Articles | Volume 29, issue 11
https://doi.org/10.5194/hess-29-2377-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-2377-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Hydrological controls on temporal contributions of three nested forested subcatchments to the export of dissolved organic carbon
Katharina Blaurock
Department of Hydrology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95447 Bayreuth, Germany
Burkhard Beudert
Department of Nature Conservation and Research, Bavarian Forest National Park, 94481 Grafenau, Germany
Department of Hydrology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95447 Bayreuth, Germany
Related authors
Katharina Blaurock, Burkhard Beudert, Benjamin S. Gilfedder, Jan H. Fleckenstein, Stefan Peiffer, and Luisa Hopp
Hydrol. Earth Syst. Sci., 25, 5133–5151, https://doi.org/10.5194/hess-25-5133-2021, https://doi.org/10.5194/hess-25-5133-2021, 2021
Short summary
Short summary
Dissolved organic carbon (DOC) is an important part of the global carbon cycle with regards to carbon storage, greenhouse gas emissions and drinking water treatment. In this study, we compared DOC export of a small, forested catchment during precipitation events after dry and wet preconditions. We found that the DOC export from areas that are usually important for DOC export was inhibited after long drought periods.
Theresa Blume, Peter Chifflard, Stefan Achleitner, Andreas Hartmann, Stefan Hergarten, Luisa Hopp, Bernhard Kohl, Florian Leese, Ilja van Meerveld, Christian Reinhardt-Imjela, and Markus Weiler
EGUsphere, https://doi.org/10.5194/egusphere-2025-4424, https://doi.org/10.5194/egusphere-2025-4424, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Subsurface stormflow (SSF) is one of the least studied and therefore least understood runoff generation processes because detecting and quantifying SSF is extremely challenging. We present an ongoing concerted experimental effort to systematically investigate SSF across four catchments using a variety of methods covering different spatial scales. Centerpiece of this effort is the construction of 12 large trenches to capture and monitor SSF.
Andreas Hartmann, Jean-Lionel Payeur-Poirier, and Luisa Hopp
Hydrol. Earth Syst. Sci., 27, 1325–1341, https://doi.org/10.5194/hess-27-1325-2023, https://doi.org/10.5194/hess-27-1325-2023, 2023
Short summary
Short summary
We advance our understanding of including information derived from environmental tracers into hydrological modeling. We present a simple approach that integrates streamflow observations and tracer-derived streamflow contributions for model parameter estimation. We consider multiple observed streamflow components and their variation over time to quantify the impact of their inclusion for streamflow prediction at the catchment scale.
Katharina Blaurock, Burkhard Beudert, Benjamin S. Gilfedder, Jan H. Fleckenstein, Stefan Peiffer, and Luisa Hopp
Hydrol. Earth Syst. Sci., 25, 5133–5151, https://doi.org/10.5194/hess-25-5133-2021, https://doi.org/10.5194/hess-25-5133-2021, 2021
Short summary
Short summary
Dissolved organic carbon (DOC) is an important part of the global carbon cycle with regards to carbon storage, greenhouse gas emissions and drinking water treatment. In this study, we compared DOC export of a small, forested catchment during precipitation events after dry and wet preconditions. We found that the DOC export from areas that are usually important for DOC export was inhibited after long drought periods.
Cited articles
Ågren, A., Buffam, I., Jansson, M., and Laudon, H.: Importance of seasonality and small streams for the landscape regulation of dissolved organic carbon export, J. Geophys. Res., 112, G03003, https://doi.org/10.1029/2006JG000381, 2007.
Ågren, A., Haei, M., Köhler, S. J., Bishop, K., and Laudon, H.: Regulation of stream water dissolved organic carbon (DOC) concentrations during snowmelt; the role of discharge, winter climate and memory effects, Biogeosciences, 7, 2901–2913, https://doi.org/10.5194/bg-7-2901-2010, 2010.
Alarcon-Herrera, M. T., Bewtra, J. K., and Biswas, N.: Seasonal variations in humic substances and their reduction through water treatment processes, Can. J. Civ. Eng., 21, 173–179, https://doi.org/10.1139/l94-020, 1994.
Alvarez-Cobelas, M., Angeler, D. G., Sánchez-Carrillo, S., and Almendros, G.: A worldwide view of organic carbon export from catchments, Biogeochemistry, 107, 275–293, https://doi.org/10.1007/s10533-010-9553-z, 2012.
Amelung, W., Blume, H.-P., Fleige, H., Horn, R., Kandeler, E., Kögel-Knabner, I., Kretzschmar, R., Stahr, K., and Wilke, B.-M.: Scheffer/Schachtschabel Lehrbuch der Bodenkunde, 17th edn., Springer Spektrum, 749 pp., ISBN 978-3-662-55871-3, https://doi.org/10.1007/978-3-662-55871-3, 2018.
Batjes, N. H.: Total carbon and nitrogen in the soils of the world, European J. Soil Sci., 65, 10–21, https://doi.org/10.1111/ejss.12114_2, 2014.
Battin, T. J., Luyssaert, S., Kaplan, L. A., Aufdenkampe, A. K., Richter, A., and Tranvik, L. J.: The boundless carbon cycle, Nat. Geosci., 2, 598–600, https://doi.org/10.1038/ngeo618, 2009.
Bavarian State Office for Environment: Current discharge values Rachel Diensthuette/Markungsgraben, https://www.gkd.bayern.de/de/fluesse/wasserstand/passau/rachel-diensthuette-17418004 (last access: 3 June 2025), 2021.
Bernal, S., Lupon, A., Wollheim, W. M., Sabater, F., Poblador, S., and Martí, E.: Supply, Demand, and In-Stream Retention of Dissolved Organic Carbon and Nitrate During Storms in Mediterranean Forested Headwater Streams, Front. Environ. Sci., 7, 60, https://doi.org/10.3389/fenvs.2019.00060, 2019.
Bernal, S. and Sabater, F.: Changes in discharge and solute dynamics between hillslope and valley-bottom intermittent streams, Hydrol. Earth Syst. Sci., 16, 1595–1605, https://doi.org/10.5194/hess-16-1595-2012, 2012.
Beudert, B., Bässler, C., Thorn, S., Noss, R., Schröder, B., Dieffenbach-Fries, H., Foullois, N., and Müller, J.: Bark Beetles Increase Biodiversity While Maintaining Drinking Water Quality, Conserv. Lett., 8, 272–281, https://doi.org/10.1111/conl.12153, 2015.
Beudert, B., Spitzy, A., Kloecking, B., Zimmermann, L., Baessler, C., and Foullois, N.: DOC-Langzeitmonitoring im Einzugsgebiet der “Großen Ohe”, Wasserhaushalt und Stoffbilanzen im naturnahen Einzugsgebiet Große Ohe, Bericht Nr. 9, Nationalparkverwaltung Bayerischer Wald, 78 pp., 2012.
Blaurock, K., Beudert, B., Gilfedder, B. S., Fleckenstein, J. H., Peiffer, S., and Hopp, L.: Low hydrological connectivity after summer drought inhibits DOC export in a forested headwater catchment, Hydrol. Earth Syst. Sci., 25, 5133–5151, https://doi.org/10.5194/hess-25-5133-2021, 2021.
Blaurock, K., Garthen, P., Da Silva, M. P., Beudert, B., Gilfedder, B. S., Fleckenstein, J. H., Peiffer, S., Lechtenfeld, O. J., and Hopp, L.: Riparian Microtopography Affects Event-Driven Stream DOC Concentrations and DOM Quality in a Forested Headwater Catchment, J. Geophys. Res., 127, e2022JG006831, https://doi.org/10.1029/2022JG006831, 2022.
Blaurock, K., Beudert, B., and Hopp, L.: HESS_Blaurock_2024.xlsx, Figshare [data set], https://doi.org/10.6084/m9.figshare.22770365.v1, 2025.
Borken, W., Ahrens, B., Schulz, C., and Zimmermann, L.: Site-to-site variability and temporal trends of DOC concentrations and fluxes in temperate forest soils, Glob. Change Biol., 17, 2428–2443, https://doi.org/10.1111/j.1365-2486.2011.02390.x, 2011.
Boyer, E. W., Hornberger, G. M., Bencala, K. E., and McKnight, D. M.: Response characteristics of DOC flushing in an alpine catchment, Hydrol. Process., 11, 1635–1647, https://doi.org/10.1002/(SICI)1099-1085(19971015)11:12<1635::AID-HYP494>3.0.CO;2-H, 1997.
Brooks, P. D., McKnight, D. M., and Bencala, K. E.: The relationship between soil heterotrophic activity, soil dissolved organic carbon (DOC) leachate, and catchment-scale DOC export in headwater catchments, Water Resour. Res., 35, 1895–1902, https://doi.org/10.1029/1998WR900125, 1999.
Catalán, N., Marcé, R., Kothawala, D. N., and Tranvik, L. J.: Organic carbon decomposition rates controlled by water retention time across inland waters, Nat. Geosci., 9, 501–504, https://doi.org/10.1038/ngeo2720, 2016.
Chaplot, V. and Mutema, M.: Sources and main controls of dissolved organic and inorganic carbon in river basins: A worldwide meta-analysis, J. Hydrol., 603, 126941, https://doi.org/10.1016/j.jhydrol.2021.126941, 2021.
Ciais, P., Borges, A. V., Abril, G., Meybeck, M., Folberth, G., Hauglustaine, D., and Janssens, I. A.: The impact of lateral carbon fluxes on the European carbon balance, Biogeosciences, 5, 1259–1271, https://doi.org/10.5194/bg-5-1259-2008, 2008.
Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L. J., Striegl, R. G., Duarte, C. M., Kortelainen, P., Downing, J. A., Middelburg, J. J., and Melack, J.: Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget, Ecosystems, 10, 172–185, https://doi.org/10.1007/s10021-006-9013-8, 2007.
Covino, T.: Hydrologic connectivity as a framework for understanding biogeochemical flux through watersheds and along fluvial networks, Geomorphology, 277, 133–144, https://doi.org/10.1016/j.geomorph.2016.09.030, 2017.
Croghan, D., Ala-Aho, P., Lohila, A., Welker, J., Vuorenmaa, J., Kløve, B., Mustonen, K.-R., Aurela, M., and Marttila, H.: Coupling of Water-Carbon Interactions During Snowmelt in an Arctic Finland Catchment, Water Resour. Res., 59, e2022WR032892, https://doi.org/10.1029/2022WR032892, 2023.
Da Silva, M. P., Blaurock, K., Beudert, B., Fleckenstein, J. H., Hopp, L., Peiffer, S., Reemtsma, T., and Lechtenfeld, O. J.: Delineating Source Contributions to Stream Dissolved Organic Matter Composition Under Baseflow Conditions in Forested Headwater Catchments, J. Geophys. Res., 126, e2021JG006425, https://doi.org/10.1029/2021JG006425, 2021.
Dawson, J. J. C., Soulsby, C., Tetzlaff, D., Hrachowitz, M., Dunn, S. M., and Malcolm, I. A.: Influence of hydrology and seasonality on DOC exports from three contrasting upland catchments, Biogeochemistry, 90, 93–113, https://doi.org/10.1007/s10533-008-9234-3, 2008.
Detty, J. M. and McGuire, K. J.: Topographic controls on shallow groundwater dynamics: implications of hydrologic connectivity between hillslopes and riparian zones in a till mantled catchment, Hydrol. Process., 24, 2222–2236, https://doi.org/10.1002/hyp.7656, 2010.
Doerr, H. and Muennich, K. O.: Lead and cesium transport in european forest soils, Water Air Soil Pollut., 57–58, 809–818, https://doi.org/10.1007/BF00282944, 1991.
Drake, T. W., Raymond, P. A., and Spencer, R. G. M.: Terrestrial carbon inputs to inland waters: A current synthesis of estimates and uncertainty, Limnol. Oceanogr. Letters, 3, 132–142, https://doi.org/10.1002/lol2.10055, 2018.
Hobbie, J. E. and Likens, G. E.: Output of Phosphorus, Dissolved Organic Carbon, and Fine Particulate Carbon from Hubbard Brook Watersheds, Limnol. Oceanogr., 18, 734–742, https://doi.org/10.4319/lo.1973.18.5.0734, 1973.
Hongve, D.: Production of dissolved organic carbon in forested catchments, J. Hydrol., 224, 91–99, https://doi.org/10.1016/S0022-1694(99)00132-8, 1999.
Hope, D., Billett, M. F., and Cresser, M. S.: A review of the export of carbon in river water: fluxes and processes, Environ. Pollut., 84, 301–324, https://doi.org/10.1016/0269-7491(94)90142-2, 1994.
Intergovernmental Panel on Climate Change (IPCC): Climate Change 2021: The Physical Science Basis: Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, U.K., 2391 pp., https://doi.org/10.1017/9781009157896, 2021.
Jager, D. F., Wilmking, M., and Kukkonen, J. V. K.: The influence of summer seasonal extremes on dissolved organic carbon export from a boreal peatland catchment: evidence from one dry and one wet growing season, Sci. Total Environ., 407, 1373–1382, https://doi.org/10.1016/j.scitotenv.2008.10.005, 2009.
Jankowski, K. J. and Schindler, D. E.: Watershed geomorphology modifies the sensitivity of aquatic ecosystem metabolism to temperature, Scientific Reports, 9, 17619, https://doi.org/10.1038/s41598-019-53703-3, 2019.
Kaiser, K. and Kalbitz, K.: Cycling downwards – dissolved organic matter in soils, Soil Biol. Biochem., 52, 29–32, https://doi.org/10.1016/j.soilbio.2012.04.002, 2012.
Kalbitz, K., Solinger, S., Park, J.-H., Michalzik, B., and Matzner, E.: Controls on the Dynamics of Dissolved Organic Matter in Soils: A Review, Soil Sci., 165, 277–304, https://doi.org/10.1097/00010694-200004000-00001, 2000.
Kawasaki, M., Ohte, N., and Katsuyama, M.: Biogeochemical and hydrological controls on carbon export from a forested catchment in central Japan, Ecol. Res., 20, 347–358, https://doi.org/10.1007/s11284-005-0050-0, 2005.
Kiewiet, L., van Meerveld, I., Stähli, M., and Seibert, J.: Do stream water solute concentrations reflect when connectivity occurs in a small, pre-Alpine headwater catchment?, Hydrol. Earth Syst. Sci., 24, 3381–3398, https://doi.org/10.5194/hess-24-3381-2020, 2020.
Kindler, R., Siemens, J. A., Kaiser, K., Walmsley, D. C., Bernhofer, C., Buchmann, N., Cellier, P., Eugster, W., Gleixner, G., Grünwald, T., Heim, A., Ibrom, A., Jones, S. K., Jones, M., Klumpp, K., Kutsch, W., Larsen, K. S., Lehuger, S., Loubet, B., McKenzie, R., Moors, E., Osborne, B., Pilegaard, K. I., Rebmann, C., saunders, M., Schmidt, M. W. I., Schrumpf, M., Seyfferth, J., Skiba, U. T., Soussana, J.-F., Sutton, M. A., Tefs, C., Vowinckel, B., Zeeman, M. J., and Kaupenjohann, M.: Dissolved carbon leaching from soil is a crucial component of the net ecosystem carbon balance, Glob. Change Biol., 17, 1167–1185, https://doi.org/10.1111/j.1365-2486.2010.02282.x, 2011.
Kothawala, D. N., Ji, X., Laudon, H., Ågren, A. M., Futter, M. N., Köhler, S. J., and Tranvik, L. J.: The relative influence of land cover, hydrology, and in-stream processing on the composition of dissolved organic matter in boreal streams, J. Geophys. Res., 120, 1491–1505, https://doi.org/10.1002/2015JG002946, 2015.
Laudon, H., Berggren, M., Ågren, A., Buffam, I., Bishop, K., Grabs, T., Jansson, M., and Köhler, S.: Patterns and Dynamics of Dissolved Organic Carbon (DOC) in Boreal Streams: The Role of Processes, Connectivity, and Scaling, Ecosystems, 14, 880–893, https://doi.org/10.1007/s10021-011-9452-8, 2011.
Ledesma, J. L. J., Köhler, S. J., and Futter, M. N.: Long-term dynamics of dissolved organic carbon: implications for drinking water supply, Sci. Total Environ., 432, 1–11, https://doi.org/10.1016/j.scitotenv.2012.05.071, 2012.
Ledesma, J. L. J., Kothawala, D. N., Bastviken, P., Maehder, S., Grabs, T., and Futter, M. N.: Stream Dissolved Organic Matter Composition Reflects the Riparian Zone, Not Upslope Soils in Boreal Forest Headwaters, Water Resour. Res., 54, 3896–3912, https://doi.org/10.1029/2017WR021793, 2018.
Lovley, D. R., Fraga, J. L., Coates, J. D., and Blunt-Harris, E. L.: Humics as an electron donor for anaerobic respiration, Environ. Microbiol., 1, 89–98, https://doi.org/10.1046/j.1462-2920.1999.00009.x, 1999.
McGuire, K. J. and McDonnell, J. J.: Hydrological connectivity of hillslopes and streams: Characteristic time scales and nonlinearities, Water Resour. Res., 46, W10543, https://doi.org/10.1029/2010WR009341, 2010.
Mei, Y., Hornberger, G. M., Kaplan, L. A., Newbold, J. D., and Aufdenkampe, A. K.: The delivery of dissolved organic carbon from a forested hillslope to a headwater stream in southeastern Pennsylvania USA, Water Resour. Res., 50, 5774–5796, https://doi.org/10.1002/2014WR015635, 2014.
Meyer, J. L. and Tate, C. M.: The Effects of Watershed Disturbance on Dissolved Organic Carbon Dynamics of a Stream, Ecology, 64, 33–44, https://doi.org/10.2307/1937326, 1983.
Meyer, J. L., Wallace, J. B., and Eggert, S. L.: Leaf Litter as a Source of Dissolved Organic Carbon in Streams, Ecosystems, 1, 240–249, https://doi.org/10.1007/s100219900019, 1998.
Musolff, A., Fleckenstein, J. H., Opitz, M., Büttner, O., Kumar, R., and Tittel, J.: Spatio-temporal controls of dissolved organic carbon stream water concentrations, J. Hydrol., 566, 205–215, https://doi.org/10.1016/j.jhydrol.2018.09.011, 2018.
Pang, Y. and Wang, J.: Various electron donors for biological nitrate removal: A review, Sci. Total Environ., 794, 148699, https://doi.org/10.1016/j.scitotenv.2021.148699, 2021.
Penna, D., van Meerveld, H. J., Oliviero, O., Zuecco, G., Assendelft, R. S., Dalla Fontana, G., and Borga, M.: Seasonal changes in runoff generation in a small forested mountain catchment, Hydrol. Process., 29, 2027–2042, https://doi.org/10.1002/hyp.10347, 2015.
Ploum, S. W., Laudon, H., Peralta-Tapia, A., and Kuglerová, L.: Are dissolved organic carbon concentrations in riparian groundwater linked to hydrological pathways in the boreal forest?, Hydrol. Earth Syst. Sci., 24, 1709–1720, https://doi.org/10.5194/hess-24-1709-2020, 2020.
Ravichandran, M.: Interactions between mercury and dissolved organic matter – a review, Chemosphere, 55, 319–331, https://doi.org/10.1016/j.chemosphere.2003.11.011, 2004.
Raymond, P. A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C., Hoover, M., Butman, D., Striegl, R., Mayorga, E., Humborg, C., Kortelainen, P., Dürr, H., Meybeck, M., Ciais, P., and Guth, P.: Global carbon dioxide emissions from inland waters, Nature, 503, 355–359, https://doi.org/10.1038/nature12760, 2013.
Raymond, P. A. and Saiers, J. E.: Event controlled DOC export from forested watersheds, Biogeochemistry, 100, 197–209, https://doi.org/10.1007/s10533-010-9416-7, 2010.
Raymond, P. A., Saiers, J. E., and Sobczak, W. V.: Hydrological and biogeochemical controls on watershed dissolved organic matter transport: pulse-shunt concept, Ecology, 97, 5–16, https://doi.org/10.1890/14-1684.1, 2016.
Ritson, J. P., Kennedy-Blundell, O., Croft, J., Templeton, M. R., Hawkins, C. E., Clark, J. M., Evans, M. G., Brazier, R. E., Smith, D., and Graham, N. J. D.: High frequency UV-Vis sensors estimate error in riverine dissolved organic carbon load estimates from grab sampling, Environ. Monit. Assess., 194, 831, https://doi.org/10.1007/s10661-022-10515-9, 2022.
Sadiq, R. and Rodriguez, M. J.: Disinfection by-products (DBPs) in drinking water and predictive models for their occurrence: a review, Sci. Total Environ., 321, 21–46, https://doi.org/10.1016/j.scitotenv.2003.05.001, 2004.
Schleppi, P., Waldner, P. A., and Fritschi, B.: Accuracy and precision of different sampling strategies and flux integration methods for runoff water: comparisons based on measurements of the electrical conductivity, Hydrol. Process., 20, 395–410, https://doi.org/10.1002/hyp.6057, 2006a.
Schleppi, P., Waldner, P. A., and Stähli, M.: Errors of flux integration methods for solutes in grab samples of runoff water, as compared to flow-proportional sampling, J. Hydrol., 319, 266–281, https://doi.org/10.1016/j.jhydrol.2005.06.034, 2006b.
Seybold, E., Gold, A. J., Inamdar, S. P., Adair, C., Bowden, W. B., Vaughan, M. C. H., Pradhanang, S. M., Addy, K., Shanley, J. B., Vermilyea, A., Levia, D. F., Wemple, B. C., and Schroth, A. W.: Influence of land use and hydrologic variability on seasonal dissolved organic carbon and nitrate export: insights from a multi-year regional analysis for the northeastern USA, Biogeochemistry, 146, 31–49, https://doi.org/10.1007/s10533-019-00609-x, 2019.
Singh, S., Inamdar, S., and Mitchell, M.: Changes in dissolved organic matter (DOM) amount and composition along nested headwater stream locations during baseflow and stormflow, Hydrol. Process., 29, 1505–1520, https://doi.org/10.1002/hyp.10286, 2015.
Strohmeier, S., Knorr, K.-H., Reichert, M., Frei, S., Fleckenstein, J. H., Peiffer, S., and Matzner, E.: Concentrations and fluxes of dissolved organic carbon in runoff from a forested catchment: insights from high frequency measurements, Biogeosciences, 10, 905–916, https://doi.org/10.5194/bg-10-905-2013, 2013.
Tetzlaff, D., Birkel, C., Dick, J., Geris, J., and Soulsby, C.: Storage dynamics in hydropedological units control hillslope connectivity, runoff generation, and the evolution of catchment transit time distributions, Water Resour. Res., 50, 969–985, https://doi.org/10.1002/2013WR014147, 2014.
The MathWorks Inc.: MATLAB version 9.13.0 (R2022b), The MathWorks Inc. [code], https://www.mathworks.com/ (last access: 3 June 2025), 2022.
Vemaps: Outline Map of Germany, https://vemaps.com (last access: 3 June 2025), 2022.
Wei, X., Hayes, D. J., Fernandez, I., Zhao, J., Fraver, S., Chan, C., and Diao, J.: Identifying Key Environmental Factors Explaining Temporal Patterns of DOC Export From Watersheds in the Conterminous United States, J. Geophys. Res., 126, e2020JG005813, https://doi.org/10.1029/2020JG005813, 2021.
Weiler, M. and McDonnell, J. J.: Testing nutrient flushing hypotheses at the hillslope scale: A virtual experiment approach, J. Hydrol., 319, 339–356, https://doi.org/10.1016/j.jhydrol.2005.06.040, 2006.
Wen, H., Perdrial, J., Abbott, B. W., Bernal, S., Dupas, R., Godsey, S. E., Harpold, A., Rizzo, D., Underwood, K., Adler, T., Sterle, G., and Li, L.: Temperature controls production but hydrology regulates export of dissolved organic carbon at the catchment scale, Hydrol. Earth Syst. Sci., 24, 945–966, https://doi.org/10.5194/hess-24-945-2020, 2020.
Werner, B. J., Musolff, A., Lechtenfeld, O. J., de Rooij, G. H., Oosterwoud, M. R., and Fleckenstein, J. H.: High-frequency measurements explain quantity and quality of dissolved organic carbon mobilization in a headwater catchment, Biogeosciences, 16, 4497–4516, https://doi.org/10.5194/bg-16-4497-2019, 2019.
Wilson, H. F., Saiers, J. E., Raymond, P. A., and Sobczak, W. V.: Hydrologic Drivers and Seasonality of Dissolved Organic Carbon Concentration, Nitrogen Content, Bioavailability, and Export in a Forested New England Stream, Ecosystems, 16, 604–616, https://doi.org/10.1007/s10021-013-9635-6, 2013.
Wit, H. A. de, Stoddard, J. L., Monteith, D. T., Sample, J. E., Austnes, K., Couture, S., Fölster, J., Higgins, S. N., Houle, D., Hruška, J., Krám, P., Kopacek, J., Paterson, A. M., Valinia, S., van Dam, H., Vuorenmaa, J., and Evans, C. D.: Cleaner air reveals growing influence of climate on dissolved organic carbon trends in northern headwaters, Environ. Res. Lett., 16, 1–13, https://doi.org/10.1088/1748-9326/ac2526, 2021.
Zarnetske, J. P., Bouda, M., Abbott, B. W., Saiers, J., and Raymond, P. A.: Generality of Hydrologic Transport Limitation of Watershed Organic Carbon Flux Across Ecoregions of the United States, Geophys. Res. Lett., 45, 11702–11711, https://doi.org/10.1029/2018GL080005, 2018.
Short summary
The release of carbon from landscapes into streams is one important component within the global carbon cycle. We measured the concentrations of dissolved organic carbon (DOC), one of the forms in which carbon can be present, in the streams of three nested forested subcatchments over 12 months. The export of DOC is closely linked to water flow processes within the subcatchments, but the interplay of soils, vegetation, topography, and microclimate results in distinct seasonal DOC release patterns.
The release of carbon from landscapes into streams is one important component within the global...