Articles | Volume 27, issue 2
https://doi.org/10.5194/hess-27-599-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-27-599-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Controls on leaf water hydrogen and oxygen isotopes: a local investigation across seasons and altitude
Jinzhao Liu
CORRESPONDING AUTHOR
State Key Laboratory of Loess and Quaternary Geology, Center for
Excellence in Quaternary Science and Global Change, Institute of Earth
Environment, Chinese Academy of Sciences, Xi'an 710061, China
National Observation and Research Station of Earth Critical Zone on
the Loess Plateau of Shaanxi, Xi'an 710061, China
Chong Jiang
State Key Laboratory of Loess and Quaternary Geology, Center for
Excellence in Quaternary Science and Global Change, Institute of Earth
Environment, Chinese Academy of Sciences, Xi'an 710061, China
Huawu Wu
Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
Li Guo
State Key Laboratory of Hydraulics and Mountain River Engineering & College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, China
Haiwei Zhang
Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an 710054, China
Ying Zhao
College of Resources and Environmental Engineering, Ludong University, Yantai 264025, China
Related authors
Jinzhao Liu, Huawu Wu, Haiwei Zhang, Guoqiang Peng, Chong Jiang, Ying Zhao, and Jing Hu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-289, https://doi.org/10.5194/hess-2021-289, 2021
Revised manuscript not accepted
Short summary
Short summary
Why do leaf water isotopes can generate to be an isotopic line in a dual-isotope plot? This isotopic water line is as important as the local meteoric water line (LMWL) in the isotope ecohydrology field. We analyzed the variations of oxygen and hydrogen isotopes in soil water, stem water, and leaf water along an elevation transect across seasons. We found that both seasonality and altitude affecting source water are likely to result in the generation of an isotopic water line in leaf water.
Kaiwen Li, Huawu Wu, Jing Li, Mengyao Ding, Ruiyu Lei, Lihui Tian, Hongxiang Fan, Congsheng Fu, Rongrong Wan, and Guishan Yang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1739, https://doi.org/10.5194/egusphere-2025-1739, 2025
Short summary
Short summary
1. Young water fraction (Fyw) and new water fraction (Fnew) were estimated using stable isotopes. 2. The young water fraction (Fyw) showed considerable spatial variability. 3. Precipitation (25.48±5.41 %) and potential evapotranspiration (27.84±6.62 %) were the primary drivers for Fyw and Fnew.
Fei Wang, Genxu Wang, Junfang Cui, Xiangyu Tang, Ruxin Yang, Kewei Huang, Jianqing Du, and Li Guo
EGUsphere, https://doi.org/10.5194/egusphere-2025-1254, https://doi.org/10.5194/egusphere-2025-1254, 2025
Short summary
Short summary
We aim to understand how the ground layer and the preferential flow paths in vegetated valley moraines influence subsurface flow. Our results showed that the presence of ground layer facilitates lateral flow while reduces rainwater mixing within the soil, thus increasing the peak flow amount. The percentage of preferential flow paths involved in subsurface flow is similar between forests and is related to fine roots, driven by coarse-textured soil in moraines.
Ying Zhao, Mehdi Rahmati, Harry Vereecken, and Dani Or
Hydrol. Earth Syst. Sci., 28, 4059–4063, https://doi.org/10.5194/hess-28-4059-2024, https://doi.org/10.5194/hess-28-4059-2024, 2024
Short summary
Short summary
Gao et al. (2023) question the importance of soil in hydrology, sparking debate. We acknowledge some valid points but critique their broad, unsubstantiated views on soil's role. Our response highlights three key areas: (1) the false divide between ecosystem-centric and soil-centric approaches, (2) the vital yet varied impact of soil properties, and (3) the call for a scale-aware framework. We aim to unify these perspectives, enhancing hydrology's comprehensive understanding.
Pengzhen Duan, Hanying Li, Zhibang Ma, Jingyao Zhao, Xiyu Dong, Ashish Sinha, Peng Hu, Haiwei Zhang, Youfeng Ning, Guangyou Zhu, and Hai Cheng
Clim. Past, 20, 1401–1414, https://doi.org/10.5194/cp-20-1401-2024, https://doi.org/10.5194/cp-20-1401-2024, 2024
Short summary
Short summary
We use multi-proxy speleothem records to reveal a two droughts–one pluvial pattern during 8.5–8.0 ka. The different rebounded rainfall quantity after two droughts causes different behavior of δ13C, suggesting the dominant role of rainfall threshold on the ecosystem. A comparison of different records suggests the prolonged 8.2 ka event is a globally common phenomenon rather than a regional signal. The variability of the AMOC strength is mainly responsible for these climate changes.
Nikita Kaushal, Franziska A. Lechleitner, Micah Wilhelm, Khalil Azennoud, Janica C. Bühler, Kerstin Braun, Yassine Ait Brahim, Andy Baker, Yuval Burstyn, Laia Comas-Bru, Jens Fohlmeister, Yonaton Goldsmith, Sandy P. Harrison, István G. Hatvani, Kira Rehfeld, Magdalena Ritzau, Vanessa Skiba, Heather M. Stoll, József G. Szűcs, Péter Tanos, Pauline C. Treble, Vitor Azevedo, Jonathan L. Baker, Andrea Borsato, Sakonvan Chawchai, Andrea Columbu, Laura Endres, Jun Hu, Zoltán Kern, Alena Kimbrough, Koray Koç, Monika Markowska, Belen Martrat, Syed Masood Ahmad, Carole Nehme, Valdir Felipe Novello, Carlos Pérez-Mejías, Jiaoyang Ruan, Natasha Sekhon, Nitesh Sinha, Carol V. Tadros, Benjamin H. Tiger, Sophie Warken, Annabel Wolf, Haiwei Zhang, and SISAL Working Group members
Earth Syst. Sci. Data, 16, 1933–1963, https://doi.org/10.5194/essd-16-1933-2024, https://doi.org/10.5194/essd-16-1933-2024, 2024
Short summary
Short summary
Speleothems are a popular, multi-proxy climate archive that provide regional to global insights into past hydroclimate trends with precise chronologies. We present an update to the SISAL (Speleothem Isotopes
Synthesis and AnaLysis) database, SISALv3, which, for the first time, contains speleothem trace element records, in addition to an update to the stable isotope records available in previous versions of the database, cumulatively providing data from 365 globally distributed sites.
Synthesis and AnaLysis) database, SISALv3, which, for the first time, contains speleothem trace element records, in addition to an update to the stable isotope records available in previous versions of the database, cumulatively providing data from 365 globally distributed sites.
Giselle Utida, Francisco W. Cruz, Mathias Vuille, Angela Ampuero, Valdir F. Novello, Jelena Maksic, Gilvan Sampaio, Hai Cheng, Haiwei Zhang, Fabio Ramos Dias de Andrade, and R. Lawrence Edwards
Clim. Past, 19, 1975–1992, https://doi.org/10.5194/cp-19-1975-2023, https://doi.org/10.5194/cp-19-1975-2023, 2023
Short summary
Short summary
We reconstruct the Intertropical Convergence Zone (ITCZ) behavior during the past 3000 years over northeastern Brazil based on oxygen stable isotopes of stalagmites. Paleoclimate changes were mainly forced by the tropical South Atlantic and tropical Pacific sea surface temperature variability. We describe an ITCZ zonal behavior active around 1100 CE and the period from 1500 to 1750 CE. The dataset also records historical droughts that affected modern human population in this area of Brazil.
Charlotte Honiat, Gabriella Koltai, Yuri Dublyansky, R. Lawrence Edwards, Haiwei Zhang, Hai Cheng, and Christoph Spötl
Clim. Past, 19, 1177–1199, https://doi.org/10.5194/cp-19-1177-2023, https://doi.org/10.5194/cp-19-1177-2023, 2023
Short summary
Short summary
A look at the climate evolution during the last warm period may allow us to test ground for future climate conditions. We quantified the temperature evolution during the Last Interglacial using a tiny amount of water trapped in the crystals of precisely dated stalagmites in caves from the southeastern European Alps. Our record indicates temperatures up to 2 °C warmer than today and an unstable climate during the first half of the Last Interglacial.
Jinzhao Liu, Huawu Wu, Haiwei Zhang, Guoqiang Peng, Chong Jiang, Ying Zhao, and Jing Hu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-289, https://doi.org/10.5194/hess-2021-289, 2021
Revised manuscript not accepted
Short summary
Short summary
Why do leaf water isotopes can generate to be an isotopic line in a dual-isotope plot? This isotopic water line is as important as the local meteoric water line (LMWL) in the isotope ecohydrology field. We analyzed the variations of oxygen and hydrogen isotopes in soil water, stem water, and leaf water along an elevation transect across seasons. We found that both seasonality and altitude affecting source water are likely to result in the generation of an isotopic water line in leaf water.
Laia Comas-Bru, Kira Rehfeld, Carla Roesch, Sahar Amirnezhad-Mozhdehi, Sandy P. Harrison, Kamolphat Atsawawaranunt, Syed Masood Ahmad, Yassine Ait Brahim, Andy Baker, Matthew Bosomworth, Sebastian F. M. Breitenbach, Yuval Burstyn, Andrea Columbu, Michael Deininger, Attila Demény, Bronwyn Dixon, Jens Fohlmeister, István Gábor Hatvani, Jun Hu, Nikita Kaushal, Zoltán Kern, Inga Labuhn, Franziska A. Lechleitner, Andrew Lorrey, Belen Martrat, Valdir Felipe Novello, Jessica Oster, Carlos Pérez-Mejías, Denis Scholz, Nick Scroxton, Nitesh Sinha, Brittany Marie Ward, Sophie Warken, Haiwei Zhang, and SISAL Working Group members
Earth Syst. Sci. Data, 12, 2579–2606, https://doi.org/10.5194/essd-12-2579-2020, https://doi.org/10.5194/essd-12-2579-2020, 2020
Short summary
Short summary
This paper presents an updated version of the SISAL (Speleothem Isotope Synthesis and Analysis) database. This new version contains isotopic data from 691 speleothem records from 294 cave sites and new age–depth models, including their uncertainties, for 512 speleothems.
Cited articles
Allison, G., Barnes, C., and Hughes, M.: The distribution of deuterium and
18O in dry soils 2. Experimental, J. Hydrol., 64, 377–397, 1983.
Amin, A., Zuecco, G., Geris, J., Schwendenmann, L., McDonnell, J. J., Borga,
M., and Penna, D.: Depth distribution of soil water sourced by plants at the
global scale: a new direct inference approach, Ecohydrology, 13, e2177,
https://doi.org/10.1002/eco.2177, 2020.
Barbeta, A., Jones, S. P., Clavé, L., Wingate, L., Gimeno, T. E., Fréjaville, B., Wohl, S., and Ogée, J.: Unexplained hydrogen isotope offsets complicate the identification and quantification of tree water sources in a riparian forest, Hydrol. Earth Syst. Sci., 23, 2129–2146, https://doi.org/10.5194/hess-23-2129-2019, 2019.
Barbour, M. M.: Stable oxygen isotope composition of plant tissue: a review,
Funct. Plant Biol., 34, 83–94, 2007.
Barbour, M. M., Farquhar, G. D., and Buckley, T. N.: Leaf water stable isotopes and water transport outside the xylem, Plant Cell Environ., 40,
914–920, 2017.
Becker, A., Finger, P., Meyer-Christoffer, A., Rudolf, B., and Ziese, M.: GPCC Full Data Reanalysis Version 6.0 at 1.0: Monthly Land-Surface Precipitation from RainGauges Built on GTS-Based and Historic Data, GPCC – Global Precipitation Climatology Centre, Berlin, Germany, https://psl.noaa.gov/data/gridded/data.gpcc.html (last access: 5 March 2021), 2011.
Benettin, P., Volkmann, T. H. M., von Freyberg, J., Frentress, J., Penna, D., Dawson, T. E., and Kirchner, J. W.: Effects of climatic seasonality on the isotopic composition of evaporating soil waters, Hydrol. Earth Syst. Sci., 22, 2881–2890, https://doi.org/10.5194/hess-22-2881-2018, 2018.
Benettin, P., Nehemy, M. F., Cernusak, L. A., Kahmen, A., and McDonnell, J.
J.: On the use of leaf water to determine plant water source: A proof of
concept, Hydrol. Process., 35, e14073, https://doi.org/10.1002/hyp.14073, 2021.
Berry, Z. C., Evaristo, J., Moore, G., Poca, M., Steppe, K., Verrot, L.,
Asbjornsen, H., Borma, L. S., Bretfeld, M., Herve-Fernandez, P., Seyfried,
M., Schwendenmann, L., Sinacore, K., Wispelaere, L. D., and McDonnell, J.:
The two water worlds hypothesis: addressing multiple working hypotheses and
proposing a way forward, Ecohydrology, 11, e1843, https://doi.org/10.1002/eco.1843, 2017.
Bottinga, Y. and Craig., H.: Oxygen isotope fractionation between CO2 and water, and the isotopic composition of marine atmospheric CO2, Earth Planet. Sc. Lett., 5, 285–295, 1969.
Bowen, G. J.: Isoscapes: Spatial pattern in isotopic biogeochemistry, Annu.
Rev. Earth Planet. Sci., 38, 161–187, 2010.
Bowen, G. J. and Good, S. P.: Incorporating water isoscapes in hydrological
and water resource investigations, Wiley Interdisciplin. Rev.: Water, 2, 107–119, 2015.
Bowen, G. J. and Revenaugh, J.: Interpolating the isotopic composition of
modern meteoric precipitation, Water Resour. Res., 39, 1299, https://doi.org/10.1029/2003WR002086, 2003.
Brooks, J. R., Barnard, H. R., Coulombe, R., and McDonnell, J. J.: Ecohydrologic separation of water between trees and streams in a Mediterranean climate, Nat. Geosci., 3, 100–104. 2010.
Cernusak, L. A., Farquhar, G. D., and Pate, J. S.: Environmental and physiological controls over oxygen and carbon isotope composition of Tasmanian blue gum, Eucalyptus globulus, Tree Physiol., 25, 129–146, 2005.
Cernusak, L. A., Barbour, M. M., Arndt, S. K., Cheesman, A. W., English, N.
B., field, T. S., Helliker, B. R., Holloway-Phillips, M. M., Holtum, J. A.
M., Kahmen, A., McInerney, F. A., Munksgaard, N. C., Simonin, K. A., Song,
X., Stuart-Williams, H., West, J. B., and Farquhar, G. D.: Stable isotopes
in leaf water of terrestrial plants, Plant Cell Environ., 39, 1087–1102,
2016.
Cernusak, L. A., Barbeta, A., Bush, R., Eichstaedt R., Ferrio, J., Flanagan,
L., Gessler, A., Martín-Gómez, P., Hirl, R., Kahmen, A., Keitel.,
C., Lai, C., Munksgaard, N., Nelson, D., Ogée J., Roden, J., Schnyder,
H., Voelker, S., Wang L., Stuart-Williams, H., Wingate, L., Yu, W., Zhao, L., and Cuntz, M.: Do 2H and 18O in leaf water reflect
environmental drivers differently?, New Phytol., 235, 41–51, https://doi.org/10.1111/nph.18113, 2022.
Chen, Y., Helliker, B. R., Tang, X., Li, F., Zhou, Y., and Song, X.: Stem
water cryogenic extraction biases estimation in deuterium isotope composition of plant source water, P. Natl. Acad. Sci. USA, 117, 33345–33350, 2020.
Chiang, J. C., Fung, I. Y., Wu, C. -H., Cai, Y., Edman, J. P., Liu, Y., Day,
J. A., Bhattacharya, T., Mondal, Y., and Labrousse, C. A.: Role of seasonal
transitions and westerly jets in East Asian paleoclimate, Quaternary Sci. Rev., 108, 111–129, 2015.
Craig, H. and Gordon, L. I.: Deuterium and oxygen-18 variations in the ocean and the marine atmosphere, in: Proceedings of a conference on stable isotopes in oceanographic studies and paleotemperatures, Pisa, Italy, 9–130, 1965.
Cuntz, M., Ogée, J., Farquhar, G. D., Peylin, P., and Cernusak, L. A.:
Modelling advection and diffusion of water isotopologues in leaves, Plant
Cell Environ. 30, 892–909, 2007.
Dansgaard, W.: Stable isotopes in precipitation, Tellus, 16, 436–468, 1964.
Dawson, T. E. and Ehleringer, J. R.: Streamside trees that do not use stream
water, Nature, 350, 335–337, 1991.
Dongmann. G., Nurnberg, H. E., Forstel, H., and Wagener, K.: On the enrichment of in the leaves of transpiring plants, Radiat.
Environ. Biophys., 11, 41–52, 1974.
Draxler, R. R. and Rolph, G. D.: HYSPLIT (Hybrid Single-Particle Lagrangian
Integrated Trajectory) Model Access via NOAA ARLREADY.html, NOAA Air
Resources Laboratory, http://www.arl.noaa.gov/ready/hysplit4 (last access: 10 April 2021), 2003.
Ehleringer, J. R. and Dawson, T. E.: Water uptake by plants: perspectives
from stable isotope composition, Plant Cell Environ., 15, 1073–1082, 1992.
Ellsworth, P. Z. and Williams, D. G.: Hydrogen isotope fractionation during
water uptake by woody xerophytes, Plant Soil, 291, 93–107, 2007.
Evaristo, J., Jasechko, S., and McDonnell, J. J.: Global separation of plant
transpiration from groundwater and streamflow, Nature, 525, 91–94, 2015.
Farquhar, G. D. and Cernusak, L. A.: On the isotopic composition of leaf
water in the non- steady state, Funct. Plant Biol., 32, 293–303, 2005.
Farquhar, G. D. and Gan, K. S.: On the progressive enrichment of the oxygen
isotopic composition of water along leaves, Plant Cell Environ., 26, 801–819, 2003.
Farquhar, G. D. and Lloyd, J.: Carbon and oxygen isotope effects in the exchange of carbon dioxide between terrestrial plants and the atmosphere, in:
Stable Isotopes and Plant Carbon–Water Relations, edited by: Ehleringer, J. R., Hall, A. E., and Farquhar, G. D., Academic Press, San Diego, 47–70, https://doi.org/10.1016/B978-0-08-091801-3.50011-8, 1993.
Farquhar, G. D., Cernusak, L. A., and Barnes, B.: Heavy water fractionation
during transpiration, Plant Physiol., 143, 11–18, 2007.
Gan, K. S., Wong, S. C., Yong, J. W. H., and Farquhar, G. D.: Evaluation of models of leaf water 18O enrichments of spatial patterns of vein xylem, leaf water and dry matter in maize leaves, Plant Cell Environ., 26,
1479–1495, 2003.
Goldsmith, G. R., Munoz-Villers, L. E., Holwerda, F., McDonnell, J. J.,
Asbjornsen, H., and Dawson, T. E.: Stable isotopes reveal linkages among
ecohydrological processes in a seasonally dry tropical montane cloud forest,
Ecohydrology, 5, 779–790, 2012.
Helliker, B. R. and Ehleringer, J. R.: Establishing a grassland signature
in veins: 18O in the leaf water of C3 and C4 grasses, P. Natl. Acad. Sci. USA, 97, 7894–7898, 2000.
Hepp, J., Schäfer, I. K., Lanny, V., Franke, J., Bliedtner, M., Rozanski, K., Glaser, B., Zech, M., Eglinton, T. I., and Zech, R.: Evaluation of bacterial glycerol dialkyl glycerol tetraether and 2H–18O biomarker proxies along a central European topsoil transect, Biogeosciences, 17, 741–756, https://doi.org/10.5194/bg-17-741-2020, 2020.
Kahmen, A., Sachse, D., Arndt, S. K., Tu, K. P., Farrington, H., Vitousek, P. M., and Dawson, T. E.: Cellulose δ18O is an index of leaf-to-air vapor pressure difference (VPD) in tropical plants, P. Natl. Acad. Sci. USA, 108, 1981–1986, 2011.
Leaney, F., Osmond, C., Allison, G., and Ziegler, H.: Hydrogen-isotope
composition of leaf water in C3 and C4 plants: its relationship to the hydrogen-isotope composition of dry matter, Planta, 164, 215–220, 1985.
Lehmann, M. M., Gamarra, B., Kahmen, A., Siegwolf, R. T. W., and Saurer, M.:
Oxygen isotope fractionations across individual leaf carbohydrates in grass
and tree species, Plant Cell Environ., 40, 1658–1670, 2017.
Li, Z., Feng, Q., Wang, Q., Kong, Y., Cheng, A., Yong, S., Li, Y., Li, J.,
and Guo, X.: Contributions of local terrestrial evaporation and transpiration to precipitation using δ18O and D-excess as a proxy in Shiyang inland river basin in China, Global Planet. Change, 146, 140–151, 2016.
Li, Z., Li, Z., Yu, H., Song, L., and Ma, J.: Environmental significance and
zonal characteristics of stable isotope of atmospheric precipitation in arid
Central Asia, Atmos. Res., 227, 24–40, 2019.
Lin, G. H. and Sternberg, L. S. L.: Hydrogen isotopic fractionation by plant roots during water uptake in coastal wetland plants. Stable Isotopic and Plant Carbon/Water Relations, Academic Press, New York, 497–510, https://doi.org/10.1016/B978-0-08-091801-3.50041-6, 1993.
Liu, J.: Seasonality of the altitude effect on leaf wax n-alkane distributions, hydrogen and carbon isotopes along an arid transect in the
Qinling Mountains, Sci. Total Environ., 778, 146272, https://doi.org/10.1016/j.scitotenv.2021.146272, 2021.
Liu, J., Liu, W., and An, Z.: Insight into the reasons of leaf wax δDn-alkane values between grasses and woods, Sci. Bull., 60, 549–555, 2015.
Liu, J., Liu, W., An, Z., and Yang, H.: Different hydrogen isotope fractionations during lipid formation in higher plants: Implications for
paleohydrology, Sci. Rep., 6, 19711, https://doi.org/10.1038/srep19711, 2016.
Liu, J., Wu, H., Cheng, Y., Jin, Z., and Hu, J.: Stable isotope analysis of
soil and plant water in a pair of natural grassland and understory of planted forestland on the Chinese Loess Plateau, Agr. Water Manage., 249, 106800, https://doi.org/10.1016/j.agwat.2021.106800, 2021a.
Liu, J., An, Z., and Lin, G.: Intra-leaf heterogeneities of hydrogen isotope
compositions in leaf water and leaf wax of monocots and dicots, Sci. Total
Environ., 770, 145258, https://doi.org/10.1016/j.scitotenv.2021.145258, 2021b.
Liu, J., Jiang, C., Guo, L., and Hu, J.: Ecohydrological separation in a pair
catchments covered with natural grassland and planted forestland on the
Chinese Loess Plateau: Evidence from a one-year stable isotope observation,
Hydrol. Process., 36, e14778, https://doi.org/10.1002/hyp.14778, 2022.
Majoube, M.: Fractionnement en oxygen-18 et en deuterium entre l'eau et sa
vapeur, Journal de Chimie et Physique, 68, 1423–1436, 1971.
McGuire, K. and McDonnell, J. J.: Stable isotope tracers in watershed hydrology, in: Stable Isotopes in Ecology and Environmental Science, Ecological Methods and Concepts Series, Wiley, 334–374, https://doi.org/10.1002/9780470691854.ch11, 2007.
Munksgaard, N. C., Cheesman, A. W., English, N. B., Zwart, C., Kahmen, A.,
and Cernusak, L. A.: Identifying drivers of leaf water and cellulose stable
isotope enrichment in Eucalyptus in northern Australia, Oecologia, 183,
31–43, 2017.
Ogée, J., Cuntz, M., Peylin, P., and Bariac, T.: Non-steady-state,
non-uniform transpiration rate and leaf anatomy effects on the progressive
stable isotope enrichment of leaf water along monocot leaves, Plant Cell
Environ., 30, 367–387, 2007.
Pagani, M., Pedentchouk, N., Huber, M., Sluijs, A., Schouten, S., Brinkhuis,
H., Damsté, J. S. S., and Dichens, G. R.: Arctic hydrology during global
warming at the Palaeocene/Eocene thermal maximum, Nature, 442, 671–675, 2006.
Penna, D. and van Meerveld, H. J.: Spatial variability in the isotopic composition of water in small catchments and its effect on hydrograph separation, WIREs Water, 6, e1367, https://doi.org/10.1002/wat2.1367, 2019.
Phillips, S. L. and Ehleringer, J. R.: Limited uptake of summer precipitation by big tooth maple (Acer grandidentatum Nutt) and Gambels oak (Quercus gambelii Nutt), Trees, 9, 214–219, 1995.
Plavcová, L., Hronková, M., Šimková, M., Květoň, J.,
Vráblová, M., Kubásek, J., Šantrůček, J.: Seasonal
variation of δ18O and δ2H in leaf water of Fagus sylvatica L. and related water compartments, J. Plant Physiol., 227, 56–65, 2018.
Poca, M., Coomans, O., Urcelay, C., Zeballos, S. R., Bodé, S., and Boecks, P.: Isotope fractionation during root water uptake by Acacia caven is enhanced by arbuscular mycorrhizas, Plant Soil, 441, 485–497, 2019.
Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., Bosilovich, M. G., Schubert, S. D., Takacs, L., and Kim, G.-K.: MERRA: NASA's modern-era retrospective analysis for research and applications, J. Climate, 24, 3624–3648, 2011.
Romero, I. C. and Feakins, S. I.: Spatial gradients in plant leaf wax D/H
across a coastal salt marsh in southern California, Org. Geochem., 42,
618–629, 2011.
Rothfuss, Y. and Javaux, M.: Reviews and syntheses: Isotopic approaches to quantify root water uptake: a review and comparison of methods, Biogeosciences, 14, 2199–2224, https://doi.org/10.5194/bg-14-2199-2017, 2017.
Sachse, D., Billault, I., Bowen, G. J., Chikaraishi, Y., Dawson, T. E., Feakins, S. J., Freeman, K. H., Magill, C. R., McInerney, F. A., van der Meer, M. T. J., Polissar, P. J., Robins, R. J., Sachs, J. P., Schmidt, H. L., Sessions, A. L., White, J. W. C., West, J. B., and Kahmen, A.: Molecular
paleoyhydrology: interpreting the hydrogen-isotopic composition of lipid
biomarkers from photosynthesizing organisms, Annu. Rev. Earth Planet. Sci.,
40, 221–249, 2012.
Šantrůček, J., Kvĕtoň, J., Šetlík, J., and
Bulíčková, L.: Spatial variation of deuterium enrichment in bulk water of snowgun leaves, Plant Physiol., 143, 88–97, 2007.
Schefuß, E., Kuhlmann, H., Mollenhauer, G., Prange, M., and Pätzold, J.: Forcing of wet phases in Southeast Africa over the past 17,000 year, Nature, 480, 22–29, 2011.
Song, X., Loucos, K. E., Simonin, K. A., Farquhar, G. D., and Barbour, M. M.: Measurements of transpiration isotopologues and leaf water to assess enrichment models in cotton, New Phytol., 206, 637–646, 2015.
Sprenger, M., Leistert, H., Gimbel, K., and Weiler, M.: hydrological processes at the soil-vegetation-atmosphere interface with water stable isotopes, Rev. Geophys., 54, 674–704, 2016.
Sprenger, M., Tetzlaff, D., and Soulsby, C.: Soil water stable isotopes reveal evaporation dynamics at the soil–plant–atmosphere interface of the critical zone, Hydrol. Earth Syst. Sci., 21, 3839–3858, https://doi.org/10.5194/hess-21-3839-2017, 2017.
Wang, J., Fu, B., Lu, N., and Zhang, L.: Seasonal variation in water uptake
patterns of three plant species based on stable isotopes in the semi-arid
Loess Plateau, Sci. Total Environ., 609, 27–37, 2017.
Wang, J., Lu, N., and Fu, B.: Inter-comparison of stable isotope mixing models for determining plant water source partitioning, Sci. Total Environ.,
666, 685–693, 2019.
Wu, H., Li, J., Li, X., He, B., Liu, J., Jiang, Z., and Zhang, C.: Contrasting response of coexisting plant′s water-use patterns to experimental precipitation manipulation in an alpine grassland community of Qinghai Lake watershed, China, PLoS One, 13, e0194242, https://doi.org/10.1371/journal.pone.0194242, 2018.
Wu, H., Wu, J., Sakiev, K., Liu, J., Li, J., He, B., Liu, Y., and Shen, B.:
Spatial and temporal variability of stable isotopes (δ18O and
δ2H) in surface waters of arid, mountainous Central Asia,
Hydrol. Process., 33, 1658–1669, 2019.
Wu, H., Huang, Q., Fu, C., Song, F., Liu, J., and Li, J.: Stable isotope
signatures of river and lake water from Poyang Lake, China: Implications for
river-lake interactions, J. Hydrol., 592, 125619, https://doi.org/10.1016/j.jhydrol.2020.125619, 2021.
Zhang, H., Cheng, H., Cai, Y., Spötl, C., Sinha, A., Kathayat, G., and Li, H.: Effect of precipitation seasonality on annual oxygen isotopic composition in the area of spring persistent rain in southeastern China and its paleoclimatic implication, Clim. Past, 16, 211–225, https://doi.org/10.5194/cp-16-211-2020, 2020.
Zhang, H., Zhang, X., Cai, Y., Sinha, A., Spötl, C., Baker, J., Kathayat, G., Liu, Z., Zhao, J., Jia, X., Du, W., Ning, Y., An, Z., Edwards, R. L., and Cheng, H.: A data-model comparison pinpoints Holocene spatiotemporal pattern of East Asian summer monsoon, Quaternary Sci. Rev., 261, 106911, https://doi.org/10.1016/j.quascirev.2021.106911, 2021.
Zhang, P. and Liu, W.: Effect of plant life form on relationship between
δD values of leaf wax n-alkanes and altitude along Mount Taibai, China, Org. Geochem., 42, 100–107, 2010.
Zhao, L., Wang, L., Cernusak, L. A., Liu, X., Xiao, H., Zhou, M., and Zhang,
S.: Significant difference in hydrogen isotope composition between xylem and
tissue water in Populus Euphratica, Plant Cell Environ., 39, 1848–1857, 2016.
Zhao, Y., Wang, Y., He, M., Tong, Y., Zhou, J., Guo, X., Liu, J., and Zhang, X.: Transference of Robinia pseudoacacia water-use patterns from deep to shallow soil layers during the transition period between the dry and rainy seasons in a waterlimited region, Forest Ecol. Manage., 457, 117727, https://doi.org/10.1016/j.foreco.2019.117727, 2020.
Short summary
What controls leaf water isotopes? We answered the question from two perspectives: respective and dual isotopes. On the one hand, the δ18O and δ2H values of leaf water responded to isotopes of potential source water (i.e., twig water, soil water, and precipitation) and meteorological parameters (i.e., temperature, RH, and precipitation) differently. On the other hand, dual δ18O and δ2H values of leaf water yielded a significant linear relationship associated with altitude and seasonality.
What controls leaf water isotopes? We answered the question from two perspectives: respective...