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Abstract. Global statistical irrigation modeling relies on
geospatial data and traditionally adopts a discrete global grid
based on longitude–latitude reference. However, this system
introduces area distortion, which may lead to biased results.
We propose using the ISEA3H geodesic grid based on hexag-
onal cells, enabling efficient and distortion-free representa-
tion of spherical data. To understand the impact of discrete
global grid choice, we employ a non-parametric statistical
framework, utilizing random forest methods, to identify the
main drivers of historical global irrigation expansion using,
among other data, outputs from the global dynamic vegeta-
tion model Lund-Potsdam-Jena managed Land (LPJml).

Irrigation is critical for food security amidst growing
populations, changing consumption patterns, and climate
change. It significantly boosts crop yields but also alters the
water cycle and global water resources. Understanding past
irrigation expansion and its drivers is vital for global change
research, resource assessment, and the prediction of future
trends.

We compare predictive accuracy, simulated irrigation pat-
terns, and identification of irrigation drivers between the two
grid systems. Using the ISEA3H geodesic grid system in-
creases the predictive accuracy by up to 28 % compared
to the longitude–latitude grid. The model identifies popu-
lation density, potential productivity increase, evaporation,
precipitation, and water discharge as key drivers of historical

global irrigation expansion. Gross domestic product (GDP)
per capita also shows some influence.

We conclude that the geodesic discrete global grid system
significantly affects predicted irrigation patterns and identifi-
cation of drivers and thus has the potential to enhance statisti-
cal modeling, which warrants further exploration in future re-
search across related fields. This analysis lays the foundation
for comprehending historical global irrigation expansion.

1 Introduction

About 80 % of data being produced are of geospatial na-
ture (Hahmann and Burghardt, 2013). While the construc-
tion of maps and the referencing of locations on the Earth’s
surface have a very long history, it is becoming increasingly
important to find efficient ways to process, integrate, and an-
alyze geospatial data to solve problems in times of globaliza-
tion. To that end, geographic grid systems are used to project
the geographic space into a mathematical space where algo-
rithms and statistical methods can be applied.

The most widely used grid system is the geographic co-
ordinate system (using latitude and longitude lines), which
dates back to the third century BCE (McPhail, 2011; Ware
et al., 2020). A great advantage of this system is that it can
be stored compactly and used easily for computations (Ware
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et al., 2020). Unfortunately, when portrayed on a sphere,
grids based on geographic coordinates suffer from cell area
distortion due to the converging lines of equal longitude. In
the context of global statistical modeling, this ultimately re-
sults in oversampling of the northernmost regions.

A great number of alternative discrete global grid sys-
tems (DGGSs) have emerged to fulfill the needs of differ-
ent research fields and modeling strategies (Kimerling et al.,
1994). Since these grid systems offer significant benefits for
big data and digital Earth research, there have been numerous
advancements, new implementations, and example applica-
tions in various fields (Sahr, 2011; Jendryke and McClure,
2019; Sirdeshmukh et al., 2019; Bousquin, 2021, e.g.). To-
day, standard Earth grid systems, including DGGSs, are doc-
umented by the Open Geospatial Consortium (OGC) and the
International Organization for Standardization (ISO) (ISO,
2021; Purss, 2015). Even though current implementations
might not yet fully comply with all these standards (Bon-
daruk et al., 2020), there is a clear benefit to starting the in-
tegration of these data structures.

In this paper, we propose to use a global DGGS based on
a hexagonal tessellation of the Earth’s surface in the context
of modeling global historical irrigation expansion. This grid
was introduced by Sahr et al. (2003) and has gained large
popularity in many research contexts. Two recent examples
of open-source DGGS libraries that are based on hexago-
nal grid structures are the H3 system, developed by Uber
(2022), and DGGRID (Barnes and Sahr, 2017). Mechenich
and Zliobaite (2023) recently presented the Eco-ISEA3H
database that consists of global spatial data characterizing
climate, geology, land cover, physical and human geography,
and the geographic ranges of nearly 900 large mammalian
species. In contrast to grid cells induced by the longitude–
latitude graticule, hexagonal cells are able to cover almost
the entire surface of the Earth without suffering from area
distortion. That way, all regions have the same influence in a
statistical model.

Recently, hexagonal mesh grids have gained popularity
among hydrologists (Li et al., 2022). A group of hydrolog-
ical functions on hexagonal meshes, such as flow direction
and accumulation, stream networks, or watershed bound-
ary extraction, were explored by Liao et al. (2020). The au-
thors show that their algorithm’s performance is better when
considering the hexagonal-mesh-based output compared to
the traditional square-mesh-based output. Wang et al. (2020)
studied valley networks and model valley lines based on
hexagonal grids. Compared to traditional square grids, the
study shows that using the hexagonal grid leads to a higher
location accuracy. In another study, Wright (2019) devel-
oped a regular hierarchical surface model, where hydrologi-
cal computation was generalized on hexagonal and triangu-
lar grids. Additionally, there has been an increasing interest
in managing geospatial data and developing models to solve
real-world problems using the open-source DGGRID library

(Hojati and Robertson, 2020; Li et al., 2021; Chaudhuri et al.,
2021; Robertson et al., 2020; Li et al., 2022).

Our study aims to predict global historical irrigation pat-
terns. Since both rainfed and irrigated grid cells are equally
important for our analysis, addressing the issue of area distor-
tion is crucial. To the best of our knowledge, we are the first
to utilize the Icosahedral Equal Area Aperture 3 Hexagon
Discrete Global Grid System (ISEA3H DGGS) in this con-
text. This grid system enables us to directly analyze global
irrigation patterns without area distortion. Additionally, the
grid system has potential for improving the mapping of spa-
tial clusters and neighborhood patterns, as each grid cell has
a unique set of neighbors.

The second aim of this paper is to contribute to the liter-
ature on global irrigation expansion. Irrigation is crucial to
ensure the world’s food security. A growing human popula-
tion, shifting consumption patterns, and climate change in-
crease the pressure on agricultural production (Foley et al.,
2011). To meet the growing human food demand, irrigation
has rapidly increased over the last century as it increases crop
yields (Siebert et al., 2015). In the year 2000, approximately
40 % of the global food production was harvested on irrigated
land, utilizing only 20 % of the total farming area (Schultz
et al., 2005). To achieve this agricultural intensification, a
large amount of fresh water is needed. Consequently, irriga-
tion alters the hydrological cycle significantly (Zohaib and
Choi, 2020). At a global scale, irrigation is responsible for
about 60 % of total fresh water withdrawals and 80 % of to-
tal fresh water consumption (Döll et al., 2014; Siebert et al.,
2015). It is therefore important to understand the past evo-
lution of irrigation expansion and its main drivers for global
change research, the assessment of resources, and the predic-
tion of future developments.

There have been a few studies on the drivers of global irri-
gation in previous years. Neumann et al. (2011) investigated
the global irrigation pattern in the year 2000. Using a multi-
level approach, they modeled irrigation as a function of bio-
physical and socioeconomic factors. Their results show that
biophysical factors have a significant influence on irrigation.
Additionally, the authors provide suggestive evidence that
socioeconomic factors play a role in irrigation. However, it
is emphasized that the model suffers from uncertainty due to
the lack of spatially explicit socioeconomic information and
the possibility of external influences, such as public invest-
ments. While our model also faces these limitations, we are
able to extend the analysis by including a historical dimen-
sion.

Puy et al. (2020) investigated uncertainties in published
projections of global irrigation expansion for the year 2050.
By comparing different projected estimates of irrigated area
to a simple model predicting irrigated area as a function of
only population size, constrained by water and land avail-
ability, taking into account parametric and model uncertain-
ties, the authors postulate that current models underestimate
future irrigated areas. Other recent studies developed global
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irrigation maps, mostly using a combination of remote sens-
ing, machine learning, and climate data (Meier et al., 2018;
Salmon et al., 2015; Nagaraj et al., 2021).

We contribute to the literature on global irrigation expan-
sion by investigating the drivers of the historical expansion
between 1902 and 2000, using a novel non-parametric statis-
tical model. We distinguish between the factors that influence
the probability of a grid cell being irrigated, i.e., the decision
to irrigate instead of remaining rainfed, and the irrigation in-
tensity, once a grid cell is irrigated. We employ a stacked
random forest framework to assess the quality between sta-
tistical irrigation models based on two different grid systems.
Our main focus is on the influence of the grid the data are
presented in.

2 Data

Our first objective in this study is to analyze the choice of
discrete global grid system for modeling the historical evolu-
tion of global irrigation expansion. To achieve this, we focus
on the entire global land surface, excluding Antarctica. We
consider data from 1902 to 2005 to comprehensively capture
the historical evolution of irrigation expansion over the past
century.

Our analysis builds on a data set that consists of a
simulation output from the Lund-Potsdam-Jena managed
Land (LPJml) model (Sitch et al., 2003; Bondeau et al., 2007)
and historical economic data from the Maddison Project
Database (Inklaar et al., 2018).

LPJml is a process-based dynamical global vegetation, hy-
drology, and crop model simulating natural and managed
vegetation growth based on soil, climate, and management
input at a daily resolution and at a global 0.5°× 0.5° spatial
grid scale, resulting in a total number of 67 420 terrestrial
grid cells per time unit in each variable (Schaphoff et al.,
2018).

We prescribe an agricultural land use data set based on
the History Database of the Global Environment (HYDE)
(Klein Goldewijk et al., 2017) with additional assumptions
on irrigation systems and extent of areas equipped for irri-
gation by Jägermeyr et al. (2015) based on the global His-
torical Irrigation Dataset (HID). One advantage of the HID
is that the evolution of land irrigation was implemented us-
ing official land use data and is therefore independent of so-
cioeconomic information, such as gross domestic product or
population density (Siebert et al., 2015). Hence, the relation-
ship of irrigation and socioeconomic variables can safely be
analyzed. As climate input, the Climatic Research Unit Time
Series (Harris et al., 2014) is used. Whether a crop actually
needs irrigation is internally decided by the LPJml simulation
based on biophysical constraints and constrained by surface
water availability (Schaphoff et al., 2018).

From the simulation, we obtain the direct output variables
precipitation, evaporation, discharge, crop yield, and the ac-

tually irrigated fraction for each grid cell. Additionally the
median potential increase in crop yield productivity is de-
rived. This is estimated from two separate synthetic simula-
tions, where potential yields for each crop and grid cell are
compared with and without irrigation. The variables are ag-
gregated annually for each grid cell to obtain a time series for
the years 1901 to 2005.

The LPJml data are complemented by the Maddison
Project database on the historical performance of the world
economy (Inklaar et al., 2018; Bolt and Zanden, 2014). Of
particular interest is the time series of the gross domestic
product (GDP) per capita, consisting of estimates of com-
parative levels of real GDP per capita in recent time peri-
ods, combined with long-term time series growth of GDP per
capita. Even though the Maddison Project database yields
state-of-the-art historical economic data, there are many
countries without an estimation of GDP per capita in the time
period 1900 to 1960, leading to missing data.

2.1 Variables

We use the fraction of a grid cell that is actually irrigated
as the dependent variable. This fraction is a continuous vari-
able between 0 and 1, with 1 meaning a grid cell is fully
irrigated, and 0 meaning that none of the area is irrigated.
It is important to note that since grid cells in the standard
longitude–latitude grid change in area relative to latitude, ir-
rigation fraction values between grid cells are not directly
comparable. Figure A2 displays the global irrigation fraction
map, based on HID data from 2000.

The selection of potential drivers of irrigation expansion
was led by the existing literature and data availability (see
Table 1). We consider the following variables for explain-
ing irrigation fraction: population density, precipitation, dis-
charge, evaporation, potential yield increase through irriga-
tion, and GDP per capita.

The GDP-per-capita data are available at a national level
and broken down to a 0.5°× 0.5° grid scale, by assigning the
country’s value to all grid cells in a country. Since there are
observations missing, especially in the earlier time periods
(see Fig. S2), the variable is split up into the categories “high
income”, “upper middle income”, “lower middle income”,
“low income”, and “missing”, following the methodology of
Hastie et al. (2009) and the World Bank’s classification of
GDP per capita from 2011 (World Bank, 2011). The classifi-
cation can be found in the Supplement (Table S1). That way,
we treat the missing values as an additional category and are
able to include all observations in our analysis.

We report the pairwise Pearson correlation coefficients
(Appendix, Table A2) and variance inflation factors (Ap-
pendix, Table A3) to investigate multicollinearity between
the continuous predictor variables, following the methodol-
ogy in Rufin et al. (2018). We find that all pairwise Pear-
son correlation coefficients are below the threshold of 0.7
(Dormann et al., 2013), except for the pair precipitation–
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Table 1. Potential predictors and hypotheses.

Predictor variable Hypothesis Supporting literature

Precipitation (mm yr−1) Irrigation requirements increase in cropland
regions where precipitation levels are declining.

Neumann et al. (2011),
Döll and Siebert (2002),
Siebert et al. (2015)

Discharge (hm3 yr−1) Surface water availability allows for irrigation
water withdrawals.

Neumann et al. (2011),
Gerten et al. (2008)

Evaporation (mm yr−1) High evaporation leads to an increasing demand
of water and therefore increases the probability
of irrigation.

Neumann et al. (2011),
Rufin et al. (2018)

Median increase in productivity (% of
1gC m−2)

If the potential increase in agricultural
productivity is large, the corresponding area is
more likely to receive irrigation.

FAO (2011),
Sauer et al. (2010)

Population density (cap. m−2) Intensive irrigation occurs under high
population densities. The rapidly growing
world population increases the demand for food
and, therefore, leads to an expansion or
intensification of agriculture globally but also
around high-density centers.

Neumann et al. (2011),
Rufin et al. (2018),
Boretti and Rosa (2019),
Sauer et al. (2010)

GDP (USD per capita) A high GDP per capita leads to a higher
probability of irrigation, since farmers can
afford irrigation systems or are more likely to
receive subsidies. GDP is also highly correlated
with government effectiveness and hence serves
as a proxy. A high national government
effectiveness strengthens irrigation
infrastructure.

Neumann et al. (2011),
Rufin et al. (2018),
Boretti and Rosa (2019),
Sauer et al. (2010)

evaporation, for which we find a value of 0.72. The variance
inflation factors are below the tight threshold of 5, indicating
that the predictor variables are sufficiently independent for
our analysis (James et al., 2013).

2.2 Descriptive statistics

Overall, the irrigated area expanded throughout the study
period. The proportion of grid cells with observed irriga-
tion increased from approximately 10 % in 1902 to about
31 % in 2005. The most significant increases in irrigated area
occurred in southeastern Asia, Central and South America,
Central America, and eastern Asia. These statistics align with
the findings of Siebert et al. (2015), who investigated areas
equipped for irrigation.

Despite the expansion of irrigated land, the data are highly
imbalanced: throughout the study period, about 75 % of the
observed irrigation fractions are zero, whereas only about
25 % are non-zero. Figure S1 in the Supplement shows the
histogram of the irrigation fraction.

The descriptive statistics of irrigation fraction and the po-
tential predictors can be found in Table A1. The dependent
variable, irrigation fraction, ranges from zero to 0.922, with
a mean of 0.008 in the longitude–latitude grid.

The global temporal evolution of the predictor variables
is illustrated in Fig. A1 in the Appendix. The global mean
evaporation has been increasing over the last century as well
as the GDP per capita. We also see a slightly increasing trend
of the global amount of precipitation. For the remaining vari-
ables, there is no clear detectable trend in the global mean.
However, it is expected that there are local trends that are not
captured in the global mean values.

3 Method

3.1 Spatial resolution

The latitude–longitude projection yields a world map, which
appeals to the human eye for its plane appearance but also
faces some limitations. The grid cells that are induced by the
longitude–latitude graticule are not of the same area. A lati-
tude of 1° represents the same horizontal distance anywhere
on the Earth’s surface. However, because lines of equal lon-
gitude are farthest apart at the Equator and converge to single
points at the geographic poles, the horizontal distance equiv-
alent to 1° of longitude varies with latitude (Budic et al.,
2016). For a simple statistical analysis, this implies that re-
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gions nearer the poles, which are smaller in area yet weighted
equally to larger areas nearer the Equator, disproportionately
contribute to models and thus have a greater influence on the
results. This is particularly relevant for land-based analysis
like ours, as a significant land mass in the Northern Hemi-
sphere is located closer to the poles.

The limitations of discrete global grids rooted in the geo-
graphic coordinate system have spurred on the exploration of
various alternatives. One idea is to weight each grid cell by
its area and therefore its relative importance for the statisti-
cal model. A more direct approach is to use a discrete grid
system that subdivides the Earth’s surface into equally sized
grid cells, allowing for an efficient identification of patterns,
trends, and relationships across diverse geographic scales.

Sahr et al. (2003) introduced a class of reference grids
based on convex regular polyhedra, called geodesic DGGSs.
The underlying idea is to use the topological equivalence
of regular polyhedra and the sphere. Based on five design
choices, the resulting grid partitions the Earth into equally
sized cells. The first choice involves picking a base polyhe-
dron. The distortion of area tends to be smaller the smaller
the faces of the base polyhedron are (Sahr et al., 2003).
Therefore, in this study we choose the icosahedron as a start-
ing point, as it has the smallest face sizes compared to the
other regular polyhedra. The second design choice requires a
method to be picked to partition the surface of the icosahe-
dron. Hexagons have been found in many research fields to
be the optimal choice for discrete gridding and location rep-
resentation (Apte et al., 2013; Uher et al., 2019). One unique
property of a hexagonal grid is its uniform adjacency; each
cell in a hexagonal grid has six neighbors, all of which share
an edge with the cell and all of which have centers exactly
the same distance away from their neighboring cells. This
property is beneficial for all analyses involving neighborhood
properties.

Thirdly, one has to decide on the orientation of the base
icosahedron relative to the Earth’s surface. In other words,
the location of the pentagonal cells is required, as they are
located at the vertices of the icosahedron. The most common
choice is to place the pentagons such that only one is centered
on land (Sahr et al., 2015). This specific orientation is also
symmetric about the Equator.

In a fourth step, a method for the transformation between
the surface of the Earth and the surface of the icosahedron,
upon which the hexagonal grid is constructed, has to be se-
lected. Our choice is the only known equal-area icosahe-
dral geodesic DGG projection, called the Snyder Icosahedral
Equal Area (ISEA) projection (Snyder, 1992).

Lastly, a recursive partitioning method must be picked in
order to create different spatial resolutions. Such a method
is characterized by the ratio of cell areas at a given grid res-
olution and the next coarser resolution. This ratio is called
“aperture”. We will consider aperture-3 hexagonal grid cells,
meaning that the increase in the resolution by 1 leads to grid

cells with an area of a third of the original cell area. Fig-
ure A3 in the Appendix illustrates the partitioning method.

After making these five basic construction choices, the
result can be referred to as an Icosahedral Equal Area
Aperture 3 Hexagon geodesic Discrete Global Grid System
(ISEA3H DGGS).

3.2 Data transformation

Our data set is initially organized based on the standard
longitude–latitude reference system, with a spatial resolution
of 0.5°× 0.5°. In this system, the location of a grid cell is
determined by the latitude and longitude of its center point.
This results in a total of 67 420 land grid cells per year. To as-
sess the impact of different discrete global grid choices and
compare between the standard approach and the distortion-
free geodesic alternative, we constrict a geodesic DGG refer-
ence framework and transform our observations accordingly.

Utilizing the freely available R package dggridR provided
by Barnes and Sahr (2017), we generate ISEA3H discrete
global grids at resolutions 7, 8, and 9. This translates to
hexagonal grid structures, where the centers of grid cells
are spaced 160, 95, and 55 km apart. Following the transfor-
mation, we obtain 7383, 65 612, and 196 832 terrestrial grid
cells per year, respectively. We use three different resolutions
to explore the model’s sensitivity to grid resolution and en-
sure the robustness of our findings. We start with resolution 7
due to its efficiency. The resolution-8 grid contains a total of
65 612 grid cells, comparable to the longitude–latitude grid’s
67 420 cells. Meanwhile, the resolution-9 grid features aver-
age grid cell sizes similar to those in the longitude–latitude
grid, with cells spanning 2591.402 km2, compared to the
longitude–latitude grid’s average of 2171.119 km2.

The original data are projected into the hexagonal cells.
Depending on the degree of latitude, different numbers of
cell centers of the original grid end up in each hexagon. The
center counts at resolution 7 are visualized in Fig. 1.

After mapping the original cell centers into the ISEA3H
grids, the mean of all observations within each hexagonal cell
is taken as the new value in the transformed data set.

3.3 Area weights

Instead of directly converting the data into the area-
preserving ISEA3H grid system, one could alternatively ad-
just the observations from the longitude–latitude grid by
weighting them according to their cell size to account for the
area distortion. The weight wi of grid cell i is then defined as
wi =

area of cell i
maximum cell area . By including these area weights, ob-

servations from larger cells have a greater influence on the
statistical model than cells from smaller cells. We use this
approach as a comparison to better assess the effectiveness
of using traditional area weights to address area distortion, in
contrast to the equal-area ISEA3H grid system.
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Figure 1. Number of grid cell centers of the longitude–latitude grid
that fall into each hexagonal grid cell of the ISEA3H grid at res-
olution 7. The color pattern shows that closer to the poles, more
grid cell centers fall into each hexagonal cell compared to the areas
around the Equator.

3.4 Random forest

We model the observed variation of irrigation fraction with
a set of biophysical and socioeconomic predictor variables
using a random forest framework.

A random forest consists of a set of individual decision
trees that operate as an ensemble. The method was intro-
duced by Breiman (2001) and is now a widely used machine
learning technique because it tends to have high prediction
power with little tuning of its parameters. A random forest
captures non-linear relationships between the predictor vari-
ables and the outcome and is able to deal with imbalanced
data, and estimates of variable importance are readily avail-
able (Strobl et al., 2009).

Depending on the response variable, the decision trees of
the random forest perform either classification or regression,
based on a recursive partitioning method. At each step, a de-
cision tree finds the optimal split that minimizes “impurity”,
until a stopping criterion is met. Impurity serves as a metric
for the homogeneity of the class labels at a particular node
within the decision tree. Various methods exist to define the
impurity measure. Following Wright and Ziegler (2017), we
use the estimated response variance for regression trees and
the Gini index for classification trees as measures for impu-
rity. Please find the precise steps in Algorithm 1. Ultimately,
the recursive partitioning method repeatedly splits the data
into potentially high-dimensional rectangular partitions of
the predictor space, choosing those for which the response
data are relatively homogeneous (Strobl et al., 2009).

A random forest typically consists of several hundreds or
thousands of trees and combines the results of their predic-

Algorithm 1 Random forest

Given a data set {(xi ,yi) : i = 1, . . ., n}, where yi is the ith
observed dependent variable and xi = (X1, . . ., Xp) is a

p-dimensional predictor vector.
Step 1. Draw a number of ntree bootstrap samples sets from the

training data set. Each sample is the same size as the training data
set. The number ntree is a tuning parameter, also referred to as the

number of trees in the forest.
Step 2. At each node split, a random number of mtry predictors out

of all P predictors is considered, i.e., Xi , i = 1, . . ., mtry, with
mtry < P . The number mtry is another tuning parameter.

Step 3. Predictor j splits the observations {yi}, i = 1, . . ., n into
the most uniform binary regions Rl := {X|Xj ≤ c} and

Rr := {X|Xj > c} according to the following impurity measures:

– (regression) weighted residual sums of squares

minj,c

p(Rl)
∑

j :yj∈Rl

(
yj − yRl

)2
+p(Rr)

∑
j :yj∈Rr(

yj − yRr

)2)
, (1)

where yRl and nl are the mean and number of observations
in region Rl, yRr and nr are the mean and number of obser-
vations in region Rr, and p(Rk)= nk/n is the proportion of
observations in region k ∈ {l, r},

– (classification) Gini impurity

minj,c
(
nlp̂l

(
1− p̂l

)
+ nrp̂r (1− p̂r)

)
, (2)

where p̂k is the proportion of sample points that were sent to
node k ∈ {l, r} from the previous node.

Step 4. Repeat steps 2–3 until each terminal node reaches the
predefined minimum number of observations, min.node.size.

Output. The algorithm forms a partition of the data into M regions
R1, . . ., RM, and the response is modeled as a constant rm, i.e.,

fRF(x)=

M∑
m=1

rmI (x ∈ Rm) . (3)

tions (Strobl et al., 2009). These trees are constructed us-
ing bootstrapped samples from the training data, with each
sample containing, on average, 63.2 % unique observations
(Breiman, 2001), known as in-bag samples. Samples not se-
lected are called out-of-bag (OOB) samples and are used
to estimate the prediction accuracy, also called “OOB er-
ror”. These error estimates provide an accurate measure-
ment of the generalization error as they are similar to the re-
sults obtained through K-fold cross-validation (Wolpert and
Macready, 1996). However, the OOB error can be sensitive
to the number of random predictors used at each split (mtry)
and the number of trees (ntree) in the random forest (Huang
and Boutros, 2016). Generally, the accuracy increases as the
number of trees increases. However, the accuracy may level
off at a certain number of trees, depending on the specific
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learning task (Oshiro et al., 2012). The mtry parameter has
been found to have a high influence on prediction accuracy
and should be selected carefully (Huang and Boutros, 2016;
Bernard et al., 2009; Probst et al., 2019). We focus on ntree
and mtry as tuning parameters to achieve a high performing
random forest model.

The step-by-step process of building a classification and
regression random forest follows Algorithm 1. To cope with
the imbalance of our dependent variable, we train two ran-
dom forests and construct a hurdle model. A classification
random forest predicts whether a grid cell is irrigated or not,
while a regression random forest predicts the magnitude of ir-
rigation. These models are then combined to create a stacked
final model that predicts the irrigation fraction based on the
available predictors. This approach effectively handles the
zero-inflated distribution of the irrigation fraction.

We use the freely available R package ranger, developed
by Wright and Ziegler (2017) for the training and validation
of the random forests.

3.4.1 Parameter tuning and model setup

We use cross-validation (CV) to tune our random forest mod-
els and determine the values for ntree (number of decision
trees) and mtry (number of predictors to be considered at
each split) that maximize predictive accuracy. Data from
1902 to 1999 serve as the training sample, data from 2001
to 2005 are used for validation, and data from 2000 act as
test sample. Due to computational constraints, we apply a
sub-sampling routine to identify our model parameter values
efficiently. For the classification random forests, we draw a
balanced sample of 10 in each CV fold, consisting of 50 %
irrigated and 50 % rainfed grid cells. This is achieved using
random over- and under-sampling methods from the R pack-
age ROSE, provided by Lunardon et al. (2014). For the re-
gression random forest, all irrigated grid cells are used for
training.

We use the OOB error and the validation error as accuracy
measures. We set the minimal number of data points at each
terminal node of min.node.size to 10, serving as a stopping
criterion. For the parameter ntree, we consider the values 50,
300, 500, 800, 1000, 2000, 3000, 4000, and 5000. For mtry
we test all values between 1 and 5 at 0.5 increments for both
the classification and regression random forests. We conduct
50-fold CV to train the classification and regression random
forests separately for each grid choice.

The resulting accuracy for each forest and each tuning pa-
rameter value can be seen in Figs. S3 and S4. Taking the
OOB error and the validation error into account, we choose
ntree = 1000 and mtry = 1.5 for the classification random for-
est and ntree = 4000 and mtry = 5 for the regression random
forest for the longitude–latitude grid. In the ISEA3H grid we
set ntree = 1000 and mtry = 5 for the classification random
forest and ntree = 4000 and mtry = 5 for the regression ran-
dom forest.

After setting the tuning parameters, we evaluate the pre-
diction accuracy of the stacked random forest model on the
test data. The final model prediction is obtained by multiply-
ing the predictions from the classification random forest by
those from the regression random forest.

We then compare the final prediction results for models
build on the original longitude–latitude grid; the longitude–
latitude grid using area weighting; and the ISEA3H grids at
resolutions 7, 8, and 9.

4 Results and discussion

4.1 Grid choice

We compare the longitude–latitude grid to the ISEA3H grids
based on their predictive power and their ability to iden-
tify the drivers of the global irrigation expansion. To get a
first intuition about differences in predictive power, we cre-
ate binned scatter plots of the predicted irrigation fraction of
the test data against the observed values of irrigation fraction
for all grid choices. In that way, the 45° line mechanically in-
dicates correctly predicted irrigation fraction values. Figure 2
shows the results. The comparison suggests that the ISEA3H
grid models at resolution 7 and 8 have a higher prediction
accuracy, since the point values scatter more closely around
the 45° line. This could be due to the fact that at resolutions 7
and 8, the grid cells are larger, and therefore the value of the
dependent variable is less nuanced. There is no clear visual
difference between the predictive accuracy of the longitude–
latitude grid and the ISEA3H grid at resolution 9.

To further evaluate the difference in predictive accuracy
between grid choices, we compute the root mean square
error (RMSE) and the normalized root mean square error
(NRMSE) as

RMSE=

√√√√1/n

n∑
i=1

(yi − ŷi)
2 (4)

and

NRMSE=
RMSE
SD(y)

, (5)

where yi is the observed value, ŷi the prediction, and
SD(y) the standard deviation over all observed values. The
RMSE and NRMSE were calculated for the prediction on
the test data and compared between grid choices. We addi-
tionally evaluate the NRMSE, after restricting the sample to
observations with non-zero irrigation. The outcomes are re-
ported in Table 2. The model with the lower NRMSE is con-
sidered the better choice to model irrigation fraction.

To verify the robustness of our result, we calculate the
NRMSE using the mean and the distance between the mini-
mum and the maximum value as standardizing measures.
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Figure 2. Binned scatter plot of predicted vs. observed irrigation fraction values. The prediction is based on the test data.

In order to investigate the robustness of our error measure,
we implement a bootstrapping analysis, in which we generate
each model in 500 repetitions and predict irrigation fraction
using a random 40 % sample of the test data in each step. We
then calculate the difference in NRMSE values between the
longitude–latitude benchmark model and the other specifica-
tions. By examining the distribution of these differences, we

are able to assess whether observed differences are statisti-
cally significant.

Additionally, we include a model based on the longitude–
latitude grid with traditional area weights. This allows us to
assess the effectiveness of using area weights to address area
distortion as compared to the equal-area ISEA3H grid.
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Table 2. Normalized root mean square error comparison between grid choices.

Longitude–latitude ISEA3H Reduction in Longitude–latitude ISEA3H grid ISEA3H
resolution 7 NRMSE (%) area weights resolution 8 resolution 9

(1) (2) (3) (4) (5) (6)

A. All observations

Mean 0.0156 0.0168 0.0156 0.0177 0.0183
Mean (prediction) 0.0162 0.0161 0.0171 0.0191
SD 0.0604 0.0525 0.0604 0.0591 0.0653
SD (prediction) 0.0396 0.0396 0.0432 0.0454
RMSE normalized with
SD 0.676 0.484∗∗∗ 28 0.676 0.577∗∗∗ 0.645∗∗∗

Mean 2.618 1.508∗∗∗ 42 2.620 1.928∗∗∗ 2.297∗∗∗

Max–min 0.047 0.037∗∗∗ 21 0.047 0.044∗∗∗ 0.046∗

B. Non-zero observations

Mean 0.0507 0.0337 0.0507 0.0413 0.0511
Mean (prediction) 0.0409 0.0408 0.0154 0.0434
SD 0.1005 0.0703 0.1005 0.0847 0.1010
SD (prediction) 0.0619 0.0618 0.0401 0.0667
RMSE normalized with
SD 0.702 0.503∗∗∗ 29 0.703 0.598∗∗∗ 0.666∗∗∗

Mean 1.390 1.050∗∗∗ 24 1.391 1.228∗∗∗ 1.317∗∗∗

Max–min 0.081 0.052∗∗∗ 36 0.081 0.065∗∗∗ 0.077∗∗∗

R2 0.0694 0.7719 0.5527 0.6946 0.5889

Column 1 shows the mean and standard deviation of the irrigation fraction and the NRMSE values of the longitude–latitude grid choice. Column 2 provides the same
for the ISEA3H grid resolution 7 choice. In column 3 the reduction in NRMSE is documented in percent and in comparison to the longitude–latitude grid. Column 4
presents the result for a model based on the longitude–latitude grid with additional area weights, and columns 5 and 6 provide the results for the ISEA3H resolution-8
and resolution-9 grids. Panel A. includes all observations and gives the overall NRMSE estimates. In Panel B. only irrigated areas are included. The NRMSE values
provide insight into how the models perform on actually irrigated terrain. ∗, ∗∗, and ∗∗∗ indicate 10 %, 5 %, and 1 % significance for the t test of difference in
bootstrapped mean NRMSE values with 500 repetitions, comparing the ISEA3H models (columns 2, 5, and 6) with the longitude–latitude model (column 1).

Generally, we see that lower errors are observed when
using an ISEA3H grid. For all observations, the ISEA3H
resolution-7 grid exhibits a 28 % reduction in NRMSE com-
pared to the longitude–latitude grid, with a value of 0.484
compared to 0.676. The ISEA3H grids at resolutions 8 and 9
also show improved performance over the longitude–latitude
grid, with NRMSE values of 0.577 and 0.645, respectively.
The longitude–latitude grid with area weights does not sig-
nificantly improve the NRMSE compared to the standard
longitude–latitude grid.

Focusing on irrigated areas, the ISEA3H resolution-7 grid
demonstrates a 29 % lower NRMSE (0.503) compared to
the longitude–latitude grid (0.702). Similar trends are ob-
served for the ISEA3H grids at resolutions 8 and 9, with
NRMSE values of 0.598 and 0.666, respectively. Again, the
longitude–latitude grid with area weights shows marginal or
no improvement.

This trend remains consistent across all normalization
specifications, which emphasizes the comparative perfor-
mance of the ISEA3H grid choices and their advantages over
traditional longitude–latitude grids.

In a next step, we consider predicted irrigation fraction.
We evaluate how accurately the models predict high and
low values of irrigation fraction across the globe. Figure 3

shows the difference between predicted irrigation fraction
and observed irrigation fraction for all grid choices. The
computation is based on the test data. The color scale in-
dicates if the model predicts the irrigation fraction accu-
rately or suffers from under- or over-prediction. Yellow ar-
eas are correctly predicted by the model, orange to red ar-
eas correspond to under-prediction, and green to blue ar-
eas indicate over-predicted irrigation fractions. Considering
the longitude–latitude grid, we see that irrigation is under-
predicted in some areas in India and east Asia and also in a
few areas in North and South America and Europe. Except
for a very few parts in India, central Africa, and North Amer-
ica, we do not see any over-prediction of irrigation. Looking
at the ISEA3H grids, we find that the same areas in India and
east Asia are slightly over-predicted as well as some areas in
the United States and Europe. Only a few areas are under-
predicted in India, east Asia, and central Africa. Comparing
both grid systems, we find that the ISEA3H grids are closer
to the original irrigation pattern in all areas. In particular, the
highly irrigated areas in east Asia are better captured by the
ISEA3H grid models, and we also see less over-prediction
in European areas. The maps indicate that the ISEA3H grid
system is the better choice in predicting the global irrigation
fraction pattern.
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Figure 3. Deviation of the predicted irrigation fraction from the observed irrigation fraction in (a) the longitude–latitude grid and (b–d) the
ISEA3H grids at resolutions 7, 8, and 9. Green and blue areas indicate under-prediction of the irrigation value, and orange and red values
over-prediction. Yellow areas correspond to areas where irrigation values were predicted correctly. The prediction is based on the test data.

4.2 Drivers of irrigation expansion

4.2.1 Variable importance

We report the importance of the predictors for both the clas-
sification random forests, which predict the probability of ir-
rigation occurring, and the regression random forests, which
predict irrigation magnitude given that the area is irrigated. In
the classification random forests, relative importance is mea-
sured by Gini gain, while in the regression random forests,
it is captured by the estimated response variance. The results
are displayed in Fig. 4.

The most important driver for the probability that an area
is irrigated is population density. This is the case for all grid
choices. The second-most-important driver is the median po-
tential increase in productivity in terms of crop yield. Evap-
oration, precipitation, and discharge all have a similar in-
fluence on irrigation probability. However, the order of im-
portance is reversed between the two grid choices. GDP per
capita only has a small influence on the decision to irrigate.

The most important driver of irrigation intensity, given that
an area is already irrigated, is also population density. This is
followed by evaporation, precipitation, discharge, and a me-
dian increase in potential productivity, where the order of

discharge and median potential productivity increase is re-
versed for the ISEA3H grids. The least important driver is
again GDP per capita, though it still has some influence on
the models’ performance in all grids.

Looking at the different patterns across resolutions, it ap-
pears that finer resolutions increase the relative influence of
predictors other than population density. This makes sense,
as these other drivers likely have a greater impact at a local
level, whereas population density reflects a broader need for
crop production in the area.

4.2.2 Partial dependence

We compute the partial dependence of each predictor vari-
able for all grid choices and model specifications. The partial
dependence is obtained by gradually changing the value of
one predictor variable and predicting the outcome variable at
each step, while leaving the remaining predictors constant.
That way, the functional relationship between the predictor
and the dependent variable becomes visible. The larger the
value range on the vertical axis, the larger the influence of
the predictor on the dependent variable. Figure 5 illustrates
the results.
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Figure 4. Relative importance, measured as decrease in node impurity. The results for the longitude–latitude grids can be seen in red, and
the results for the ISEA3H grids are displayed in blue. The order of variables in the importance plots is robust to 500 bootstrap steps.

Figure 5a illustrates the partial dependence of the predic-
tors of irrigation probability. Overall, we see very intuitive
dependence patterns. Population density has a positive in-
fluence on the probability to irrigate, where the probability
sharply increases at the beginning of the population density
distribution. In other words, greater population density cor-
relates with an increased probability of irrigation, indicating
that metropolitan regions with higher population densities
and improved market accessibility are more likely to engage
in irrigation. This heightened probability is likely attributed
to the requirement of capital investment for establishing irri-
gation systems. This aligns with the paper by Neumann et al.
(2011), who also found a positive association between irriga-
tion and population density.

A similar pattern can be seen for the median potential in-
crease in productivity, the second-most-influential predictor.
The positive correlation demonstrates that the potential in-
crease in crop yield is a factor for the decision to implement
irrigation systems.

Evaporation also has a positive, almost linearly increasing
influence on irrigation probability. Considering precipitation,
our results show that the probability to irrigate decreases with
the amount of precipitation until the probability levels off.
The amount of available discharge has a negative relationship

with the probability to irrigate for both grid choices at the be-
ginning of the distribution. Looking at the longitude–latitude
grid, this changes into a positive correlation, leaving us with
a u-shaped dependence curve. Looking at the ISEA3H grid
choice, the irrigation probability does not change anymore
after reaching a certain discharge level. Overall, these results
show that water availability and climatic conditions play a
role in the decision to irrigate, leaving rather dry areas and
areas with higher evaporation levels more likely to be or be-
come irrigated. Discharge is an accumulated variable of lo-
cal runoff, with very high differences between upstream and
downstream cells in a watershed. This means that regions
with relatively high topography and thus potentially lower
degrees of agriculture and irrigation are all coinciding with
low discharge values, while the major irrigation areas (India,
Pakistan, United States, east Asia, Egypt, etc.) generally lie
close to large streams with high discharge. The correlation
with elevation might explain why initially the dependence of
irrigation on discharge decreases. For large values the large
grid size might be able to explain the differences between the
grids; for example, along the Nile the irrigated areas follow
the river in a small band, being dispersed in the ISEA3H grid.

Lastly, we study the GDP-per-capita categories as a func-
tion of the probability of observing irrigation. We find
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Figure 5. Partial dependence of the predictors and the dependent variable of (a) the classification random forests and (b) the regression
random forests. The results for the ISEA3H grids (resolution 7, 8, and 9) are shown in shades of blue, and the results for the longitude–
latitude grid and the model with area weights are shown in red.

a strictly positive relationship from the categories “low”,
“lower middle”, and “upper middle” to “high”. Therefore,
the likelihood of croplands being irrigated is higher for ar-
eas with generally higher economic performance. Hence, ad-
verse socio-economic conditions hinder the development of
irrigated agriculture. This result complements the findings
of Neumann et al. (2011), who found similar effects con-
sidering government performance and government type. The

GDP-per-capita category “missing” corresponds to a rela-
tively lower irrigation probability. This is in line with the
fact that in earlier time periods, fewer areas were irrigated,
and more GDP-per-capita observations were missing.

Figure 5b displays the partial dependence curves for the
predictor variables of irrigation intensity, i.e., the amount of
irrigation given a grid cell is irrigated. The most influential
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predictor, population density, positively impacts the amount
of irrigation.

Evaporation is also positively associated with the amount
of irrigation, where the increase in irrigation appears to be
almost linear in evaporation levels. The amount of irrigation
negatively depends on precipitation levels, while discharge
is positively correlated with irrigation intensity. Hence, the
effect of water availability differs between different sources
of water, where heavily precipitated areas do not seem to re-
quire as much irrigation, while discharge might be used to
feed irrigation systems.

The median potential productivity gain is positively asso-
ciated with irrigation intensity, exhibiting a sharp peak in the
dependence curve at the beginning of the distribution. A large
part of the tail is probably irrelevant for a real-world scenario,
where irrigation would never happen in remote and dry re-
gions, with a high potential for productivity increases from
irrigation. Larger cell sizes in the ISEA3H grid mean “eas-
ier” access to streams (more area is in the same cell as the
river), which is reflected in the higher plateau level.

Considering GDP per capita, we see irrigation intensity
only slightly differing between the categories.

Assessing our results in the context of our hypotheses (see
Table 1), we generally observe a consistent alignment be-
tween our empirical results and our previous theoretical con-
sideration.

5 Conclusions

The careful choice of a discrete global grid system holds sig-
nificant importance for conducting statistical analyses on a
global scale. In this paper, we make use of historical global
irrigation data from the last century, to compare the stan-
dard longitude–latitude grid to ISEA3H discrete global grids
at different resolutions. We employ a stacked random forest
framework to model probability of irrigation and irrigation
magnitude (once an area is irrigated) as a function of poten-
tial drivers. We identify population density and the potential
productivity increase in terms of crop yield as the most influ-
ential factors for the decision to irrigate and population den-
sity and factors accounting for water availability as drivers
for intense irrigation. We further point to GDP per capita as
having some influence on irrigation behavior.

Comparing the two grid systems, we find that ISEA3H
geodesic discrete global grids yield higher prediction accu-
racies. Using the assigned test data, the model built on the
geodesic discrete global grid at resolution 7 produces a 28 %
lower normalized root mean square prediction error com-
pared to the model built on the longitude–latitude grid. Al-
though the difference in predictive accuracy decreases with
higher resolutions, the ISEA3H grids at resolutions 8 and 9
still produce significantly lower error values compared to
the benchmark model. In comparison, using traditional area
weights in the longitude–latitude grid does improve predic-

tion accuracy significantly. These results are robust to differ-
ent normalization definitions.

In terms of the global irrigation prediction pattern, we find
that the models based on the ISEA3H grids come closer to
the observed irrigation map. While the longitude–latitude
grid leads to some highly under-predicted areas in India, east
Asia, and the United States, the ISEA3H grids are associ-
ated with under-prediction in almost the same areas, although
smaller in magnitude. Although the increase in predictive ac-
curacy might partly be due to the fact that the change in grid
cell structure changes the scale and therefore the range of val-
ues of the targeted irrigation variable, the advantages of the
uniformly structured ISEA3H grids are evident and should
be explored and tested in future research.

While the combination of water availability, climate, and
socioeconomic data offers valuable insights into the role of
discrete global grid choice and the drivers of historical irri-
gation expansion, it is clear that our setting does not come
without limitations. For example, we neglected seasonality,
meaning that yearly values were used for the analysis. How-
ever in reality water availability is much more relevant in the
growing season than in the offseason. While we offer new ev-
idence about the potential accuracy increase using a geodesic
discrete global grid, our methodology does not include an ex-
haustive search for the best-possible grid choice. Our goal is
rather to set a first reference point for future research designs.

We model irrigation fraction as a function of precipitation,
discharge, evaporation, population density, potential produc-
tivity increase in terms of crop yield, and GDP per capita.
While these are important drivers of irrigation, there are
likely other contributing factors that we are not able to cap-
ture in our analysis, such as the access to groundwater, irri-
gation subsidies, or other socioeconomic factors such as the
type of government. The access to spatially explicit informa-
tion would allow researchers to further explore these poten-
tial drivers.

Another interesting avenue for future research is to include
time lags in the analysis. It might not be the data of the same
year (e.g., 1990) that are most indicative of the irrigation
fraction of that year but, for example, the (average) data of
the previous decade. These time lags might even be different
for different predictors.

Lastly, the irrigation and predictor data are based on a large
variety of sources from different years, which have likely in-
troduced uncertainties.

Acknowledging these limitations, we consider our analy-
sis an important step towards understanding the role of dis-
crete global grids in global statistical modeling. Particularly,
exploring the application of the ISEA3H geodesic grid sys-
tem in different global analytical contexts presents an intrigu-
ing avenue for future research.
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Appendix A

Figure A1. Evolution of the global means of the predictor variables across the study period 1902 to 2005.
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Figure A2. Irrigation fraction in 2000 in (a) the longitude–latitude discrete global grid and (b) the ISEA3H (resolution-7) discrete global
grid. Irrigation fraction reflects the area irrigated of each grid cell and is based on the global Historical Irrigation Dataset (see Siebert et al.,
2015).

Figure A3. Recursive partitioning aperture-3 method. The hexagonal pattern is recursively constructed on top of the base icosahedron. The
first resolution is illustrated by the green hexagon, directly constructed inside a triangular face of the base icosahedron. The construction
of the resolution-2 grid is displayed in red in the middle. The resolution-3 hexagonal pattern is illustrated on the right side. Increasing the
resolution by 1 leads to hexagons with a size that is one-third of the original hexagon size. The grey leftover areas are the reason that, overall,
a few pentagonal faces are needed to cover the Earth’s surface. The image is based on an illustration by de Wiljes (2015).
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Table A1. Summary statistics of the training data (1902–1999).

Mean Standard deviation Minimum Maximum Median
(1) (2) (3) (4) (5)

A. Longitude–latitude grid (n= 6.607,160)

Irrigation fraction (%) 0.0077 0.0375 0 0.9220 0
Population density (cap. m−2) 19.5986 72.4894 0 9832 1
Precipitation (mm yr−1) 716.3860 712.2138 0 11 155 478.9372
Evaporation (mm yr−1) 116.6513 80.7215 0 953.9896 97.3343
Discharge (hm2 yr−1) 469.6246 4524.4351 0 270 078.8232 28.0981
Median increase in productivity (% of 1gC m−2) 7.6580 65.9509 −0.5596 17 365.5508 0.0053

B. ISEA3H grid res. 7 (n= 730917)

Irrigation fraction (%) 0.0084 0.0318 0 0.8077 0
Population density (cap. m−2) 23.5708 69.3340 0 4575 2
Precipitation (mm yr−1) 905.5131 848.5934 0 10 853 609.2273
Evaporation (mm yr−1) 134.0022 84.9666 0 715.0584 116.7027
Discharge (hm2 yr−1) 517.9301 3245.9758 0 134 255.6759 70.7079
Median increase in productivity (% of 1gC m−2) 8.9070 53.7531 −0.1054 4313.1124 0.0421

Panel A. summarizes the descriptive statistics of the test data set in the original longitude–latitude grid. The test data set contains the years 1902 to 1999. Panel B.
summarizes the descriptive statistics of the ISEA3H grid, i.e., after transforming the data to the hexagonal grid. The GDP-per-capita predictor is excluded from this
summary table, as it is a factor variable.

Table A2. Pearson correlation coefficient.

Pearson correlation coefficient

Population density Median increase in productivity Discharge Precipitation
(1) (2) (3) (4)

Median increase in productivity −0.0212
Discharge 0.0116 −0.009
Precipitation 0.1349 −0.094 0.1111
Evaporation 0.2403 −0.0417 0.0588 0.720

In this table, the correlation matrix of the Pearson correlation coefficient of the predictors is presented. The displayed values are the lower half of the
correlation matrix.

Table A3. Variance inflation factor.

Variance inflation factor

Population density Median increase in productivity Discharge Precipitation Evaporation
(1) (2) (3) (4) (5)

VIF 1.065230 1.010816 1.013481 2.124101 2.183165

This table displays the variance inflation factor (VIF) of the predictor variables. The measure is used to detect multicollinearity between
potential predictor variables. A VIF below 5 means that the respective variable is not collinear to the other variables (James et al., 2013).

Hydrol. Earth Syst. Sci., 28, 5049–5068, 2024 https://doi.org/10.5194/hess-28-5049-2024



S. Wagner et al.: Drivers of global irrigation expansion: the role of discrete global grid choice 5065

Code and data availability. The code and data used in
this study are publicly available for download at Zenodo
https://doi.org/10.5281/zenodo.12542249 (Wagner, 2024).

Statistics were done using R version 4.4.1 and the following
packages: ranger (0.16.0) (https://doi.org/10.18637/jss.v077.i01,
Wright and Ziegler, 2017), ROSE (0.0–4) (Lunardon et al., 2011;
McPhail, 2011), vip (0.4.1) (https://doi.org/10.32614/RJ-2020-
013, Greenwell and Boehmke, 2008), pdp (0.8.1) (Greenwell,
2017), ggplot2 (3.5.1) (https://ggplot2.tidyverse.org, Wick-
ham, 2016), ggpubr (0.6.0) (https://CRAN.R-project.org/
package=ggpubr, Kassambara, 2023), RColorBrewer (1.1–3)
(https://CRAN.R-project.org/package=RColorBrewer Neuwirth,
2022), caret (6.0–94) (https://doi.org/10.18637/jss.v028.i05,
Kuhn, 2008), scales (1.3.0) (https://CRAN.R-project.org/
package=scales, Wickham et al., 2023), openair (2.18–2)
(https://doi.org/10.1016/j.envsoft.2011.09.008, Carslaw and Rop-
kins, 2021), data.table (1.16.0) (https://CRAN.R-project.org/
package=data.table, Barrett et al., 2024).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/hess-28-5049-2024-supplement.
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