Articles | Volume 27, issue 2
https://doi.org/10.5194/hess-27-331-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-27-331-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Intercomparison of global reanalysis precipitation for flood risk modelling
Fergus McClean
CORRESPONDING AUTHOR
School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
Richard Dawson
School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
Chris Kilsby
School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
Willis Research Network, 51 Lime St., London, EC3M 7DQ, UK
Related authors
No articles found.
Amy C. Green, Chris Kilsby, and András Bárdossy
Hydrol. Earth Syst. Sci., 28, 4539–4558, https://doi.org/10.5194/hess-28-4539-2024, https://doi.org/10.5194/hess-28-4539-2024, 2024
Short summary
Short summary
Weather radar is a crucial tool in rainfall estimation, but radar rainfall estimates are subject to many error sources, with the true rainfall field unknown. A flexible model for simulating errors relating to the radar rainfall estimation process is implemented, inverting standard processing methods. This flexible and efficient model performs well in generating realistic weather radar images visually for a large range of event types.
Francesco Serinaldi, Federico Lombardo, and Chris G. Kilsby
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-234, https://doi.org/10.5194/hess-2023-234, 2023
Revised manuscript accepted for HESS
Short summary
Short summary
Non-asymptotic probability distributions of block maxima (BM) have been proposed as an alternative to asymptotic distributions from classic extreme value theory. We show that the non-asymptotic models are unnecessary and redundant approximations of the corresponding parent distributions, which are readily available, are not affected by serial dependence, have simpler expression, and describe the probability of all quantiles of the process of interest, not only the probability of BM.
Doug Richardson, Hayley J. Fowler, Christopher G. Kilsby, Robert Neal, and Rutger Dankers
Nat. Hazards Earth Syst. Sci., 20, 107–124, https://doi.org/10.5194/nhess-20-107-2020, https://doi.org/10.5194/nhess-20-107-2020, 2020
Short summary
Short summary
Models are not particularly skilful at forecasting rainfall more than 15 d in advance. However, they are often better at predicting atmospheric variables such as mean sea-level pressure (MSLP). Comparing a range of models, we show that UK winter and autumn rainfall and drought prediction skill can be improved by utilising forecasts of MSLP-based weather patterns (WPs) and subsequently estimating rainfall using the historical WP–precipitation relationships.
Stephan Lenk, Diego Rybski, Oliver Heidrich, Richard J. Dawson, and Jürgen P. Kropp
Nat. Hazards Earth Syst. Sci., 17, 765–779, https://doi.org/10.5194/nhess-17-765-2017, https://doi.org/10.5194/nhess-17-765-2017, 2017
Short summary
Short summary
We plot the dike costs divided by their length as a function of height and test four different regression models. Our analysis shows that a linear function without intercept is sufficient to model the costs, i.e. fixed costs and higher-order contributions are less significant. We employ log-normal distributions and calculate that the range between 3x and x/3 contains 95% of the data, where x represents the regression value. We compare estimates from Canada, the Netherlands, US, UK, and Vietnam.
Claire L. Walsh, Stephen Blenkinsop, Hayley J. Fowler, Aidan Burton, Richard J. Dawson, Vassilis Glenis, Lucy J. Manning, Golnaz Jahanshahi, and Chris G. Kilsby
Hydrol. Earth Syst. Sci., 20, 1869–1884, https://doi.org/10.5194/hess-20-1869-2016, https://doi.org/10.5194/hess-20-1869-2016, 2016
Short summary
Short summary
Changing climate and growing populations pose significant challenges for managing water resources. However, a better understanding of these would contribute to improved decisions about how adequate water supplies are maintained. In this paper, we show that a portfolio of both demand management and new supply options are required for the Thames Basin, which provides the majority of water for London, to help alleviate climate and population challenges in the future.
Related subject area
Subject: Engineering Hydrology | Techniques and Approaches: Uncertainty analysis
A more comprehensive uncertainty framework for historical flood frequency analysis: a 500-year long case study
Bayesian calibration of a flood simulator using binary flood extent observations
Seamless streamflow forecasting at daily to monthly scales: MuTHRE lets you have your cake and eat it too
An uncertainty partition approach for inferring interactive hydrologic risks
Predicting discharge capacity of vegetated compound channels: uncertainty and identifiability of one-dimensional process-based models
Uncertainty quantification of floodplain friction in hydrodynamic models
Developing a drought-monitoring index for the contiguous US using SMAP
Technical note: Assessment of observation quality for data assimilation in flood models
Sedimentation monitoring including uncertainty analysis in complex floodplains: a case study in the Mekong Delta
Assessing the impact of uncertainty on flood risk estimates with reliability analysis using 1-D and 2-D hydraulic models
The transferability of hydrological models under nonstationary climatic conditions
Why hydrological predictions should be evaluated using information theory
Spatial uncertainty assessment in modelling reference evapotranspiration at regional scale
Confidence intervals for the coefficient of L-variation in hydrological applications
Possibilistic uncertainty analysis of a conceptual model of snowmelt runoff
Mathieu Lucas, Michel Lang, Benjamin Renard, and Jérôme Le Coz
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-50, https://doi.org/10.5194/hess-2024-50, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
This paper proposes Binomial models for the inclusion of historical data into flood frequency analysis, which recognize the uncertain nature of the perception threshold and the starting date of the historical period. The procedure is applied to a long systematic series 1816–2020 and 13 historical floods over 1500–1815 (Rhône River, Beaucaire, France). Inclusion of historical floods reduces the uncertainty flood quantiles, even when only the number of perception threshold exceedances is known.
Mariano Balbi and David Charles Bonaventure Lallemant
Hydrol. Earth Syst. Sci., 27, 1089–1108, https://doi.org/10.5194/hess-27-1089-2023, https://doi.org/10.5194/hess-27-1089-2023, 2023
Short summary
Short summary
We proposed a methodology to obtain useful and robust probabilistic predictions from computational flood simulators using satellite-borne flood extent observations. We developed a Bayesian framework to obtain the uncertainty in roughness parameters, in observations errors, and in simulator structural deficiencies. We found that it can yield improvements in predictions relative to current methodologies and can potentially lead to consistent ways of combining data from different sources.
David McInerney, Mark Thyer, Dmitri Kavetski, Richard Laugesen, Fitsum Woldemeskel, Narendra Tuteja, and George Kuczera
Hydrol. Earth Syst. Sci., 26, 5669–5683, https://doi.org/10.5194/hess-26-5669-2022, https://doi.org/10.5194/hess-26-5669-2022, 2022
Short summary
Short summary
Streamflow forecasts a day to a month ahead are highly valuable for water resources management. Current practice often develops forecasts for specific lead times and aggregation timescales. In contrast, a single, seamless forecast can serve multiple lead times/timescales. This study shows seamless forecasts can match the performance of forecasts developed specifically at the monthly scale, while maintaining quality at other lead times. Hence, users need not sacrifice capability for performance.
Yurui Fan, Kai Huang, Guohe Huang, Yongping Li, and Feng Wang
Hydrol. Earth Syst. Sci., 24, 4601–4624, https://doi.org/10.5194/hess-24-4601-2020, https://doi.org/10.5194/hess-24-4601-2020, 2020
Adam Kiczko, Kaisa Västilä, Adam Kozioł, Janusz Kubrak, Elżbieta Kubrak, and Marcin Krukowski
Hydrol. Earth Syst. Sci., 24, 4135–4167, https://doi.org/10.5194/hess-24-4135-2020, https://doi.org/10.5194/hess-24-4135-2020, 2020
Short summary
Short summary
The study compares the uncertainty of discharge curves for vegetated channels, calculated using several methods, including the simplest ones, based on the Manning formula and advanced approaches, providing a detailed physical representation of the channel flow processes. Parameters of each method were identified for the same data sets. The outcomes of the study include the widths of confidence intervals, showing which method was the most successful in explaining observations.
Guilherme Luiz Dalledonne, Rebekka Kopmann, and Thomas Brudy-Zippelius
Hydrol. Earth Syst. Sci., 23, 3373–3385, https://doi.org/10.5194/hess-23-3373-2019, https://doi.org/10.5194/hess-23-3373-2019, 2019
Short summary
Short summary
This study presents how the concept of uncertainty quantification can be applied to river engineering problems and how important it is to understand the limitations of numerical models from a probabilistic point of view. We investigated floodplain friction formulations using different uncertainty quantification methods and estimated their contribution in the final results. The analysis of uncertainties is planned to be integrated in future projects and also extended to more complex scenarios.
Sara Sadri, Eric F. Wood, and Ming Pan
Hydrol. Earth Syst. Sci., 22, 6611–6626, https://doi.org/10.5194/hess-22-6611-2018, https://doi.org/10.5194/hess-22-6611-2018, 2018
Short summary
Short summary
Of particular interest to NASA's SMAP-based agricultural applications is a monitoring product that assesses near-surface soil moisture in terms of probability percentiles for dry and wet conditions. However, the short SMAP record length poses a statistical challenge for the meaningful assessment of its indices. This study presents initial insights about using SMAP Level 3 and Level 4 for monitoring drought and pluvial regions with a first application over the contiguous United States (CONUS).
Joanne A. Waller, Javier García-Pintado, David C. Mason, Sarah L. Dance, and Nancy K. Nichols
Hydrol. Earth Syst. Sci., 22, 3983–3992, https://doi.org/10.5194/hess-22-3983-2018, https://doi.org/10.5194/hess-22-3983-2018, 2018
N. V. Manh, B. Merz, and H. Apel
Hydrol. Earth Syst. Sci., 17, 3039–3057, https://doi.org/10.5194/hess-17-3039-2013, https://doi.org/10.5194/hess-17-3039-2013, 2013
L. Altarejos-García, M. L. Martínez-Chenoll, I. Escuder-Bueno, and A. Serrano-Lombillo
Hydrol. Earth Syst. Sci., 16, 1895–1914, https://doi.org/10.5194/hess-16-1895-2012, https://doi.org/10.5194/hess-16-1895-2012, 2012
C. Z. Li, L. Zhang, H. Wang, Y. Q. Zhang, F. L. Yu, and D. H. Yan
Hydrol. Earth Syst. Sci., 16, 1239–1254, https://doi.org/10.5194/hess-16-1239-2012, https://doi.org/10.5194/hess-16-1239-2012, 2012
S. V. Weijs, G. Schoups, and N. van de Giesen
Hydrol. Earth Syst. Sci., 14, 2545–2558, https://doi.org/10.5194/hess-14-2545-2010, https://doi.org/10.5194/hess-14-2545-2010, 2010
G. Buttafuoco, T. Caloiero, and R. Coscarelli
Hydrol. Earth Syst. Sci., 14, 2319–2327, https://doi.org/10.5194/hess-14-2319-2010, https://doi.org/10.5194/hess-14-2319-2010, 2010
A. Viglione
Hydrol. Earth Syst. Sci., 14, 2229–2242, https://doi.org/10.5194/hess-14-2229-2010, https://doi.org/10.5194/hess-14-2229-2010, 2010
A. P. Jacquin
Hydrol. Earth Syst. Sci., 14, 1681–1695, https://doi.org/10.5194/hess-14-1681-2010, https://doi.org/10.5194/hess-14-1681-2010, 2010
Cited articles
Addy, S. and Wilkinson, M. E.:
Embankment lowering and natural self-recovery improves river-floodplain hydro-geomorphic connectivity of a gravel bed river, Sci. Total Environ., 770, 144626, https://doi.org/10.1016/j.scitotenv.2020.144626, 2021.
Albergel, C., Dutra, E., Munier, S., Calvet, J.-C., Munoz-Sabater, J., de Rosnay, P., and Balsamo, G.:
ERA-5 and ERA-Interim driven ISBA land surface model simulations: which one performs better?, Hydrol. Earth Syst. Sci., 22, 3515–3532, https://doi.org/10.5194/hess-22-3515-2018, 2018.
Alfieri, L., Burek, P., Dutra, E., Krzeminski, B., Muraro, D., Thielen, J., and Pappenberger, F.:
GloFAS – global ensemble streamflow forecasting and flood early warning, Hydrol. Earth Syst. Sci., 17, 1161–1175, https://doi.org/10.5194/hess-17-1161-2013, 2013.
Andreadis, K. M., Schumann, G. J.-P., Stampoulis, D., Bates, P. D., Brakenridge, G. R., and Kettner, A. J.:
Can Atmospheric Reanalysis Data Sets Be Used to Reproduce Flooding Over Large Scales?, Geophys. Res. Lett., 44, 10369-10377, https://doi.org/10.1002/2017GL075502, 2017.
Arshad, M., Ma, X., Yin, J., Ullah, W., Liu, M., and Ullah, I.:
Performance evaluation of ERA-5, JRA-55, MERRA-2, and CFS-2 reanalysis datasets, over diverse climate regions of Pakistan, Weather Clim. Extrem., 33, 100373, https://doi.org/10.1016/j.wace.2021.100373, 2021.
Bárdossy, A., Kilsby, C., Birkinshaw, S., Wang, N., and Anwar, F.:
Is Precipitation Responsible for the Most Hydrological Model Uncertainty?, Front. Water, 4, 836554, https://doi.org/10.3389/frwa.2022.836554, 2022.
Beck, H. E., Vergopolan, N., Pan, M., Levizzani, V., van Dijk, A. I. J. M., Weedon, G. P., Brocca, L., Pappenberger, F., Huffman, G. J., and Wood, E. F.:
Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling, Hydrol. Earth Syst. Sci., 21, 6201–6217, https://doi.org/10.5194/hess-21-6201-2017, 2017.
Blacutt, L. A., Herdies, D. L., de Gonçalves, L. G. G., Vila, D. A., and Andrade, M.:
Precipitation comparison for the CFSR, MERRA, TRMM3B42 and Combined Scheme datasets in Bolivia, Atmos. Res., 163, 117–131, https://doi.org/10.1016/j.atmosres.2015.02.002, 2015.
Chawla, I. and Mujumdar, P. P.: Evaluating rainfall datasets to reconstruct floods in data-sparse Himalayan region, J. Hydrol., 588, 125090, https://doi.org/10.1016/j.jhydrol.2020.125090, 2020.
Chen, G., Iwasaki, T., Qin, H., and Sha, W.:
Evaluation of the Warm-Season Diurnal Variability over East Asia in Recent Reanalyses JRA-55, ERA-Interim, NCEP CFSR, and NASA MERRA, J. Climate, 27, 5517–5537, https://doi.org/10.1175/JCLI-D-14-00005.1, 2014.
Chen, S., Gan, T. Y., Tan, X., Shao, D., and Zhu, J.:
Assessment of CFSR, ERA-Interim, JRA-55, MERRA-2, NCEP-2 reanalysis data for drought analysis over China, Clim. Dynam., 53, 737–757, https://doi.org/10.1007/s00382-018-04611-1, 2019.
Chen, Y., Paschalis, A., Wang, L.-P., and Onof, C.:
Can we estimate flood frequency with point-process spatial-temporal rainfall models?, J. Hydrol., 600, 126667, https://doi.org/10.1016/j.jhydrol.2021.126667, 2021.
Choné, G., Biron, P. M., Buffin-Bélanger, T., Mazgareanu, I., Neal, J. C., and Sampson, C. C.:
An assessment of large-scale flood modelling based on LiDAR data, Hydrol. Process., 35, e14333, https://doi.org/10.1002/hyp.14333, 2021.
Chow, V. T.:
Open-channel hydraulics, McGraw-Hill, New York, ISBN 13-978-0070107762, 1959.
Convery, I. and Bailey, C.:
After the flood: the health and social consequences of the 2005 Carlisle flood event, J. Flood Risk Manag., 1, 100–109, https://doi.org/10.1111/j.1753-318X.2008.00012.x, 2008.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., and Bauer, P.:
The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, 2011.
de Leeuw, J., Methven, J., and Blackburn, M.:
Evaluation of ERA-Interim reanalysis precipitation products using England and Wales observations, Q. J. R. Meteorol. Soc., 141, 798–806, https://doi.org/10.1002/qj.2395, 2015.
Dey, S., Saksena, S., and Merwade, V.:
Assessing the effect of different bathymetric models on hydraulic simulation of rivers in data sparse regions, J. Hydrol., 575, 838–851, https://doi.org/10.1016/j.jhydrol.2019.05.085, 2019.
Environment Agency: Recorded Flood Outlines, https://data.gov.uk/dataset/16e32c53-35a6-4d54-a111-ca09031eaaaf/recorded-flood-outlines (last access: 11 January 2023), 2019a.
Environment Agency: What is the risk of flooding from surface water map, Report Version 2.0, https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/842485/What-is-the-Risk-of-Flooding-from-Surface-Water-Map.pdf (last access: 11 January 2023), 2019b.
Environment Agency and Cumbria County Council: Carlisle Flood Investigation Report, Flood Event 5–6th December 2015, https://www.cumbria.gov.uk/eLibrary/Content/Internet/536/6181/42494151257.pdf (last access: 11 January 2023), 2016.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim, G. K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M., and Zhao, B.:
The modern-era retrospective analysis for research and applications, version 2 (MERRA-2), J. Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Glenis, V., Kutija, V., and Kilsby, C. G.:
A fully hydrodynamic urban flood modelling system representing buildings, green space and interventions, Environ. Model. Softw., 109, 272–292, https://doi.org/10.1016/j.envsoft.2018.07.018, 2018.
Global Modeling and Assimilation Office: MERRA-2 tavg1_2d_flx_Nx: 2d,1-Hourly,Time-Averaged,Single-Level,Assimilation,Surface Flux Diagnostics V5.12.4, Goddard Earth Sciences Data and Information Services Center (GES DISC), Greenbelt, MD, USA, https://doi.org/10.5067/7MCPBJ41Y0K6, 2015.
Hamal, K., Sharma, S., Khadka, N., Baniya, B., Ali, M., Shrestha, M. S., Xu, T., Shrestha, D., and Dawadi, B.: Evaluation of MERRA-2 Precipitation Products Using Gauge Observation in Nepal, Hydrology, 7, 40, https://doi.org/10.3390/hydrology7030040, 2020.
Harrigan, S., Zsoter, E., Alfieri, L., Prudhomme, C., Salamon, P., Wetterhall, F., Barnard, C., Cloke, H., and Pappenberger, F.: GloFAS-ERA5 operational global river discharge reanalysis 1979–present, Earth Syst. Sci. Data, 12, 2043–2060, https://doi.org/10.5194/essd-12-2043-2020, 2020.
He, S., Yang, J., Bao, Q., Wang, L., and Wang, B.:
Fidelity of the observational/reanalysis datasets and global climate models in representation of extreme precipitation in East China, J. Climate, 32, 195–212, https://doi.org/10.1175/JCLI-D-18-0104.1, 2019.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Mu noz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.:
The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hirpa, F. A., Salamon, P., Alfieri, L., Thielen-del Pozo, J., Zsoter, E., and Pappenberger, F.:
The effect of reference climatology on global flood forecasting, J. Hydrometeorol., 17, 1131–1145, https://doi.org/10.1175/JHM-D-15-0044.1, 2016.
Hossain Anni, A., Cohen, S., and Praskievicz, S.: Sensitivity of urban flood simulations to stormwater infrastructure and soil infiltration, J. Hydrol., 588, 125028, https://doi.org/10.1016/j.jhydrol.2020.125028, 2020.
Hou, J., Kang, Y., Hu, C., Tong, Y., Pan, B., and Xia, J.:
A GPU-based numerical model coupling hydrodynamical and morphological processes, Int. J. Sediment Res., 35, 386–394, https://doi.org/10.1016/j.ijsrc.2020.02.005, 2020.
Hou, J., Zhang, Z., Zhang, D., Shi, B., Chen, G., and Zhang, H.: Study on the influence of infiltration on flood propagation with different peak shape coefficients and duration, Water Policy, 23, 1059–1074, https://doi.org/10.2166/wp.2021.193, 2021.
HR Wallingford: Flooding in Boscastle and North Cornwall, August 2004, 104 pp., https://eprints.hrwallingford.com/541/1/EX5160_-_REPRO_-_Flooding_in_Boscastle_and_North_Cornwall_v8_-_22_06_05-rb.pdf (last access: 12 January 2023), 2004.
Hua, W., Zhou, L., Nicholson, S. E., Chen, H., and Qin, M.:
Assessing reanalysis data for understanding rainfall climatology and variability over Central Equatorial Africa, Clim. Dynam., 53, 651–669, https://doi.org/10.1007/s00382-018-04604-0, 2019.
Islam, M. A. and Cartwright, N.:
Evaluation of climate reanalysis and space-borne precipitation products over Bangladesh, Hydrolog. Sci. J., 65, 1112–1128, https://doi.org/10.1080/02626667.2020.1730845, 2020.
Japan Meteorological Agency:
JRA-55: Japanese 55-year Reanalysis, Daily 3-Hourly and 6-Hourly Data, Japan Meteorological Agency, Japan, https://doi.org/10.5065/D6HH6H41, 2013.
Jiang, Q., Li, W., Fan, Z., He, X., Sun, W., Chen, S., Wen, J., Gao, J., and Wang, J.:
Evaluation of the ERA5 reanalysis precipitation dataset over Chinese Mainland, J. Hydrol., 595, 125660, https://doi.org/10.1016/j.jhydrol.2020.125660, 2021.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D.:
The NCEP/NCAR 40-Year Reanalysis Project, B. Am. Meteorol. Soc., 77, 437–472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2, 1996.
Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi, K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka, K., and Takahashi, K.:
The JRA-55 Reanalysis: General Specifications and Basic Characteristics, J. Meteorol. Soc. Jpn. Ser. II, 93, 5–48, https://doi.org/10.2151/jmsj.2015-001, 2015.
Lehner, B. and Grill, G.: HydroBASINS: Global watershed boundaries and sub-basin delineations derived from HydroSHEDS data at 15 second resolution – Technical documentation version 1.c, 1–9, https://data.hydrosheds.org/file/technical-documentation/HydroBASINS_TechDoc_v1c.pdf (last access: 12 January 2023), 2014.
Lei, H., Li, H., Zhao, H., Ao, T., and Li, X.:
Comprehensive evaluation of satellite and reanalysis precipitation products over the eastern Tibetan plateau characterized by a high diversity of topographies, Atmos. Res., 259, 105661, https://doi.org/10.1016/j.atmosres.2021.105661, 2021.
Lewis, E., Quinn, N., Blenkinsop, S., Fowler, H. J., Freer, J., Tanguy, M., Hitt, O., Coxon, G., Bates, P., and Woods, R.:
A rule based quality control method for hourly rainfall data and a 1 km resolution gridded hourly rainfall dataset for Great Britain: CEH-GEAR1hr, J. Hydrol., 564, 930–943, https://doi.org/10.1016/j.jhydrol.2018.07.034, 2018.
Lewis, E., Fowler, H., Alexander, L., Dunn, R., McClean, F., Barbero, R., Guerreiro, S., Li, X.-F., and Blenkinsop, S.:
GSDR: A Global Sub-Daily Rainfall Dataset, J. Climate, 32, 4715–4729, https://doi.org/10.1175/JCLI-D-18-0143.1, 2019.
Liu, H., Yan, R., and Yang, J.:
Credibility and statistical characteristics of CAMSRA and MERRA-2 AOD reanalysis products over the Sichuan Basin during 2003–2018, Atmos. Environ., 244, 117980, https://doi.org/10.1016/j.atmosenv.2020.117980, 2021.
Maggioni, V. and Massari, C.:
On the performance of satellite precipitation products in riverine flood modeling: A review, J. Hydrol., 558, 214–224, https://doi.org/10.1016/j.jhydrol.2018.01.039, 2018.
Mahto, S. S. and Mishra, V.:
Does ERA-5 Outperform Other Reanalysis Products for Hydrologic Applications in India?, J. Geophys. Res.-Atmos., 124, 9423–9441, https://doi.org/10.1029/2019JD031155, 2019.
McClean, F.: Data and code supporting McClean et al. (2022) Intercomparison of global reanalysis precipitation for flood risk modelling. Hydrology and Earth System Sciences, Newcastle University [code and data set], https://doi.org/10.25405/data.ncl.c.6351914.v1, 2022.
McClean, F., Dawson, R., and Kilsby, C.:
Implications of Using Global Digital Elevation Models for Flood Risk Analysis in Cities, Water Resour. Res., 56, e2020WR028241, https://doi.org/10.1029/2020WR028241, 2020.
Md Ali, A., Solomatine, D. P., and Di Baldassarre, G.:
Assessing the impact of different sources of topographic data on 1-D hydraulic modelling of floods, Hydrol. Earth Syst. Sci., 19, 631–643, https://doi.org/10.5194/hess-19-631-2015, 2015.
Met Office: MIDAS Open: UK hourly rainfall data, v201908, https://doi.org/10.5285/a58b9c8a724e4ec795a40a74455462b7, 2019.
Muhadi, N. A., Abdullah, A. F., Bejo, S. K., Mahadi, M. R., and Mijic, A.:
The Use of LiDAR-Derived DEM in Flood Applications: A Review, Remote Sens.,
12, 2308, https://doi.org/10.3390/rs12142308, 2020.
Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., and Thépaut, J.-N.: ERA5-Land: a state-of-the-art global reanalysis dataset for land applications, Earth Syst. Sci. Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021, 2021.
Neal, J., Schumann, G., and Bates, P.: A subgrid channel model for simulating river hydraulics and floodplain inundation over large and data sparse areas, Water Resour. Res., 48, W11506, https://doi.org/10.1029/2012WR012514, 2012.
Neal, J., Hawker, L., Savage, J., Durand, M., Bates, P., and Sampson, C.:
Estimating River Channel Bathymetry in Large Scale Flood Inundation Models, Water Resour. Res., 57, 1–22, https://doi.org/10.1029/2020wr028301, 2021.
Neal, J. C., Bates, P. D., Fewtrell, T. J., Hunter, N. M., Wilson, M. D., and Horritt, M. S.:
Distributed whole city water level measurements from the Carlisle 2005 urban flood event and comparison with hydraulic model simulations, J. Hydrol., 368, 42–55, https://doi.org/10.1016/j.jhydrol.2009.01.026, 2009.
Ni, Y., Cao, Z., Liu, Q., and Liu, Q.:
A 2D hydrodynamic model for shallow water flows with significant infiltration losses, Hydrol. Process., 34, 2263–2280, https://doi.org/10.1002/hyp.13722, 2020.
Nkiaka, E., Nawaz, N. R., and Lovett, J. C.: Evaluating Global Reanalysis Datasets as Input for Hydrological Modelling in the Sudano-Sahel Region, Hydrology, 4, 13, https://doi.org/10.3390/hydrology4010013, 2017.
Ordnance Survey: OS Terrain 50 User Guide v1.3, https://www.ordnancesurvey.co.uk/documents/os-terrain-50-user-guide.pdf (last access: 12 January 2023), 2017.
Ordnance Survey: OS VectorMap Local Technical specification, https://www.ordnancesurvey.co.uk/documents/product-support/tech-spec/os-vectormap-local-technical-specification-v3.0.pdf (last access: 12 January 2023), 2022a.
Ordnance Survey: OS TERRAIN 50™ – OVERVIEW Version 1.5, Southampton, England, https://www.ordnancesurvey.co.uk/documents/product-support/support/os-terrain-50-overview-v1.5.pdf (last access: 12 January 2023), 2022b.
Pappenberger, F., Dutra, E., Wetterhall, F., and Cloke, H. L.:
Deriving global flood hazard maps of fluvial floods through a physical model cascade, Hydrol. Earth Syst. Sci., 16, 4143–4156, https://doi.org/10.5194/hess-16-4143-2012, 2012.
Peña, F., Nardi, F., Melesse, A., and Obeysekera, J.: Assessing geomorphic floodplain models for large scale coarse resolution 2D flood modelling in data scarce regions, Geomorphology, 389, 107841, https://doi.org/10.1016/j.geomorph.2021.107841, 2021.
Pollock, M. D., O'Donnell, G., Quinn, P., Dutton, M., Black, A., Wilkinson, M. E., Colli, M., Stagnaro, M., Lanza, L. G., Lewis, E., Kilsby, C. G., and O'Connell, P. E.:
Quantifying and Mitigating Wind-Induced Undercatch in Rainfall Measurements, Water Resour. Res., 54, 3863–3875, https://doi.org/10.1029/2017WR022421, 2018.
Reichle, R. H., Liu, Q., Koster, R. D., Draper, C. S., Mahanama, S. P. P., and Partyka, G. S.:
Land Surface Precipitation in MERRA-2, J. Climate, 30, 1643–1664, https://doi.org/10.1175/JCLI-D-16-0570.1, 2017.
RICS: Earth observation and aerial surveys, London, England, https://www.rics.org/globalassets/rics-website/media/upholding-professional-standards/sector-standards/land/earth-observation-and-aerial-surveys-global-guidance-note-6th-edn.pdf (last acces: 12 January 2023), 2021.
Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., Bosilovich, M. G., Schubert, S. D., Takacs, L., Kim, G.-K., Bloom, S., Chen, J., Collins, D., Conaty, A., da Silva, A., Gu, W., Joiner, J., Koster, R. D., Lucchesi, R., Molod, A., Owens, T., Pawson, S., Pegion, P., Redder, C. R., Reichle, R., Robertson, F. R., Ruddick, A. G., Sienkiewicz, M., and Woollen, J.:
MERRA: NASA's Modern-Era Retrospective Analysis for Research and Applications, J. Climate, 24, 3624–3648, https://doi.org/10.1175/JCLI-D-11-00015.1, 2011.
Saha, S., Moorthi, S., Pan, H.-L., Wu, X., Wang, J., Nadiga, S., Tripp, P., Kistler, R., Woollen, J., Behringer, D., Liu, H., Stokes, D., Grumbine, R., Gayno, G., Wang, J., Hou, Y.-T., Chuang, H.-Y., Juang, H.-M. H., Sela, J., Iredell, M., Treadon, R., Kleist, D., Delst, P. Van, Keyser, D., Derber, J., Ek, M., Meng, J., Wei, H., Yang, R., Lord, S., van den Dool, H., Kumar, A., Wang, W., Long, C., Chelliah, M., Xue, Y., Huang, B., Schemm, J.-K., Ebisuzaki, W., Lin, R., Xie, P., Chen, M., Zhou, S., Higgins, W., Zou, C.-Z., Liu, Q., Chen, Y., Han, Y., Cucurull, L., Reynolds, R. W., Rutledge, G., and Goldberg, M.: NCEP Climate Forecast System Reanalysis (CFSR) Selected Hourly Time-Series Products, January 1979 to December 2010, Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, https://doi.org/10.5065/D6513W89, 2010a.
Saha, S., Moorthi, S., Pan, H.-L., Wu, X., Wang, J., Nadiga, S., Tripp, P., Kistler, R., Woollen, J., Behringer, D., Liu, H., Stokes, D., Grumbine, R., Gayno, G., Wang, J., Hou, Y.-T., Chuang, H., Juang, H.-M. H., Sela, J., Iredell, M., Treadon, R., Kleist, D., Delst, P. Van, Keyser, D., Derber, J., Ek, M., Meng, J., Wei, H., Yang, R., Lord, S., Dool, H. van den, Kumar, A., Wang, W., Long, C., Chelliah, M., Xue, Y., Huang, B., Schemm, J.-K., Ebisuzaki, W., Lin, R., Xie, P., Chen, M., Zhou, S., Higgins, W., Zou, C.-Z., Liu, Q., Chen, Y., Han, Y., Cucurull, L., Reynolds, R. W., Rutledge, G., and Goldberg, M.:
The NCEP Climate Forecast System Reanalysis, B. Am. Meteorol. Soc., 91, 1015–1058, https://doi.org/10.1175/2010BAMS3001.1, 2010b.
Sampson, C. C., Fewtrell, T. J., O'Loughlin, F., Pappenberger, F., Bates, P. B., Freer, J. E., and Cloke, H. L.:
The impact of uncertain precipitation data on insurance loss estimates using a flood catastrophe model, Hydrol. Earth Syst. Sci., 18, 2305–2324, https://doi.org/10.5194/hess-18-2305-2014, 2014.
Sanders, B. F.:
Evaluation of on-line DEMs for flood inundation modeling, Adv. Water Resour., 30, 1831–1843, https://doi.org/10.1016/j.advwatres.2007.02.005, 2007.
Schumann, G. J. P., Neal, J. C., Voisin, N., Andreadis, K. M., Pappenberger, F., Phanthuwongpakdee, N., Hall, A. C., and Bates, P. D.:
A first large-scale flood inundation forecasting model, Water Resour. Res., 49, 6248–6257, https://doi.org/10.1002/wrcr.20521, 2013.
Seyyedi, H., Anagnostou, E. N., Beighley, E., and McCollum, J.:
Hydrologic evaluation of satellite and reanalysis precipitation datasets over a mid-latitude basin, Atmos. Res., 164–165, 37–48, https://doi.org/10.1016/j.atmosres.2015.03.019, 2015.
Sun, X. and Barros, A. P.:
An evaluation of the statistics of rainfall extremes in rain gauge observations, and satellite-based and reanalysis products using universal multifractals, J. Hydrometeorol., 11, 388–404, https://doi.org/10.1175/2009JHM1142.1, 2010.
Suzuki, T., Yamazaki, D., Tsujino, H., Komuro, Y., Nakano, H., and Urakawa, S.:
A dataset of continental river discharge based on JRA-55 for use in a global ocean circulation model, J. Oceanogr., 74, 421–429, https://doi.org/10.1007/s10872-017-0458-5, 2018.
Tan, M. L., Gassman, P. W., and Cracknell, A. P.: Assessment of Three Long-Term Gridded Climate Products for Hydro-Climatic Simulations in Tropical River Basins, Water, 9, 229, https://doi.org/10.3390/w9030229, 2017.
Tanguy, M., Dixon, H., Prosdocimi, I., Morris, D. G., and Keller, V. J. D.:
Gridded estimates of daily and monthly areal rainfall for the United Kingdom (1890–2017) [CEH-GEAR], NERC Environmental Information Data Centre, https://doi.org/10.5285/ee9ab43d-a4fe-4e73-afd5-cd4fc4c82556, 2019.
Towner, J., Cloke, H. L., Zsoter, E., Flamig, Z., Hoch, J. M., Bazo, J., Coughlan de Perez, E., and Stephens, E. M.:
Assessing the performance of global hydrological models for capturing peak river flows in the Amazon basin, Hydrol. Earth Syst. Sci., 23, 3057–3080, https://doi.org/10.5194/hess-23-3057-2019, 2019.
Trepekli, K., Balstrøm, T., Friborg, T., Fog, B., Allotey, A. N., Kofie, R. Y., and Møller-Jensen, L.: UAV-borne, LiDAR-based elevation modelling: a method for improving local-scale urban flood risk assessment, Nat. Hazards, 113, 423–451, https://doi.org/10.1007/s11069-022-05308-9, 2022.
Winsemius, H. C., Van Beek, L. P. H., Jongman, B., Ward, P. J., and Bouwman, A.:
A framework for global river flood risk assessments, Hydrol. Earth Syst. Sci., 17, 1871–1892, https://doi.org/10.5194/hess-17-1871-2013, 2013.
Xu, H., Xu, C. Y., Chen, S., and Chen, H.:
Similarity and difference of global reanalysis datasets (WFD and APHRODITE) in driving lumped and distributed hydrological models in a humid region of China, J. Hydrol., 542, 343–356, https://doi.org/10.1016/j.jhydrol.2016.09.011, 2016.
Xu, X., Frey, S. K., Boluwade, A., Erler, A. R., Khader, O., Lapen, D. R., and Sudicky, E.:
Evaluation of variability among different precipitation products in the Northern Great Plains, J. Hydrol. Reg. Stud., 24, 100608, https://doi.org/10.1016/j.ejrh.2019.100608, 2019.
Yunus, A. P., Avtar, R., Kraines, S., Yamamuro, M., Lindberg, F., and Grimmond, C. S. B.: Uncertainties in tidally adjusted estimates of sea level rise flooding (bathtub model) for the greater London, Remote Sens.-Basel, 8, 366, https://doi.org/10.3390/rs8050366, 2016.
Zhu, Q., Xuan, W., Liu, L., and Xu, Y.-P.:
Evaluation and hydrological application of precipitation estimates derived from PERSIANN-CDR, TRMM 3B42V7, and NCEP-CFSR over humid regions in China, Hydrol. Process., 30, 3061–3083, https://doi.org/10.1002/hyp.10846, 2016.
Short summary
Reanalysis datasets are increasingly used to drive flood models, especially for continental and global analysis. We investigate the impact of using four reanalysis products on simulations of past flood events. All reanalysis products underestimated the number of buildings inundated, compared to a benchmark national dataset. These findings show that while global reanalyses provide a useful resource for flood modelling where no other data are available, they may underestimate impact in some cases.
Reanalysis datasets are increasingly used to drive flood models, especially for continental and...