Articles | Volume 27, issue 2
https://doi.org/10.5194/hess-27-599-2023
https://doi.org/10.5194/hess-27-599-2023
Research article
 | 
30 Jan 2023
Research article |  | 30 Jan 2023

Controls on leaf water hydrogen and oxygen isotopes: a local investigation across seasons and altitude

Jinzhao Liu, Chong Jiang, Huawu Wu, Li Guo, Haiwei Zhang, and Ying Zhao

Related authors

Controls of seasonality and altitude on generation of leaf water isotopes
Jinzhao Liu, Huawu Wu, Haiwei Zhang, Guoqiang Peng, Chong Jiang, Ying Zhao, and Jing Hu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-289,https://doi.org/10.5194/hess-2021-289, 2021
Revised manuscript not accepted
Short summary

Related subject area

Subject: Ecohydrology | Techniques and Approaches: Instruments and observation techniques
Technical note: A weighing forest floor grid lysimeter
Heinke Paulsen and Markus Weiler
Hydrol. Earth Syst. Sci., 29, 2309–2319, https://doi.org/10.5194/hess-29-2309-2025,https://doi.org/10.5194/hess-29-2309-2025, 2025
Short summary
Effects of subsurface water infiltration systems on land movement dynamics in Dutch peat meadows
Sanneke van Asselen, Gilles Erkens, Christian Fritz, Rudi Hessel, and Jan J. H. van den Akker
Hydrol. Earth Syst. Sci., 29, 1865–1894, https://doi.org/10.5194/hess-29-1865-2025,https://doi.org/10.5194/hess-29-1865-2025, 2025
Short summary
Understanding ecohydrology and biodiversity in aquatic nature-based solutions in urban streams and ponds through an integrative multi-tracer approach
Maria Magdalena Warter, Dörthe Tetzlaff, Chris Soulsby, Tobias Goldhammer, Daniel Gebler, Kati Vierrikko, and Michael T. Monaghan
EGUsphere, https://doi.org/10.5194/egusphere-2024-3537,https://doi.org/10.5194/egusphere-2024-3537, 2024
Short summary
Seasonal shifts in depth-to-water uptake by young thinned and overstocked lodgepole pine (Pinus contorta) forests under drought conditions in the Okanagan Valley, British Columbia, Canada
Emory C. Ellis, Robert D. Guy, and Xiaohua A. Wei
Hydrol. Earth Syst. Sci., 28, 4667–4684, https://doi.org/10.5194/hess-28-4667-2024,https://doi.org/10.5194/hess-28-4667-2024, 2024
Short summary
Self-potential signals related to tree transpiration in a Mediterranean climate
Kaiyan Hu, Bertille Loiseau, Simon D. Carrière, Nolwenn Lesparre, Cédric Champollion, Nicolas K. Martin-StPaul, Niklas Linde, and Damien Jougnot
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-240,https://doi.org/10.5194/hess-2024-240, 2024
Revised manuscript accepted for HESS
Short summary

Cited articles

Allison, G., Barnes, C., and Hughes, M.: The distribution of deuterium and 18O in dry soils 2. Experimental, J. Hydrol., 64, 377–397, 1983. 
Amin, A., Zuecco, G., Geris, J., Schwendenmann, L., McDonnell, J. J., Borga, M., and Penna, D.: Depth distribution of soil water sourced by plants at the global scale: a new direct inference approach, Ecohydrology, 13, e2177, https://doi.org/10.1002/eco.2177, 2020. 
Barbeta, A., Jones, S. P., Clavé, L., Wingate, L., Gimeno, T. E., Fréjaville, B., Wohl, S., and Ogée, J.: Unexplained hydrogen isotope offsets complicate the identification and quantification of tree water sources in a riparian forest, Hydrol. Earth Syst. Sci., 23, 2129–2146, https://doi.org/10.5194/hess-23-2129-2019, 2019. 
Barbour, M. M.: Stable oxygen isotope composition of plant tissue: a review, Funct. Plant Biol., 34, 83–94, 2007. 
Barbour, M. M., Farquhar, G. D., and Buckley, T. N.: Leaf water stable isotopes and water transport outside the xylem, Plant Cell Environ., 40, 914–920, 2017. 
Download
Short summary
What controls leaf water isotopes? We answered the question from two perspectives: respective and dual isotopes. On the one hand, the δ18O and δ2H values of leaf water responded to isotopes of potential source water (i.e., twig water, soil water, and precipitation) and meteorological parameters (i.e., temperature, RH, and precipitation) differently. On the other hand, dual δ18O and δ2H values of leaf water yielded a significant linear relationship associated with altitude and seasonality.
Share