells
within these areas were compared.

To examine how the ML approaches performed with re-
gard to groundwater hydrographs exhibiting differing be-
haviours, NSE values were correlated with a number of time
series features describing the groundwater dynamics at each
monitoring well. The time series features used were ground-
water hydrograph specific features derived by Wunsch et al.
(2022b), namely the seasonal behaviour (agreement with the
expected seasonality, i.e. max in March and min in Septem-
ber), the flashiness (frequency of short-term changes), and
the range ratio (superimposed long-period signals). The cal-
culation of these features followed Wunsch et al. (2022b).
Furthermore, standard statistical time series features were
employed, namely the amplitude (range), skewness, linear
trend (slope), and length of the time series (including the test
period). For the linear trend, a linear regression was fitted
and the obtained slope was correlated with the NSE, whereby
non-significant slopes were set to zero. The nonparametric
Spearman correlation coefficient was used, given that the
NSE and the features considered for correlation analysis did
not seem to satisfy the bivariate normality assumption of the
Pearson correlation coefficient.

The TFT architecture offers interpretable insights via the
variable selection weights and attention scores. For the pre-
dictive performance of the TFT, the feature importance rank-
ing is reported as well as important past time steps.

3 Results
3.1 General model performance

Both global ML architectures achieved a high performance
for the 1-week prediction horizon with a median NSE of 0.91
(TFT) and 0.92 (N-HiTS) for all 5288 monitoring wells. The
naive forecast (baseline) for the 1-week prediction achieved
a median NSE of 0.91 (Table B3). ML architectures out-
performed the baseline by at least 0.1 NSE in 8 %-10 %
of the monitoring wells, depending on the ML architecture
(Table B4). These wells exhibited greater variability in their
groundwater level dynamics, indicated by higher flashiness
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values compared to the overall dataset. In contrast, the naive
forecast surpassed the ML architecture performances by at
least 0.1 NSE in 0.07 %-0.7 % of monitoring wells (Ta-
ble BS5). For the 12-week prediction horizon, the N-HiTS
models consistently outperformed the TFT models based on
the NSE. The N-HiTS model provided with static and dy-
namic features achieved a median NSE of 0.5 across the
5288 monitoring wells (TFT 0.34, Fig. 3, Table B1), meaning
that for approximately 81 % (4286) of the monitoring wells
N-HiTS achieved higher NSE values than the TFT. A wide
spread in the model performance was observed for all model
variants; e.g. the N-HiTS model with static and dynamic in-
put features achieved for 25 % of the monitoring wells an
NSE of 0.68 or greater (TFT 0.55 or greater). On the other
hand, an NSE below zero was achieved for about 15 % of
the monitoring wells, indicating that the model predictions
were a worse approximation to the observed groundwater
levels than the mean of the observed values (TFT 22 % of
the monitoring wells). Despite relatively similar NSE values
at the 1-week prediction horizon, the NSE decreased more
prominently for the TFT model variants than for the N-HiTS
model variants over the longer prediction horizons. Gener-
ally, model performances decreased approximately linearly
across the prediction horizons, and the patterns observed for
the 1- and 12-week prediction horizons are representative for
the other prediction horizons (Fig. 4). Moreover, the perfor-
mance of the TFT models was more influenced by the initial-
isation of the model weights compared to the N-HiTS mod-
els, indicated by the larger spread of median NSE values per
initialisation (Fig. 4).

In terms of the RMSE and rMBE the N-HiTS models per-
formed slightly better than the TFT models (Fig. 3). For the
12-week prediction horizon, N-HiTS provided with static
and dynamic features achieved a median rMBE of 0.13 m
(TFT 0.15 m) and median rMBE of 0.08 m (TFT 0.13 m). For
the RMSE and rMBE, the differences between the purely dy-
namic model variants and the models provided with all dy-
namic and static input features were mostly small at around
0.01 m.

Regarding the interval score (Fig. 3), the N-HiTS models
achieved lower values than the TFT models, indicating that
smaller and more precise prediction intervals could be ob-
tained with N-HiTS. For the 12-week prediction horizon, the
purely dynamic model variants had smaller interval scores
than the model variants provided with static and dynamic in-
put features (Table B2). N-HiTS (purely dynamic) achieved
an interval score of 3.68 (TFT (purely dynamic) 4.41), while
the interval score for the N-HiTS model provided with static
and dynamic features was 3.89.

The addition of static features marginally improved the
performance of the N-HiTS architecture (the difference in
median NSE was 0.03 from the purely dynamic model for
the 12-week prediction, P < 0.001) and did not improve the
performance of the TFT architecture (Fig. 3, Table B1).
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3.2 Spatial model performance

Investigating how the prediction accuracy is distributed
among the groundwater monitoring wells reveals spatial pat-
terns and variations across Germany. Both TFT and N-HiTS
models showed similar spatial patterns in the predictive per-
formance (Fig. B2). For the sake of simplicity, we focus on
the results of the best-performing model, the N-HiTS model
provided with static and dynamic features. As mentioned ear-
lier, for the 1-week prediction horizon there were almost ex-
clusively forecasts with a high prediction accuracy. However,
poor performances with a median NSE below zero were ob-
served for wells primarily located in southeastern Germany.
For the 12-week horizon, there are regions where the model
forecasts appear to be generally better and above the median
NSE of 0.5, particularly in the Upper Rhine Graben, north-
western Germany, and large parts of northeastern Germany
(Figs. 5, B2). Notably, better predictions were often achieved
in areas with higher data density, though exceptions exist.
The KDE analysis identified eight areas with high data den-
sity (Fig. 6). Among them, five show a better performance
than the median NSE of 0.5 (median NSE between 0.59 and
0.78). However, three high-data-density areas, located in the
southeast of the North and Central German Unconsolidated
Rock District, central south of the North and Central German
Unconsolidated Rock District, and the west of the Alpine
Foreland, had median NSE values between 0.29 and 0.32.
The Spearman correlation between the NSE and the KDE
values was 0.12. Overall, there was no clear visual spatial
distribution of NSE values; i.e. monitoring wells with poor
model prediction accuracy (NSE below 0) were distributed
across Germany and also occurred in close proximity to sites
with better prediction accuracy, resulting in an uneven spatial
pattern of model performance.

3.3 Model performance comparison across static
features and time series features

To understand under which conditions the ML models per-
form best and to assess whether they capture influential fac-
tors affecting groundwater level dynamics, an analysis of
the Spearman correlation between model performance and
both numeric static features and time series features of the
groundwater hydrographs was carried out. The correlations
were largely similar for the N-HiTS and TFT model vari-
ants; hence results for the N-HiTS model provided with static
and dynamic features for the 12-week prediction are reported
in the text, if not denoted differently (Table 3). Similarly,
regarding the performance distribution across the different
static feature categories, the results for the best-performing
model, N-HiTS provided with static and dynamic features,
are reported.

No strong correlations between the static numeric features
and the NSE values for the 12-week prediction were found.
The most notable correlations were a positive correlation be-
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tween the TWI and the NSE (p = 0.22) and negative cor-
relations between elevation (p = —0.27) and the landform
Shannon index (p = —0.23) with the NSE. For the time se-
ries features, the highest correlations were obtained for the
seasonal behaviour (Table 3). Here, a positive correlation
of p = 0.28 was obtained (p = 0.34 for N-HiTS, purely dy-
namic). Other notable correlations were a negative correla-
tion between NSE and the flashiness of the groundwater hy-
drographs (p = —0.21) and a positive correlation with the
range ratio (p =0.17). A weak correlation was found be-
tween the NSE values and the linear trend as well as the NSE
and the time series length (p <= 0.03). All reported correla-
tions were statistically significantly different from zero (Ta-
ble 3). Distributions of the time series features are provided
in Fig. B3. A wide variation in model performance was ob-
served across the different static feature categories (Fig. B4,
Table B7). The highest median NSE values were achieved for
monitoring wells situated in porous aquifers (0.52), at sites
with moderate to high permeability coefficients of > 1x 107>
to1x 103 ms~! (0.56), within closed deciduous broadleaf
forests (0.60), and in peatlands (0.66). A total of 83 % of the
wells were located in porous aquifers, and 68 % were po-
sitioned in areas with moderate to high permeability. Only
a small proportion of wells were located within deciduous
forests (4 %), primarily in the Upper Rhine Graben, or in
peatlands (5 %), mostly in northern Germany (Figure B6).
For the different major hydrogeological districts of Germany,
the best results for the 12-week predictions were obtained in
the North and Central German Unconsolidated Rock District,
the Upper Rhine Graben, and the Southwest German Base-
ment (median NSE between 0.56 and 0.7). In these districts
many wells were located, they had a high density of wells, or
they were located near districts with a high density of wells.

3.4 Feature importance and attention of the TFT
models

The feature importance values of the TFT models derived
from the variable selection networks were dependent on the
model weight initialisations and showed a relatively high
spread for most of the input features (Fig. 7). The feature im-
portance ranking was dominated for the dynamic input vari-
ables by the groundwater level. Other important dynamic fea-
tures were precipitation, temperature, and humidity, though
for some initialisations the day of the year was also important
(Figs. 7, B9). Among the static inputs, the standard deviation
of the groundwater level was the most important input fea-
ture, followed by the TWI, the aquifer type, and the landform
Shannon index.

The most important past time steps, according to the at-
tention scores, were often at the beginning of the input se-
quences (52 weeks, i.e. the week a year ago) and recent time
points. For the 1-week prediction this was often the last time
point and for the 12-week prediction this was often 12 weeks
before the prediction (Figs.B10, B11).
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Figure 3. Overview of the predictive performance of the global models for the model variants with all features and the purely dynamic model
variants. Distributions are shown of NSE, RMSE, rMBE, and interval score values achieved for the 5288 monitoring wells. Reported values
are based on the median for each metric of the 10 initialisations for each well. White lines denote the median value of each distribution.

Table 3. Spearman correlations between the NSE values for the 12-week prediction horizon per monitoring well and the numeric static input
features as well as the time series features. Correlations between NSE values for the purely dynamic model variants and the static numeric
features were omitted because these features were not an input to these models. Significance codes: three asterisks (***) indicate 0, two
asterisks (**) indicate <= 0.01, one asterisk (¥) indicates <= 0.05, and no asterisk indicates > 0.05.

PSpearman NSE TFT NSE TFT NSE N-HiTS  NSE N-HiTS
(purely dynamic) (purely dynamic)

Static numeric feature

Elevation —(0.24 %% —0.27%%*

EUMOHP_DSD1 0.09%:* 0.1%*

EUMOHP_LP1 0.1%* 0.1%*

EUMOHP_SD1 0.14%* 0.14%*

Groundwater recharge 0.14%%* 0.1%*

Shannon index landforms = —0.23*** —0.23%%*

TWI 0.18%%* 0.227%%:%

Time series feature

Seasonal behaviour 0.27%* 0.30%* 0.28%* 0.34%*

SDdiff (flashiness) —0.22%#% (), 23%** —0.21%#%* —0.19%#%*

Range ratio 0.1%* 0.09%* 0.17%** 0.21%**

Amplitude —0.12%:* —0.1%* —0.13%* —0.12%*

Skew —0.09%* —0.07** —0.11%* —0.11%%*

Linear trend (slope) 0.009* 0.03%* —0.027%* —0.02**

Time series length 0.01* —0.002 0.02%%* 0.03**
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Figure 4. Range of median NSE values of the 10 initialisations
(shaded colours) for each model variant for the 12-week prediction
horizons. The bold lines represent the median of the 10 initialisa-
tions.

4 Discussion
4.1 General and spatial model performance

The results for the 12-week prediction demonstrate that
the tested global ML approaches can provide good predic-
tions for a large number of monitoring wells distributed
over a broad region with diverse hydrogeological properties.
Thereby, the N-HiTS architecture outperformed the TFT ar-
chitecture by achieving a median NSE of 0.5 across all 5288
monitoring wells. Both models show high prediction accura-
cies for a considerable number of wells when an NSE of at
least 0.7 is considered to be indicative of high performance
(see Wunsch et al., 2022a). Precisely, the N-HiTS model pro-
vided with static and dynamic features achieved an NSE of
at least 0.7 for 1163 monitoring wells (approximately 22 %
of all monitoring wells) and the TFT model achieved an NSE
of at least 0.7 for 489 monitoring wells (9 % of all monitor-
ing wells). Overall, the N-HiTS model showed a good level
of model performance, given the high number of monitoring
wells included without preselection and the heterogeneous
hydrogeological situation of the study area, comprising 10
different major hydrogeological districts and 35 hydrogeo-
logical regions (BGR and SGD, 2019).
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Two previous studies have predicted groundwater levels
for up to 118 monitoring wells distributed across Germany
using single-well models based on convolutional neural net-
works (CNNs) (Wunsch et al., 2022a) and a global LSTM
architecture (Heudorfer et al., 2024). A total of 82 of these
118 monitoring wells were also used in our study. Neverthe-
less, direct comparisons to our study should be made cau-
tiously due to differences in input features and experimen-
tal design. The single-well models solely used meteorologi-
cal input features (Temperature and precipitation), while the
LSTM approach included static features; however, in both
studies, groundwater level was not used as an input feature.
The wells in these studies were preselected on the basis that
their groundwater dynamics were primarily influenced by
climatic processes and could be accurately predicted in the
past. In addition, the lengths of the training, validation, and
test period were different compared to our study, and Heudor-
fer et al. (2024) also used partly different static input fea-
tures. The single-well models achieved an NSE of at least
0.7 (median NSE = 0.81) and the global LSTM approach a
median NSE of 0.82 for the 1-week prediction horizon. For
82 of the 118 monitoring wells, our best model, the N-HiTS
model provided with static and dynamic features, achieved
an NSE of 0.93 for the 1-week prediction horizon and an
NSE of 0.62 for the 12-week prediction horizon. Thus, the
N-HiTS model can compete with the other approaches and
is suitable for the purpose of short-term groundwater level
prediction. However, N-HiTS in its current implementation
requires the target feature as input feature and is for this task
inferior to the single-well CNNs or the global LSTM.

The N-HiTS model produced narrower prediction in-
tervals based on the interval score, with the purely dy-
namic model achieving narrower prediction intervals than
the model provided with static and dynamic features for the
12-week prediction horizon. Example hydrographs included
in Appendix B illustrate these results (Fig. B1). This find-
ing implies that when the models have access to static fea-
tures, they generalise or cluster across similar static feature
levels, encountering a wide range of groundwater dynam-
ics. Consequently, prediction intervals may be wider than in
purely dynamic models, which estimate the 0.1 and 0.9 quan-
tiles only based on historical groundwater levels and climatic
data. This result indicates that the static features currently
lack sufficient “distinguishing potential” and may generalise
across wells that are actually environmentally distinct. One
possible reason for this could be uncertainties in the static
input features, which are discussed further in Sect. 4.3. More-
over, adding other relevant features, such as lithostratigraphic
data at the monitoring well (which were unavailable for this
study), could mitigate this issue.

The results further suggest that areas with a higher data
density tend to have a higher prediction accuracy. Poor model
performances in high-data-density regions may be explained
by specific regional and anthropogenic factors, e.g. former
and recent activities of lignite mining in the southeast of
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Figure 5. Performance of the N-HiTS model in terms of NSE across Germany for the 1-week prediction and 12-week prediction horizon.

Results for the TFT model are shown in Fig. (B2).

the North and Central German Unconsolidated Rock District
(northwestern Saxony), possibly lead to difficulties in pre-
dicting groundwater level fluctuations despite the high den-
sity of monitoring wells. For instance, Schroeter and GlidBer
(2011) report a decline of the groundwater table of up to
70m during the period of active mining in some parts of
this area. Moreover, comparatively larger errors at certain lo-
cations and the erratic spatial pattern of model performance
suggest that there are influencing factors not covered by the
input features used; these could include anthropogenic in-
fluences such as water withdrawals. Filtering out monitoring
wells with strong anthropogenic influences is not trivial for
such a large study area, as most wells will exhibit some form
of “unnatural” influence. Future studies should aim to iden-
tify time series features that indicate strong anthropogenic
influences, which can then be used to filter or cluster for mon-
itoring wells suitable for groundwater level prediction when
information on water abstraction is not available.

4.2 Hydrogeological and environmental drivers of
model performance

The correlation analysis of the NSE values with static fea-
tures and time series features revealed weak or no correla-
tions. The analysis of model performance across the different
static feature categories indicated a few environmental con-
ditions for which a better performance could be achieved but
did not show pronounced differences.

The highest identified correlations suggest that the ML
models’ performance tended to improve when groundwater
dynamics followed the expected seasonality, at monitoring
wells with higher TWI values, at monitoring wells located at
lower elevations, at monitoring wells that were surrounded
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by fewer or a less diverse set of landforms, and when ground-
water hydrographs had a lower flashiness. The first four fac-
tors potentially characterise monitoring wells in lowlands, as
TWI values are higher at lower elevations (p = —0.43), prob-
ably with a low depth to groundwater, enabling a distinct sea-
sonality. These findings align with Gomez et al. (2024), who
also found that model accuracy improved in areas with higher
TWI and decreased in hilly regions. Examples of individual
monitoring wells with particularly poor 12-week predictions
where the expected seasonality was distorted (i.e. highest
groundwater level in March, lowest in September) and with
high flashiness are shown in Appendix B (Fig. B7).

For monitoring wells that deviate from the expected
seasonality and exhibit lower-frequency variations, i.e. in-
ert groundwater hydrographs, choosing a longer sequence
length could improve predictions. However, for many of the
monitoring wells there was a lack of sufficiently long time
series to support longer sequence lengths and accordingly
longer validation and test periods. Nevertheless, while we
found that the ML models perform well for monitoring sta-
tions with an expected seasonal pattern, there are also in-
stances where the models effectively capture unusual dynam-
ics, such as hydrographs with a weak seasonality and ex-
tended phase of recession or a downward trend (Fig. BS).

The analysis of model performance across the categor-
ical static features implied a better model performance in
hydrogeologically relatively homogeneous areas (i.e. ma-
jor hydrogeological districts) where many wells are located.
Moreover, model performance tended to be better in porous
aquifers and at sites with medium to moderate permeabil-
ity coefficients. This finding aligns with theoretical expec-
tations that in porous aquifers and at moderate permeabil-
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Figure 6. KDE of the density of monitoring wells. Areas with high
data density are depicted in darker blue and encircled in purple.
Median NSE values are reported in bold for each area with high
data density. Dots represent the 5288 monitoring wells. The white
lines and numbers from 1-10 represent the major hydrogeologi-
cal districts. Legend (see Fig. B5): (1) North and Central German
Unconsolidated Rock District, (2) Rhenish-Westphalian Lowland,
(3) Upper Rhine Graben with Mainz Basin and North Hessian Ter-
tiary, (4) Alpine Foreland, (5) Central German Fault-Block Land,
(6) West and South German Scarplands and Fault-Block Land,
(7) Alps, (8) West and Central German Basement, (9) Southeast
German Basement, (10) Southwest German Basement.

ities groundwater flow is relatively slow and uniform and
thus more predictable than in other hydrogeological sys-
tems such as karst and fractured aquifers, which exhibit
highly anisotropic subsurface conditions with high flow ve-
locities and heterogeneous groundwater dynamics (Bakalow-
icz, 2005; Hermans et al., 2023). Furthermore, this finding
is also likely related to the high number of training exam-
ples for these conditions. Two additional environmental con-
ditions with higher NSE values stood out: monitoring wells
located in closed forests with deciduous broadleaf trees and
monitoring wells located in peatlands. Wells in closed forests
with deciduous broadleaf trees were primarily located in
an area with high data density, the Upper Rhine Graben,
suggesting that data availability rather than the presence of
closed forests explains the good performance. In peatlands
hydraulic conductivity is generally assumed to be low in the
deeper peat layers (Kvarner and Snilsberg, 2011). Addition-
ally, high water tables may prevail because of limited lat-
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eral flow in areas with a low topographic gradient like north-
ern Germany were most of the monitoring wells in peatlands
are located (Oosterwoud et al., 2017). Thus, groundwater dy-
namics were more controlled and potentially mainly contin-
gent on the climatic signal, which can explain the good pre-
dictive performance. In fact, the monitoring wells located in
peatlands exhibited also relatively high values for the time
series feature seasonal behaviour (median 0.59).

Overall, some hydrogeological and environmental condi-
tions could be identified under which a good model perfor-
mance could be achieved, in line with the understanding of
the hydrogeological system, but the heterogeneous results
also show the complexity of the data at hand.

4.3 The role of static features in global machine
learning models for groundwater level prediction

Despite the relatively high feature importance scores for
some static features, they contributed to improved predic-
tive performance in only a small number of monitoring
wells, suggesting limited utility for generalisation across
data points with similar static feature levels. Previous stud-
ies demonstrated a stronger increase in predictive perfor-
mance of global ML models when incorporating static fea-
tures (Heudorfer et al., 2024; Li et al., 2022). However, these
studies were conducted for a much smaller number of mon-
itoring wells and the authors suggest that their models used
the static features primarily as unique identifiers (Heudorfer
etal., 2024; Li et al., 2022). One possible explanation for the
addition of static features yielding only a small increase in
the overall model performance is that the ML models used
may have primarily learned from the dynamic input features.
In contrast to the cited studies, the N-HiTS and TFT models
were provided with the target variable (groundwater level) as
an input feature, which was unexpectedly the most important
input feature based on the feature importance of the TFT. It
is important to note that by using a validation set and various
techniques such as dropout and early stopping to avoid over-
fitting, the models were prevented from simply replicating
historical groundwater levels. Moreover, in comparison with
the model using solely dynamic input features, the model
variants incorporating additional static features were partly
“confused” by this information. While for few monitoring
wells an improvement in model performance with the ad-
dition of static features could be achieved, e.g. for N-HiTS
for the 12-week prediction 5.4 % of monitoring wells with
an NSE of 0.5 saw an increase in model performance of 0.1
NSE or greater, for a small portion of monitoring wells the
model performance declined. To be precise, 1.9 % of moni-
toring wells with an NSE of at least 0.5 exhibited a decrease
in model performance of 0.1 NSE or greater. Possibly, the
wells exhibiting a decline in performance had groundwater
dynamics that differed strongly from other monitoring wells
with similar static feature values.
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Figure 7. Variable importance of the TFT model trained with all static and dynamic input features. Each box plot shows 10 importance
values based on the different weight of initialisations. Variables are ranked based on their median importance. Results for the other TFT

model variants are shown in Appendix B (Fig. B9).

Further reasons why the models may have been unable
to extract meaningful relationships between the groundwater
level and the static features may be due to their inherent un-
certainties, which make it challenging for the models to use
them to generalise to wells with similar static feature levels.
These uncertainties stem from (1) the fact that the best spa-
tial aggregation that accurately reflects the static input fea-
tures and their relation to the groundwater level depends on
the specific feature and monitoring location and may not be
localised to the pixel level (1 km buffer) at the surface and
(2) the regionalised nature of these features, wherein values
are derived by extrapolating from discrete points into broader
spatial contexts. In order to improve future groundwater level
predictions, it could be beneficial to utilise higher-resolution
maps or combine two-dimensional maps with time series
data (e.g. Addimando et al., 2022), as well as to test different
spatial aggregations of static features. The features employed
in this study predominantly describe surface or near-surface
conditions (e.g. soil texture), since they are easily accessible
and available for a large area. Groundwater flow dynamics
are strongly affected by subsurface factors and the under-
lying complexity of the hydrogeology. Thus, the incorpora-
tion of features that describe subsurface properties, such as
the depth and thickness of the aquifer in the vicinity of the
monitoring wells, could enhance the predictive performance.
However, at present, information on such features is often not
extensively available.

Lastly, the marginal improvement in model performance
for the N-HiTS model with static features might be attributed
to differences in the data fusion of static and dynamic in-
put features compared to the TFT architecture. N-HiTS uses
an additional stack composed of fully connected layers for
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exogenous variables (FCNN), while the TFT uses GRN en-
coders that provide context for the temporal processing.

4.4 Feature importance and important past time steps

The TFT offers an intrinsic feature importance method
through the VSNs, providing insights into which features
are relevant for prediction. This makes this architecture at-
tractive, as no post-analysis of feature importance was re-
quired, such as Shapley values or permutation importance.
Nevertheless, this study demonstrated that the results should
be interpreted with caution, as some static features exhib-
ited relatively high importance values (standard deviation of
groundwater level, TWI) yet did not enhance the overall pre-
dictive performance of the TFT. Moreover, the feature impor-
tance values of the TFT had a high dependency on the model
weight initialisation, which underpins the necessity of run-
ning several initialisations when using this approach. The ob-
served variability in feature importance for the features day
of the year, temperature, and sinus of the temperature can
be attributed to the fact that these features provide the model
with information on the yearly seasonality. If one of them be-
comes important, the importance of the other features tends
to diminish.

The TFT architecture also offers insights into the most im-
portant past time steps through the attention scores. The at-
tention scores reflected the seasonality in the data, which is
also represented in the autocorrelation function (Fig. B12),
and highlighted its importance as well as the importance of
the immediate past for groundwater level prediction. That at-
tention scores from a TFT model mainly reflect seasonality
in hydrological or hydrogeological data was also observed
in a study on streamflow prediction (Koya and Roy, 2023).
Future studies may explore using longer sequence lengths to
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capture longer range dependencies, wherein attention layers
can reveal the relevance of these time points, though such
experiments likely come with higher computational costs.

5 Conclusion

In this study, two recently developed global ML architec-
tures, TFT and N-HiTS, were applied to predict groundwa-
ter levels for up to 12 weeks for 5288 monitoring wells dis-
tributed across Germany. The results demonstrated that these
architectures are suitable for seasonal groundwater level pre-
diction for thousands of monitoring wells, enabling good pre-
dictions across a large area with only one model, whereby the
N-HiTS model showed better predictive performance for our
dataset. While overall predictive performance was good the
models failed to accurately predict groundwater levels for a
considerable number of wells (about 15 % with an NSE be-
low 0 with the best-performing model), which highlights the
hydrogeological complexity of the study area and the pos-
sible influence of anthropogenic factors such as water with-
drawals that could not be captured by the input features. To
address this issue, future research should aim at filtering out
monitoring wells with strong anthropogenic influences, for
example, based on suitable time series features or, if possi-
ble, include features that describe anthropogenic factors such
as water abstractions.

In contrast to our expectations, the addition of static fea-
tures in the models resulted in improved performance only
for a small number of monitoring wells. Regarding the over-
all performance across all 5288 monitoring wells, the static
features marginally improved the overall performance of the
N-HiTS model, but not for the TFT model. Future studies
could examine the potential benefits of alternative represen-
tations of static features, such as two-dimensional maps or
more detailed information on subsurface processes, in order
to more accurately reflect the true conditions at and around
a monitoring well. Additionally, testing and using different
buffer sizes, besides the 1km radius used in our study, for
data extraction around the monitoring wells could lead to fur-
ther improvements in the use of static features. Furthermore,
the impact of static features on the model performance may
be more pronounced in exogenous-only models that do not
use the groundwater level as an input feature, arguably the
most important predictive feature.

The correlations between model performance and differ-
ent static features, as well as time series features, were found
to be low. This may again be attributed to the complex hy-
drogeological conditions across Germany, as well as poten-
tial anthropogenic influences. Nevertheless, the results of
the correlation analysis implied that more accurate predic-
tions can be made in lowland areas with less complex sur-
rounding landscapes and groundwater hydrographs exhibit-
ing a seasonal pattern. Moreover, comparisons of model per-
formance across the categorical static features pointed out
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that a slightly better performance can be obtained in porous
aquifers, areas with medium to moderate permeability co-
efficients, and in peatlands. Areas with a high data density
appear to facilitate more accurate predictions, which aligns
with theoretical expectations that high-capacity ML models
benefit from a large number of training examples with a high
data diversity (Nearing et al., 2021; Kratzert et al., 2024).

The feature importance obtained from the TFT showed a
relatively high variability across the 10 initialisations. This
should be taken into account when utilising the model in-
terpretability insights provided by the TFT, or alternatively,
model-agnostic techniques should be employed. Neverthe-
less, the results indicated that the TFT mainly learned from
the provided groundwater levels and the standard deviation
of the groundwater levels. Other important dynamic features
were precipitation, humidity, and temperature, while a no-
table important static feature was the TWL

In conclusion, the state-of-the-art global ML architectures
TFT and N-HiTS represent valuable additions to the thus
far established LSTM architecture for groundwater level pre-
diction. The N-HiTS architecture demonstrated superior pre-
dictive capabilities compared to the TFT architecture based
on the predictive performance for the compiled dataset. This
makes it a powerful ML architecture for groundwater level
predictions in large, hydrogeologically complex areas.

Appendix A: Additional information on training data
and model evaluation

Al Length of training period

Table A1. Descriptive statistics on the length of the training period.

Length training

period (y)
No. monitoring wells 5288
Mean 16.42
SD 4.68
Min 6
25 % 13
50 % 20
75 % 20
Max 20
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A2 Time series characteristics of the groundwater level
time series in training, validation, and test period
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Figure Al. Distribution of the mean, standard deviation (SD), minimum (min), and maximum (max) of the 5288 groundwater level time
series for the training, validation, and test period.
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A3 Description of relative mean bias error and interval
score

As additional error metrics the relative mean bias error
(rtMBE) and the interval score for evaluating probabilistic
forecasts are reported. The rtMBE is defined as the mean de-
viance divided by a constant, for which the standard devia-
tion of the groundwater levels is chosen. Negative rMBE val-
ues indicate underestimation, positive values indicate overes-
timation, and a value close to zero can indicate a good esti-
mate. Nevertheless, a value of zero does not necessarily indi-
cate a perfect estimate, since under- and overestimation can
cancel each other out. Hence, the rMBE is only sensitive to
biases having a dominant direction. It is defined as follows:

ZtT:1 r — 1)
SD(y) T '

rMBE =

(AD)

The interval score (Eq. A2) combines two properties of a pre-
diction interval: (1) the sharpness, which refers to the con-
centration of the predictive distribution and is a property of
the prediction only, and (2) the calibration, which denotes
how much the true value is outside of the predicted interval.
In the equation ¢ denotes a time step in the time series, 7' de-
notes the total number of time steps, y, denotes the observed
value of the target variable at time step 7, y; denotes the esti-
mated value at time step 7, and 3, and $;- denote the upper
and lower bound of the predicted distribution at time step ¢.
Smaller values of the interval score indicate a better estimate
and a narrower prediction interval. A normalised version of
the interval score was used, obtained by dividing the interval
score by the standard deviation of the true values.

rlS= ——
SD(y)

sha < calibration
sharpness

2
S (67 =55+ = (maxG = 3,0 +max(y, - 5/.0)))
X

- (A2)
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Appendix B: Model performance and model

interpretability

B1 Model performance comparison across prediction

horizons

3421

Table B1. Median NSE values for the prediction of groundwater levels of the 5288 wells for each horizon. Reported values are based on
the median NSE of the 10 initialisations for each well. P values refer to the difference between the model variants provided with all input
features compared to the purely dynamic model (one-sided Mann—Whitney U test).

Horizon Median NSE TFT Median NSE TFT P value TFT Median NSE N-HiTS  Median NSE N-HiTS P value

(purely dynamic) (purely dynamic) N-HiTS
1 0.91 091 3.22x1073 0.92 0.92 8.89 x 1072
2 0.85 085 5.71x1072 0.87 0.86 3.91 x 1072
3 0.80 080 1.29x 1072 0.82 0.82 1.83x 1072
4 0.75 074 5.76x 1073 0.79 0.78 4.84x 1073
5 0.69 0.69 2.56x 1073 0.74 0.73 3.01x1073
6 0.64 0.63 2.53x1073 0.70 0.68 2.30x 1073
7 0.59 057 3.69x 1073 0.66 0.64 6.66x 10~*
8 0.54 0.53 2.00x 1072 0.62 0.61 5.20x1074
9 0.48 048 2.34x 1072 0.59 0.57 2.05x 107
10 0.44 043 3.51x1072 0.55 053 5.84x107°
11 0.39 039 2.59x107! 0.53 051 3.18x107°
12 0.34 035 421x107! 0.50 047 7.42x107°

Table B2. Median interval scores for TFT and N-HiTS models for each horizon. Reported values are based on the median interval score
of the models provided with all input features compared to the purely dynamic model. P values refer to the difference between the model

variants and the purely dynamic model (two-sided Mann—Whitney U test).

Horizon Median interval Median interval score P value TFT  Median interval Median interval score P value

score TFT  TFT (purely dynamic) score N-HiTS  N-HiTS (purely dynamic) N-HiTS
1 1.54 1.62  8.634 x 10724 1.19 126  1.659x 107
2 1.98 214 4.029x 1074 1.86 1.70  1.698 x 10~25
3 251 3.15  1.192 x 10286 225 219  7.403x 1073
4 2.86 3.01  7.466 x 10728 2.65 244  1.694 x 10732
5 3.29 344  2533x10°15 3.01 288 9.202x 10715
6 3.65 408 3.570 x 107111 3.16 3.16  1.982x 107!
7 3.72 407 4571 x 10763 3.62 341 9.869 x 10724
8 4.13 456  2.129 x 107109 3.65 3.69  6.766 x 107!
9 481 453 2.223x 107 3.82 396  3.939x107?
10 4.44 482 2233 x 10768 3.84 390 1.114x 107!
11 453 461 3.054 x 1073 3.99 3.80 1.023x 10717
12 4.45 4.41 4.126 x 108 3.89 3.68 2.131x 10717
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B2 Performance comparison with the naive forecast

Table B3. Median NSE values for the prediction of groundwater levels of the 5288 wells with the naive forecast.

Horizon Median NSE
naive forecast

0.91
0.82
0.71
0.60
0.47
0.34
0.20
0.06
—0.10
—-0.25
—0.39
—0.52

0N N AW~

—_ == O
N = O

Table B4. Comparison of the number of monitoring wells where ML architectures or naive forecast perform better depending on the model
type for the 1-week prediction horizon.

Model type N wells better N wells better

with ML  with naive forecast
N-HiTS (purely dynamic) 449 7
N-HiTS 515 4
TFT (purely dynamic) 450 42
TFT 426 39

Table BS. Comparison of flashiness values for groundwater level time series where ML architectures improved predictions by at least 0.1
NSE over the naive forecast (called subgroup in the table; see also Table B4). P values were obtained with a one-sided Mann—Whitney U
test by comparison against flashiness values of all groundwater level time series.

Model type Subgroup mean flash.  Subgroup median flash. ~ Overall mean flash.  Overall median P value
N-HiTS (purely dynamic) 0.22 0.15 0.12 0.08 1.94 x 1082
N-HiTS 0.23 0.16 0.12 0.08 8.15x 1079
TFT (purely dynamic) 0.22 0.15 0.12 0.08 1.01x 1079
TFT 0.22 0.15 0.12 0.08 4.69 x 10767
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B3 Prediction intervals
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Figure B1. Five example hydrographs with narrower prediction intervals obtained with the N-HiTS (purely dynamic) model than the N-HiTS
model provided with static and dynamic features.

B4 Model performance of TFT model trained without

historic groundwater level observations

Table B6. Performance summary of the TFT model variant trained without historic groundwater level data as input, i.e. a model only trained
on exogenous features. Two variants have been trained: with exogenous static and dynamic features and an ablated version with exogenous

dynamic features.

Model type Horizon NSE RMSE rMBE Interval score
TFT 1 0.37 0.16 0.22 3.72
TFT 12 0.08 0.18 0.26 4.49
TFT (purely dynamic) 1 0.22 0.18 0.23 3.95
TFT (purely dynamic) 12 —-0.04 0.20 0.28 4.57

https://doi.org/10.5194/hess-29-3405-2025

Hydrol. Earth Syst. Sci., 29, 3405-3433, 2025



3424 S. Kunz et al.: Towards a global time series model for seasonal groundwater level predictions in Germany

B5 Spatial patterns of model performance
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Figure B2. Spatial distribution of the NSE values for the TFT model provided with static and dynamic features across Germany for the
1-week prediction and 12-week prediction horizon.

B6 Hydrogeological and environmental drivers of
model performance
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Figure B3. Distributions of the calculated time series feature values for the 5288 monitoring wells.
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Table B7. Median NSE values for different static features for all model variants and a prediction horizon of 12 weeks. n is the number of
wells in each major hydrogeological district. The legend for the major hydrogeological districts is shown in Fig. BS.

Static feature n  Median NSE  Median NSE N-HiTS Median  Median NSE TFT
N-HiTS (purely dynamic) NSE TFT  (purely dynamic)
Aquifer type
Fractured and karstified aquifers 185 0.45 0.44 0.33 0.33
Fractured and porous aquifers 95 0.37 0.36 0.27 0.26
Fractured aquifers 612 0.39 0.36 0.27 0.27
Porous aquifers 4395 0.52 0.49 0.36 0.36
Land cover
Closed forest, deciduous broadleaf 187 0.6 0.56 0.39 0.43
Closed forest, evergreen needleleaf 463 0.55 0.48 0.35 0.36
Closed forest, mixed 129 0.55 0.48 0.37 0.42
Cultivated and managed vegetation/agriculture 3611 0.51 0.49 0.36 0.35
Herbaceous vegetation 65 0.34 0.32 0.23 0.2
Open forest, mixed 3 0.42 0.57 0.42 0.52
Open forest, unknown 15 0.06 —0.22 —-0.29 -0.17
Urban/built-up 792 04 0.37 0.29 0.31

Major hydrogeological district

1 2564 0.56 0.54 0.4 0.4
2 387 0.47 0.46 0.36 0.35
3 807 0.64 0.62 0.54 0.52
4 422 0.3 0.24 0.17 0.14
5 441 0.32 0.31 0.17 0.19
6 265 0.49 0.44 0.35 0.36
7 12 0.26 0.26 0.14 0.14
8 164 0.35 0.34 0.22 0.29
9 211 0.22 0.18 0.08 0.11
10 15 0.7 0.68 0.58 0.56
Permeability coefficient

High (> 1 x 107321 x 1072) 788 0.37 0.33 0.22 0.21
Highly variable 110 0.29 0.26 0.24 0.21
Low to extremely low (< 1 x 10_5) 520 0.38 0.36 0.26 0.25
Medium to moderate (> 1 x 1079-1 x 1073) 3600 0.56 0.53 0.4 0.4
Moderate to low (> 1 x 10701 x 10™%) 265 0.33 0.29 0.24 0.23
Soil texture

Clay loams 592 0.47 0.48 0.38 0.39
Clay silts 876 0.38 0.36 0.25 0.28
Loams 127 0.32 0.3 0.17 0.08
Loamy sands 1376 0.57 0.54 0.42 0.41
Loamy silts 287 0.38 0.34 0.2 0.24
Open cast mining sites 7 0.19 0.27 0.14 0.19
Peatlands 286 0.66 0.63 0.46 0.44
Pure sands 807 0.6 0.58 0.43 0.43
Sandy loams 558 0.44 0.38 0.29 0.27
Silty clays 54 0.5 0.46 0.36 0.29
Silty sands 19 0.29 0.38 0.24 0.18
Urban settlements 287 0.35 0.33 0.26 0.32
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Figure B4. Bar plots showing the median NSE per static feature category for the N-HiTS model provided with static and dynamic features
for the 12-week prediction horizon. The categories with the highest values are highlighted. The sample size is given behind each bar. The
dotted vertical line indicates the overall NSE for this model variant (0.5). The legend for the major hydrogeological districts is in Fig. BS.
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Figure BS. The major hydrogeological districts for Germany. Dots represent the 5288 monitoring wells. Legend: (1) North and Central
German Unconsolidated Rock District, (2) Rhenish-Westphalian Lowland, (3) Upper Rhine Graben with Mainz Basin and North Hessian
Tertiary, (4) Alpine Foreland, (5) Central German Fault-Block Land, (6) West and South German Scarplands and Fault-Block Land, (7) Alps,
(8) West and Central German Basement, (9) Southeast German Basement, (10) Southwest German Basement.
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Figure B6. Locations of the monitoring wells with the highest median NSE values for the N-HiTS model provided with static and dynamic
features for the 12-week prediction horizon for monitoring wells located in porous aquifers, at sites with medium permeabilities, in closed
forest with deciduous broadleaf, and in peatlands.
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Figure B7. Examples of two monitoring wells with groundwater hydrographs with a distorted seasonality (BB_35432435) and a high
flashiness (BW_161-370-8). Panels (b) and (d) show the hydrographs for the entire period of training, validation, and test (the blue-shaded
area marks the test period). Panels (c) and (e) show the predictions for the N-HiTS and TFT model provided with static and dynamic input
features for the test period.
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Figure B8. Examples of two monitoring wells with groundwater hydrographs with inert groundwater dynamics where the models achieved
good predictive performance for the 12-week prediction horizon. Panels (b) and (d) show the hydrographs for the entire period of training,
validation, and test (the blue-shaded area marks the test period). Panels (c) and (e) show the predictions for the N-HiTS and TFT model
provided with static and dynamic input features for the test period.

B8 Feature importance of the TFT models
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Figure B9. Variable importance values of the TFT (purely dynamic) model. Each box plot shows 10 importance values based on the different
weight initialisations. Variables are ranked based on their median importance.
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B9 Attention curves
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Figure B10. Attention curve for the 1-week prediction of the TFT
provided with static and dynamic input variables highlighting im-
portant past time steps. Time index is in weeks. The autocorrelation
function for 52 weeks is shown in Fig. B12.
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Figure B11. Attention curve for the 12-week prediction of the TFT
provided with static and dynamic input variables highlighting im-
portant past time steps. Time index is in weeks. The autocorrelation
function for 52 weeks is shown in Fig. B12.
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Figure B12. Box plots show the distribution of the autocorrelation
function for 52 weeks across all monitoring wells. The blue line
shows the mean autocorrelation function.
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Code and data availability. The code necessary to reproduce our
results is available on GitHub: https://github.com/KunzstBGR/
global-groundwater-models-main (Kunz, 2025). The TFT and N-
HiTS architectures were implemented and trained with Pytorch
forecasting (Version 1.0.0) and Pytorch lightning (Version 2.0.4),
which are open-source deep learning modules based on the Py-
torch framework (Paszke et al., 2019). A complete list of all the
Python modules used is available at the GitHub repository (require-
ments_ GGWM.txt file). All groundwater level data are available
free of charge from the respective local authorities upon request.
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