Articles | Volume 28, issue 22
https://doi.org/10.5194/hess-28-5049-2024
https://doi.org/10.5194/hess-28-5049-2024
Research article
 | 
26 Nov 2024
Research article |  | 26 Nov 2024

Drivers of global irrigation expansion: the role of discrete global grid choice

Sophie Wagner, Fabian Stenzel, Tobias Krueger, and Jana de Wiljes

Related authors

Regional-scale groundwater analysis with dimensionality reduction
Márk Somogyvári, Fabio Brill, Mikhail Tsypin, Lisa Rihm, and Tobias Krueger
EGUsphere, https://doi.org/10.5194/egusphere-2024-4031,https://doi.org/10.5194/egusphere-2024-4031, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Biological nitrogen fixation of natural and agricultural vegetation simulated with LPJmL 5.7.9
Stephen Björn Wirth, Johanna Braun, Jens Heinke, Sebastian Ostberg, Susanne Rolinski, Sibyll Schaphoff, Fabian Stenzel, Werner von Bloh, Friedhelm Taube, and Christoph Müller
Geosci. Model Dev., 17, 7889–7914, https://doi.org/10.5194/gmd-17-7889-2024,https://doi.org/10.5194/gmd-17-7889-2024, 2024
Short summary
A hybrid data-driven approach to analyze the drivers of lake level dynamics
Márk Somogyvári, Dieter Scherer, Frederik Bart, Ute Fehrenbach, Akpona Okujeni, and Tobias Krueger
Hydrol. Earth Syst. Sci., 28, 4331–4348, https://doi.org/10.5194/hess-28-4331-2024,https://doi.org/10.5194/hess-28-4331-2024, 2024
Short summary
Making a case for power-sensitive water modelling: a literature review
Rozemarijn ter Horst, Rossella Alba, Jeroen Vos, Maria Rusca, Jonatan Godinez-Madrigal, Lucie V. Babel, Gert Jan Veldwisch, Jean-Philippe Venot, Bruno Bonté, David W. Walker, and Tobias Krueger
Hydrol. Earth Syst. Sci., 28, 4157–4186, https://doi.org/10.5194/hess-28-4157-2024,https://doi.org/10.5194/hess-28-4157-2024, 2024
Short summary
biospheremetrics v1.0.2: an R package to calculate two complementary terrestrial biosphere integrity indicators – human colonization of the biosphere (BioCol) and risk of ecosystem destabilization (EcoRisk)
Fabian Stenzel, Johanna Braun, Jannes Breier, Karlheinz Erb, Dieter Gerten, Jens Heinke, Sarah Matej, Sebastian Ostberg, Sibyll Schaphoff, and Wolfgang Lucht
Geosci. Model Dev., 17, 3235–3258, https://doi.org/10.5194/gmd-17-3235-2024,https://doi.org/10.5194/gmd-17-3235-2024, 2024
Short summary

Related subject area

Subject: Global hydrology | Techniques and Approaches: Modelling approaches
The benefits and trade-offs of multi-variable calibration of the WaterGAP global hydrological model (WGHM) in the Ganges and Brahmaputra basins
Howlader Mohammad Mehedi Hasan, Petra Döll, Seyed-Mohammad Hosseini-Moghari, Fabrice Papa, and Andreas Güntner
Hydrol. Earth Syst. Sci., 29, 567–596, https://doi.org/10.5194/hess-29-567-2025,https://doi.org/10.5194/hess-29-567-2025, 2025
Short summary
The effect of climate change on the simulated streamflow of six Canadian rivers based on the CanRCM4 regional climate model
Vivek K. Arora, Aranildo Lima, and Rajesh Shrestha
Hydrol. Earth Syst. Sci., 29, 291–312, https://doi.org/10.5194/hess-29-291-2025,https://doi.org/10.5194/hess-29-291-2025, 2025
Short summary
Changes in mean evapotranspiration dominate groundwater recharge in semi-arid regions
Tuvia Turkeltaub and Golan Bel
Hydrol. Earth Syst. Sci., 28, 4263–4274, https://doi.org/10.5194/hess-28-4263-2024,https://doi.org/10.5194/hess-28-4263-2024, 2024
Short summary
Impact of Runoff Schemes on Global Flow Discharge: A Comprehensive Analysis Using the Noah-MP and CaMa-Flood Models
Mohamed Hamitouche, Giorgia Fosser, Alessandro Anav, Cenlin He, and Tzu-Shun Lin
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-264,https://doi.org/10.5194/hess-2024-264, 2024
Revised manuscript accepted for HESS
Short summary
Merging modelled and reported flood impacts in Europe in a combined flood event catalogue for 1950–2020
Dominik Paprotny, Belinda Rhein, Michalis I. Vousdoukas, Paweł Terefenko, Francesco Dottori, Simon Treu, Jakub Śledziowski, Luc Feyen, and Heidi Kreibich
Hydrol. Earth Syst. Sci., 28, 3983–4010, https://doi.org/10.5194/hess-28-3983-2024,https://doi.org/10.5194/hess-28-3983-2024, 2024
Short summary

Cited articles

Apte, M., Y.y., A. Y., S., A., and B., I. A.: Article: Understanding Grids and Effectiveness of Hexagonal Grid in Spatial Domain, in: IJCA Proceedings on International Conference on Recent Trends in Information Technology and Computer Science 2012, 19–21 April 2012, Chennai, Tamil Nadu, India, 25–27, 2013. a
Barnes, R. and Sahr, K.: dggridR: Discrete Global Grids for R, R package version 2.0.4, Zenodo [code], https://doi.org/10.5281/zenodo.1322866, 2017. a, b
Barrett, T., Dowle, M., Srinivasan, A., Gorecki, J., Chirico, M., Hocking, T., and Schwendinger, B.: data.table: Extension of `data.frame', R package version 1.16.0, CRAN [code], https://CRAN.R-project.org/package=data.table (last access: 19 November 2024), 2024. a
Bernard, S., Heutte, L., and Adam, S.: Influence of Hyperparameters on Random Forest Accuracy, in: MCS, June  009, Reykjavik, Iceland, 171–180, hal-00436358, https://doi.org/10.1007/978-3-642-02326-2_18, 2009. a
Bolt, J. and Zanden, J. L.: The Maddison Project: collaborative research on historical national accounts, Econ. Hist. Rev., 67, 627–651, 2014. a
Download
Short summary
Statistical models that explain global irrigation rely on location-referenced data. Traditionally, a system based on longitude and latitude lines is chosen. However, this introduces bias to the analysis due to the Earth's curvature. We propose using a system based on hexagonal grid cells that allows for distortion-free representation of the data. We show that this increases the model's accuracy by 28 % and identify biophysical and socioeconomic drivers of historical global irrigation expansion.