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Abstract. Reanalysis datasets are increasingly used to drive
flood models, especially for continental and global analysis
and in areas of data scarcity. However, the consequence of
this for risk estimation has not been fully explored. We in-
vestigate the implications of four reanalysis products (ERA-
5, CFSR, MERRA-2 and JRA-55) on simulations of historic
flood events in five basins in England. These results are com-
pared to a benchmark national gauge-based product (CEH-
GEAR1hr). The benchmark demonstrated better accuracy
than reanalysis products when compared with observations
of water depth and flood extent. All reanalysis products pre-
dicted fewer buildings would be inundated by the events than
the national dataset. JRA-55 was the worst by a significant
margin, underestimating by 40 % compared with 14 %–18 %
for the other reanalysis products. CFSR estimated building
inundation the most accurately, while ERA-5 demonstrated
the lowest error in terms of river stage (29.4 %) and flood-
plain depth (28.6 %). Accuracy varied geographically, and no
product performed best across all basins. Global reanalysis
products provide a useful resource for flood modelling where
no other data are available, but they should be used with cau-
tion due to the underestimation of impacts shown here. Until
a more systematic international strategy for the collection of
rainfall and flood impact data ensures more complete global
coverage for validation, multiple reanalysis products should
be used concurrently to capture the range of uncertainties.

1 Introduction

The primary drivers of pluvial and fluvial flooding are pre-
cipitation events. The duration, intensity and spatial extent of
these events can all affect the depth and extent of any flood-
ing caused. Therefore, the choice of precipitation data when
simulating floods is critical. Inaccurate precipitation will un-
doubtedly lead to a spurious and potentially misleading un-
derstanding of the risk posed by a given event. This effect is
further exacerbated when low-quality precipitation data are
used to project risk into the future, with planning decisions
being made based on the results. Unfortunately, understand-
ing which source of precipitation is most appropriate is chal-
lenging. There is also spatial variation in the availability and
quality of precipitation data. High-quality data are often col-
lected by national or regional authorities but can be inacces-
sible or difficult to obtain; therefore continental or global pre-
cipitation datasets, such as reanalysis products, are a popular
option despite their generally lower resolution and accuracy.

Reanalysis products are created by driving numerical
models with recorded weather observations to build a com-
prehensive historical picture of a wide range of climatic
variables. These datasets usually have global coverage and
span multiple decades. Reanalysis precipitation data have
been widely used in continental- and global-scale flood risk
modelling (Winsemius et al., 2013; Alfieri et al., 2013; An-
dreadis et al., 2017; Pappenberger et al., 2012; Xu et al.,
2016; Seyyedi et al., 2015; Schumann et al., 2013). The main
advantages of reanalysis products are their extensive spatio-
temporal coverage and ease of access. In areas with a limited
number of rain gauges that can provide high-quality obser-
vations, reanalysis products are often the best or only source
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of precipitation inputs for flood simulations. However, there
is no guarantee that they are able to accurately represent ex-
treme events and subsequently characterize flood risk. As a
range of reanalysis datasets are available, there is also the
question of which is more suitable for the application.

The influence of reanalysis data on flood risk estimates
has previously been explored in part. Sampson et al. (2014)
found that the loss ratio decreased by 8.5 times when us-
ing a reanalysis product (ERA-Interim) instead of a satellite
rainfall product (CMORPH) in their catastrophe risk model
of Dublin. Andreadis et al. (2017) compared flood models
driven using an ensemble of parameters from 20CRv2 to
a benchmark using observed flow boundary conditions and
found that, overall, 20CRv2 only captured 15.7 % of the
benchmark inundated area. Mahto et al. (2019) used ERA-
5, ERA-Interim, CFSR, JRA-55 and MERRA-2 to drive a
macroscale hydrological model and simulate monsoon sea-
son runoff in India. CFSR and JRA-55 resulted in a strong
positive bias, compared to a national precipitation dataset,
while MERRA-2 strongly underestimated runoff. The two
ERA products showed a much less prominent positive bias.
While their study represents one of the first intercompar-
isons of different reanalysis precipitation products for runoff
modelling, it does not go as far as looking at the conse-
quences for flood impacts. Meanwhile, Chawla and Mujum-
dar (2020) demonstrate a strong negative bias in flood dis-
charge when using CFSR in the Himalayas. This is indica-
tive of the spatial variability in accuracy inherent in reanal-
ysis datasets, driven largely by assimilation data availability.
Winsemius et al. (2013) compared flood impacts from the
GLOFRIS model cascade, which uses ERA-Interim, with the
OFDA/CRED International Disaster Database (EM-DAT).
River flood risk maps and damage estimates produced using
ERA40 and ERA-Interim were found to be in the same or-
der of magnitude as estimates from EM-DAT and the World
Bank. However, the effect of using a different source of pre-
cipitation was not assessed, and therefore the impact of using
reanalysis data on the cascade is unknown.

This paper extends previous studies by undertaking a sys-
tematic intercomparison of how modern reanalysis products
compare when used to drive a hydrodynamic flood model.
This provides important insights to inform the selection of
data for flood modelling in data-sparse regions as well as a
more general assessment of how well extreme rainfall events
are captured in each product. To provide further context and
identify the potential effects on flood risk assessments, the
flood model outputs are subsequently used to estimate the
number of buildings that would be inundated by each rainfall
product. While this study provides an example of how varied
results may be between products, the relative performance of
each dataset may differ between areas and events and is not
necessarily transferable.

Figure 1. The location and topography of basins within the study
area, illustrated using OS Terrain 50.

2 Methodology

2.1 Study area

To assess the performance of global reanalysis precipitation,
more reliable gauge-based data are required as a baseline to
validate against. However, the quantity and quality of gauge
observations are limited across much of the globe, particu-
larly in sparsely populated and poorer regions. Local gauge
data may in fact be of lower accuracy than the large-scale
products if the rain gauges on the ground are of poor qual-
ity or have been influenced by human error. There is no way
to check which is more correct by looking at precipitation
alone, and an independent source of data is required. River
flow data have been used for this purpose in the past (Beck
et al., 2017) and present a viable option for assessing precip-
itation performance in the context of flood events. To fulfil
the requirements of high-quality local precipitation and river
flow observations, an area of northern England, encompass-
ing the Tyne, Tees, Eden, Wear and Lune basins (Fig. 1), was
selected for this study. The relatively simple flood response
of these steep, surface water dominated basins and the oc-
currence of recent flood events means they provide a suitable
test bed for investigating the effects of using global reanaly-
sis products for more localized flood risk modelling.

2.2 Model setup

The City Catchment Analysis Tool (CityCAT) (Glenis et al.,
2018), a hydrodynamic surface water flood model, was used
to simulate flooding in this study. CityCAT represents spatial
rainfall fields falling directly onto elevation surfaces made up
of uniformly sized square grid cells and propagating accord-
ing to the shallow water equations (SWEs). The model uses
the method of finite volumes and shock-capturing schemes
to solve the SWEs with a Generalized Osher–Solomon Rie-
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Table 1. Precipitation products included in this study. Where the end of the period is not given, the product continues to be updated to the
present day at the time of writing.

Dataset DOI Resolution Coverage Period Frequency

CEH-GEAR1hr https://doi.org/10.5285/d4ddc781-25f3-423a-bba0-747cc82dc6fa 1 km Great Britain 1990–2014 Hourly
ERA-5 https://doi.org/10.24381/cds.adbb2d47 ∼ 30 km Global 1979– Hourly
MERRA-2 https://doi.org/10.5067/7MCPBJ41Y0K6 ∼ 55 km Global 1980– Hourly
CFSR https://doi.org/10.5065/D6513W89 ∼ 35 km Global 1979–2011 Hourly
JRA-55 https://doi.org/10.5065/D6HH6H41 ∼ 60 km Global 1958– 3-hourly

mann solver. The system is suitable for this study as it is
able to directly capture the effects of rainfall on flood depths
without requiring any intermediate steps. The domain grid
of each simulation is directly generated from the digital el-
evation model (DEM) and has the same resolution, in this
case 50 m. Model domains within the study area were de-
lineated using HydroBASINS (Lehner and Grill, 2014). The
outer boundaries of the domain were treated as being open,
which allows water to exit the domain at basin outlets. No
processing of the DEM was undertaken, and it was used in
its original form.

The DEM does not explicitly include river bathymetry, ex-
cept where the river is of similar or greater width than the
DEM resolution and within low points in valleys. For ex-
ample, in Carlisle where we undertake more detailed im-
pact analysis, this includes a coarse rectangular channel
bathymetry, with depths ranging from 1.5–4 m and a width
of 50–100 m.

Although Neal et al. (2012) showed that representation of
channels is important for accurate simulation of flood prop-
agation, Neal et al. (2021) and Dey et al. (2019) show that
choices about how bathymetry is represented become less
important at more extreme return periods. Peña et al. (2021)
go as far as to conclude that “small-scale features and river
bathymetry are negligible under extreme hydrologic events
as the floodplain conveyance capacity is the driving prin-
ciple of flood inundation dynamic”. By not explicitly em-
bedding an accurate river bathymetry into our model, it is
likely that flood extent will be overestimated and channel
discharge underestimated, although the model performance
appears adequate in this regard. Whilst the lack of an explicit
river channel should be considered when interpreting abso-
lute measures of accuracy, it is a reasonable approximation
here as we are not studying bathymetry or DEMs, we fo-
cus on large flood events, and any errors apply to all rainfall
simulations, allowing for objective intercomparison of global
rainfall products, which is the purpose of this study.

Water depths were output every hour for each grid cell
within the domain and then extracted at each gauge loca-
tion (Fig. 1). Manning’s coefficient for all domains was uni-
formly defined as 0.03 (Chow, 1959), which is the same,
or similar, to other studies (Choné et al., 2021; Addy and
Wilkinson, 2021; Hou et al., 2020). The land surface was as-
sumed to be impermeable given the extreme nature of the se-

lected events (described below). Once the ground is saturated
during long-duration flood events, subsurface processes will
cease to have a large impact on water levels, especially for
catchments such as those addressed here with generally shal-
low soils and low base flow indices. For example, on a small
catchment, Hossain Anni et al. (2020) found an increase of
only 0.02 m in average flood depth when excluding infiltra-
tion from a 100-year flood model. Furthermore, larger-scale
studies by Ni et al. (2020) and Hou et al. (2021) show that
peak flow and flood extent are relatively insensitive to infil-
tration rates, although an assumption of no infiltration would
impact outflows as the flood wave falls; the effect of this is
greater for longer floods and would be more significant in
semi-arid or arid regions (which is not the case here). In the
case of the Carlisle flood in the Eden basin, it is documented
that antecedent conditions had led to saturated soils when the
flood event occurred (Convery and Bailey, 2008). Addition-
ally, it is assumed that there are no artificial water abstraction
measures or flood defences present; information on the ele-
vation of the latter in 2005 could not be located. This config-
uration of friction, bathymetry and infiltration parameters is
sufficient as the primary aim of this study is to compare the
influence of different global rainfall products rather than the
absolute accuracy of the hydrodynamic model.

2.3 Rainfall

Four global reanalysis products (JRA-55, MERRA-2, ERA-5
and CFSR) have been selected and compared against CEH-
GEAR1hr, used here as a benchmark. Each rainfall dataset
is described below, and key characteristics are shown in Ta-
ble 1. The reanalysis products were selected based on their
high spatio-temporal resolution, open availability and suit-
able duration. Events between the start and end dates of
CEH-GEAR1hr (1990–2014) were selected based on the
peak stage at the most downstream river gauge within each
basin (Table 2). This identified the most extreme rainfall
events, independently of the rainfall data itself. The largest
events were chosen as they have the greatest impact in terms
of flood damages. Looking at a wider range of events may
have provided a more comprehensive view of the perfor-
mance of reanalysis products across different magnitudes;
however this was outside the scope of the study. Different
events were selected for each basin as the largest extremes
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Table 2. Start times are 2 weeks before the observed stage peak times and end times are 2 weeks after the observed stage peak times. This
is to allow for model spin-up and inclusion of hydrograph. Rainfall totals are the mean rainfall between the start and end times across the
gauged catchment from CEH-GEAR1hr.

Basin Gauge location Gauge ID Catchment Rainfall Stage Flow Peak time Start time End time
area total peak peak

(km2) (mm) (m) (m3 s−1)

Wear Chester-le-Street 24009 1008.3 151.7 4.1 378 18 Jul 2009 11:00 4 Jul 2009 11:00 25 Jul 2009 11:00
Tyne Bywell 23001 2175.6 169.2 6.3 1390 8 Jan 2005 08:00 25 Dec 2004 08:00 15 Jan 2005 08:00
Tees Darlington Broken Scar F3501 818.4 163 3.3 646 31 Jan 1995 20:15 17 Jan 1995 20:15 7 Feb 1995 20:15
Lune Caton 724629 983 216.1 7.1 1400 31 Jan 1995 21:15 17 Jan 1995 21:15 7 Feb 1995 21:15
Eden Sheepmount 765512 2286.5 216.5 7.2 1520 8 Jan 2005 14:30 25 Dec 2004 14:30 15 Jan 2005 14:30

may have occurred at different times in different areas. Each
identified event was only simulated in the basin in which it
was observed, to enable river gauge records to be used for
validation. Simulations were commenced 2 weeks before the
discharge peaks and ran until 1 week after. This was to al-
low model spin-up and characterization of hydrograph reces-
sion. The sensitivity to run duration was not explicitly as-
sessed here, but the duration was sufficient in all cases to en-
sure adequate accounting for antecedent rainfall and return
to normal flow conditions. Antecedent rainfall is necessary
to initiate normal flow in the river channels, which requires
the water from all upstream cells to reach the outlet of the
basin. Normal flow here refers to the flow in the channel be-
fore the flood event took place. If no spin-up period is in-
cluded, then flood magnitudes would be underestimated, and
the flood wave would not propagate in a physically realistic
way.

The events, according to each dataset, are mapped in Fig. 3
and compared with time series of observations at selected
gauges in Fig. 2. CEH-GEAR1hr contained, on average,
higher rainfall totals than the reanalysis products and JRA-
55 represented only approximately half as much precipita-
tion as other reanalysis products. ERA-5 significantly over-
estimated the gauged precipitation for the 2005 event in the
Tyne basin, but, other than this, reanalysis products underes-
timated rainfall totals. The 1995 event in the Lune basin was
the most under-represented across the reanalysis products.
CEH-GEAR1hr was consistently very close to the gauge ob-
servations as they will have been used as part of its creation.

Each rainfall value was converted into a rate (kgm−2 s−1)
at the corresponding times, and each point on the original
reanalysis grid was converted into an area with a width and
height equivalent to the horizontal and vertical resolution of
the dataset. This resulted in differently sized rainfall poly-
gons for each dataset, corresponding to the resolutions listed
in Table 1. These areas were then re-projected into the British
National Grid as Cartesian coordinates are required by City-
CAT. The rainfall products are described below, along with
findings from previous studies which have assessed their per-
formance.

The Centre for Ecology and Hydrology provide an hourly
version of their Gridded Estimates of Areal Rainfall dataset

(CEH-GEAR1hr) (Lewis et al., 2018). This hourly product
is based on a daily product which interpolates data from rain
gauges using natural-neighbour interpolation (Tanguy et al.,
2019). CEH-GEAR1hr uses nearest-neighbour interpolation
to maintain more realistic weather patterns and unmoder-
ated peak values. To ensure consistency between the hourly
and daily versions, the daily totals were maintained in the
hourly dataset by scaling the interpolated values accordingly
(Lewis et al., 2018). Quality control procedures were applied
to the hourly gauge data used to produce the gridded prod-
uct. Each gauge was compared with CEH-GEAR daily, and
92.9 % matched well. Other flags were applied to suspicious
values, such as those which exceeded the 1 or 24 h record
values, values which were preceded by 23 h of no rain and
for tipping bucket gauges where the frequency of tips was
unexpectedly high. Combinations of these flags were used
to identify and exclude values where necessary. This gauge-
based dataset was used as a baseline to compare against the
reanalysis products identified below. The approach of using a
gauge-based product as a baseline is well established (Jiang
et al., 2021; Sun and Barros, 2010; Lei et al., 2021). How-
ever, there are always errors present in any rainfall product,
and gauge-based products are no exception. For example,
wind-induced undercatch may lead to a negative bias in pre-
cipitation (Pollock et al., 2018). The network may also not
be dense enough to capture given events effectively. Despite
these limitations, CEH-GEAR1hr provides the best available
gridded hourly data for the UK, based on quality-controlled
data from a well-established network.

Japanese Meteorological Agency reanalysis 55 (JRA-55)
replaces JRA-25, incorporating higher-resolution and bet-
ter data assimilation, among other improvements (Kobayashi
et al., 2015; Japan Meteorological Agency, 2013). Suzuki
et al. (2018) were able to effectively simulate continental
river discharge using JRA-55; however, they found large
biases attributable to precipitation error in some regions.
Chen et al. (2014) found that JRA-55 has a diurnal differ-
ence of ∼ 50 %, which was comparable to an observed satel-
lite dataset from the Tropical Rainfall Monitoring Mission
(TRMM). Hua et al. (2019) found that JRA-55 overestimated
rainfall by ∼ 15 % around southern Sahel and western equa-
torial Africa. Over eastern China, Chen et al. (2019) found
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Figure 2. Comparison of daily rainfall totals from each dataset with observed values at selected gauges. The observations were obtained
from MIDAS Open (Met Office, 2019). The MIDAS station ID of each gauge is shown in the title of each panel. The series were converted
from hourly to daily to improve clarity. CEH-GEAR1hr becomes obscured in places due to it precisely following the observed series.

that rainfall was better represented by JRA-55 than ERA-
Interim, CFSR and MERRA-1. Meanwhile in the Northern
Great Plains, JRA-55 has been found to perform worse than
other reanalysis products such as ERA-5 and MERRA-2,
demonstrating a strong wet bias (Xu et al., 2019). The vari-
ability in performance across these studies illustrates that the
accuracy of JRA-55 is not consistent between regions.

Modern-Era Retrospective Analysis for Research and Ap-
plications 2 (MERRA-2) (Global Modeling and Assimila-
tion Office, 2015) builds upon its predecessor, MERRA (Rie-
necker et al., 2011), with reduced biases in aspects of the wa-
ter cycle, among other improvements (Gelaro et al., 2017).
MERRA-2 uses observed precipitation products to correct
the forecasts and provide better estimates (Reichle et al.,
2017). Hua et al. (2019) found that MERRA-2 was better
at representing rainfall climatology over Central Equatorial
Africa than ERA-Interim and JRA-55, among others, with a
mean bias of only 0.01 mmd−1. Hamal et al. (2020) found
that MERRA-2 was able to accurately capture the seasonal
precipitation in Nepal when compared to gauge observations
(R ≥ 0.95). Over Pakistan, MERRA-2 precipitation has been
shown to have an RMSE of 1.68 mm and performed better
than JRA-55 (2.2 mm) but not as well as ERA-5 (1.53 mm)
(Arshad et al., 2021). Liu et al. (2021) found that MERRA-

2 precipitation was more similar to satellite observations
during summer in the Sichuan Basin, with a linear correla-
tion coefficient of 0.9 compared to other parts of the year
with 0.57. In India, MERRA-2 has a negative bias of 10 %
in extreme rainfall, compared with 33 % from ERA-Interim
(Mahto and Mishra, 2019).

The European Centre for Medium-Range Weather Fore-
casts Reanalysis 5 product (ERA-5) (Hersbach et al., 2020)
replaces and improves on ERA-Interim (Dee et al., 2011),
which stopped being produced in August 2019. It supports
an increased spatial and temporal resolution, along with an
updated modelling and data assimilation system, which has
resulted in better representation of convective rainfall (3.8 %
vs −5 % median bias in monsoon precipitation over India)
(Mahto and Mishra, 2019). The land surface component is
being used to calculate river discharge for the Global Flood
Awareness System (Harrigan et al., 2020). Albergel et al.
(2018) found that ERA-5 resulted in better estimates of river
discharge than ERA-Interim when used to drive a land sur-
face model of the US. It has also been shown to outperform
a range of other reanalysis products as part of a hydrological
model applied in two Indian basins, with an RMSE of 25.5 %
compared with 40.2 %, 59.2 % and 75.6 % from CFSR, JRA-
55 and MERRA-2, respectively (Mahto and Mishra, 2019).
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Figure 3. Rainfall over the study area during the events in Table 2, according to each reanalysis dataset. The 1995 event is shown for the
Tees and the Lune, the 2004 event is shown for the Tyne and the Eden, and the 2009 event is shown for the Wear.

In Pakistan, ERA-5 has an RMSE of 1.53 mm compared with
daily gauge data, again outperforming MERRA-2 and JRA-
55.

The NCEP Climate Forecast System Reanalysis (CFSR)
(Saha et al., 2010a) replaces the previous NCEP/NCAR re-
analysis (Kalnay et al., 1996) and uses a very similar analysis
system to MERRA-2 (Saha et al., 2010b). Zhu et al. (2016)
demonstrated that CFSR was liable to overestimate high
streamflow in two Chinese basins using SWAT and high-
lighted that performance varied between basins (19.15 %–
31.47 % bias). Nkiaka et al. (2017) found that using CFSR
over ERA-Interim resulted in substantially improved repre-
sentation of river flow in the Sudano-Sahel region, with max-
imum Nash–Sutcliffe efficiencies of 0.43 and −0.56, respec-
tively. In the Amazon basin, CFSR has been shown to under-
predict winter precipitation with a bias of −0.60 and over-

predict summer precipitation with a bias of 0.11 (Blacutt
et al., 2015). During 2010–2014 in Bangladesh, CFSR over-
estimated precipitation relative to gauge observations with
a bias of 1.18; this was greater than ERA-5 which had a
bias of 0.80 (Islam and Cartwright, 2020). In the Johor River
basin, Malaysia, the daily RMSE of CFSR was found to
be 17.70 mm when compared with gauge observations (Tan
et al., 2017).

2.4 Digital elevation model

The terrain dataset used to represent the domain surface
is a nationally and freely available digital elevation model
(DEM) product from the Ordnance Survey, known as OS
Terrain 50 (OST50) (Ordnance Survey, 2017). This has been
shown to perform better than a range of global DEMs for
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flood risk modelling (McClean et al., 2020). The product is
based on a combination of photogrammetry and topograph-
ical surveys and is corrected using a combination of auto-
mated and manual processes to create a bare earth surface
with raised structures removed. The DEM was clipped to
the area of each basin and used directly within the models
(Fig. 1).

Other, higher-resolution DEMs are available, such as Envi-
ronment Agency lidar, which typically have considerable ad-
vantages for flood modelling (Sanders, 2007; Muhadi et al.,
2020; Md Ali et al., 2015; Trepekli et al., 2022). However,
complete lidar coverage of the study area was not available.
The DEM is therefore a source of uncertainty and is likely
to cause overestimation of inundation. For example, Yunus
et al. (2016) found that using OST50 resulted in 3 %–10 %
more inundation for London when compared to 1 m lidar.
Even if lidar were available for the entire domain of each
basin included here, the data would not be able to be used
at their original 1–2 m resolution and would have to be re-
sampled to a lower resolution to enable the simulations to
be completed in a reasonable time period. An alternative ap-
proach might be to merge lidar where available with OST50.
However, either of these approaches would reduce the ben-
efits of using LIDAR over OST50, and the choice of resam-
pling method would introduce a new uncertainty as it also
influences model outputs.

2.5 Validation data

Stage observations were obtained from the Environment
Agency (EA) via a Freedom of Information request at 15 min
resolution for the most downstream gauge in each of the
five basins. The most downstream gauge was used in each
case as these are influenced by the largest areas of rainfall.
The IDs, catchment areas and locations of each gauge are
listed in Table 2. Observations of flood extent during the
event in Carlisle in the Eden basin were extracted from the
EA Recorded Flood Outlines dataset (Environment Agency,
2019a). Distributed measurements of maximum water depth
from the same event were provided by Neal et al. (2009).

2.6 Exposure

Building outlines from OS VectorMapLocal (VML) (Ord-
nance Survey, 2022a) were used to estimate numbers of
buildings inundated by each model. VML only represents
individual buildings with a floor area over 20 m2, and each
polygon may represent multiple buildings. Therefore, not all
buildings are included in the inundation totals. This is accept-
able for this analysis which compares the relative magnitude
of flooding, rather than the absolute totals. Buildings from
VML were classified as flooded if they intersected any model
cell above a typical property threshold of 0.3 m (Environment
Agency, 2019b).

3 Results

The performance of each simulation was compared in terms
of the magnitude and timing of the hydrograph peak, the
flood depth and extent, and the number of buildings in-
undated (Table 3). ERA-5 outperformed other reanalysis
datasets in terms of hydrograph peak error and floodplain
depth; however, CFSR produced more similar inundation
levels to CEH-GEAR1hr and demonstrated more accurate
peak timing, flood extent and depth compared to point ob-
servations. JRA-55 performed significantly worse than other
reanalysis products across all measures. The variability of
each metric will now be assessed in more detail, including
spatial variations in performance.

The maximum water depths according to models using
each of the rainfall datasets are shown in Fig. 4. Overall, the
spatial distribution of floodwater is similar, as the same DEM
is used in all models. There are noticeably higher depths
along main river channels in the CEH-GEAR1hr results.
JRA-55 presents less clearly visible channels than the other
models, particularly in the Lune and Tees basins. The maps
also illustrate that the MERRA-2 model produced lower
depths in the Tyne basin than other reanalysis precipitation
datasets. Across all basins, ERA-5 and CFSR produced sim-
ilar distributions of error relative to the CEH-GEAR1hr re-
sults. The interquartile range of errors in MERRA-2 is nar-
rower, but the median error is slightly further below zero than
ERA-5 and CFSR. JRA-55 water depths were significantly
further below the other reanalysis datasets.

The flood extents from each model during the 2005 event
in the Eden basin are compared against Environment Agency
Recorded Flood Outlines in Fig. 5. This event was cho-
sen because it provided the largest available flood extents
in the observed dataset which coincide with a built-up area.
CEH-GEAR1hr resulted in the highest Critical Success In-
dex (CSI) (0.54). This level of performance with rainfall in-
puts derived from rain gauge data is consistent with the find-
ings of Bárdossy et al. (2022), which showed that up to 50 %
of model error can be attributed to precipitation uncertainty.
CFSR and ERA5 performed similarly to each other and less
well than CEH-GEAR1hr. MERRA-2 caused further under-
estimation of extent, while JRA-55 had the lowest CSI by a
significant margin. The recorded outline data do not contain
information about the total area that was surveyed, so regions
incorrectly identified as flooded in the model outputs may
still have been flooded in reality. This is clearly the case in
the downstream section of the Eden in the upper left of each
plot, along with other water courses visible in the model out-
puts. This means that the CSI values are under-representative
of accuracy; however they provide a useful metric for com-
parison between datasets.

Wrack and water marks recorded following the 2005 event
in Carlisle in the Eden catchment (Neal et al., 2009) have
been compared against maximum modelled water depths in
Fig. 6. Wrack marks are left by debris deposited at the flood
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Figure 4. Panels (a–e) show maximum water depth throughout the study area from models using each of the rainfall datasets. Panel (f) shows
the depth error of the reanalysis datasets relative to CEH-GEAR1hr across all cells, excluding outliers. “Ens” refers to the ensemble mean of
all reanalysis products. “Ens-JRA” refers to the ensemble mean of reanalysis product excluding JRA-55.

edge (HR Wallingford, 2004), while water marks are left
as stains on the side of structures within the flooded area.
The DEM values from the computational grid were sub-
tracted from the observed water elevations to produce flood
depths for comparison with the model outputs. Any depths
which were calculated as being below zero were assumed
to be zero. Again, CEH-GEAR1hr is the closest to the ob-
served data with an RMSE of 0.41 m, followed by CFSR and
ERA-5 with approximately twice the error. JRA-55 resulted
in less than half the r2 value of other datasets. The rank-
ing of datasets remained consistent between the CSI analysis
and comparison against observed depths. Without data on the
2005 flood defence crest levels, it was not possible to incor-

porate them. However, the storm was estimated to be a 1-
in-170-year event (Environment Agency & Cumbria County
Council, 2016), far higher than the design return period for
many fluvial flood defences, so whether by overtopping or
floodplain flow, they would be expected to have a relatively
minor influence on this event.

Time series of water depths were extracted from the mod-
els at each river gauge location and compared with the ob-
served values (Fig. 7). In all basins, apart from the Wear,
CEH-GEAR1hr was closest to the observed peaks and pre-
dicted the highest maximum depth. In the Wear basin, where
all models overestimated river stage, CEH-GEAR1hr was ac-
tually the least accurate. However, the observed values may
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Table 3. Summary of metrics for each model. CSI and water depth RMSE are reported for regions of the Eden basins corresponding to those
shown in Figs. 4 and 5.

CEH-GEAR1hr ERA-5 MERRA-2 JRA-55 CFSR

Stage peak error (%) Wear 74.99 17.02 47.92 −68.55 43.29
Tees −22.28 −34.11 −38.16 −100 −35.9
Eden −0.9 −16.39 −27.17 −49.47 −14.24
Tyne 26.88 −4.91 −52.04 −36.43 −14.09
Lune −21.81 −74.66 −80.57 −99.99 −82.37

Stage peak time error (h) Wear −2 13 −1 168 −5
Tees 0 2 −1 −336 4
Eden −1 −3 0 114 −5
Tyne 0 2 10 116 2
Lune 2 1 −5 −79 1

Number of buildings inundated ≥ 0.3 m Tyne 8230 7287 5405 7240 6244
Tees 8078 8956 7834 4801 7938
Wear 6979 5187 6070 4357 5923
Eden 5573 4515 4167 3262 4843
Lune 3475 3005 2905 1177 2861

CSI 0.54 0.42 0.35 0.19 0.44

Water depth RMSE 0.41 0.85 1.05 1.35 0.79

Figure 5. Comparison of flood extent based on a threshold of 0.3 m with Environment Agency Recorded Flood Outlines for the 2005 event
in Carlisle.
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Figure 6. Panels (a–e) show a comparison of modelled and observed water depths from wrack and water marks in Carlisle during the 2005
event (Neal et al., 2009). Panel (f) shows the locations at which the water depths were measured.

Figure 7. Stage hydrographs comparing water depths (m) from model results and observed values at each gauge.
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Figure 8. Number of buildings inundated above given thresholds per basin by each model.

be misleading here as flows go out of bank above 3 m, and so
peaks are truncated in the observed series. This means that
the actual stage is likely to be higher than the recorded val-
ues and therefore the magnitude of the reported errors over-
estimated. JRA-55 consistently severely underestimated river
stage and only captured peaks in the Eden and Tyne basins.
ERA-5 and CFSR display relatively similar performance
across all basins. Meanwhile, MERRA-2 underestimated the
peaks in the Eden and Tyne. All reanalysis products strongly
underestimated the flood peak in the Lune basin.

The total numbers of inundated buildings for each model
are shown in Fig. 8. As there are no observed building in-
undation data available, it cannot be concluded which is the
most accurate. However, a reasonable assumption might be
that since CEH-GEAR1hr is based on rainfall observations
and is at a higher resolution, it is likely to produce the closest
estimate to the truth. In four out of five basins, using CEH-
GEAR1hr resulted in the highest number of inundated build-
ings. ERA-5 inundated the most buildings in the Tees basin
despite not being consistently higher than the other reanaly-
sis datasets in the other basins. JRA-55 inundated the low-
est number of buildings by a large margin in all basins apart
from the Tyne, where it exceeded both MERRA-2 and CFSR.
CFSR never resulted in either the highest or lowest number
of inundated buildings. There is general agreement between
the rankings of modelled peak water depth as shown in Fig. 7
and the number of inundated buildings. Notable exceptions
include the Tees, where the high inundation levels predicted
by ERA-5 were not replicated in its depth peak, which was
lower than CEH-GEAR1hr by a clear margin. Changing the

inundation threshold only had very minor effects on the rela-
tive differences in inundation between datasets.

4 Discussion

The underestimation of extreme rainfall by reanalysis prod-
ucts has previously been identified in the literature (Bla-
cutt et al., 2015; He et al., 2019; de Leeuw et al., 2015).
The results presented above demonstrate that this leads to
a persistent bias towards underestimation of flood depths and
impacts when using global reanalysis products in place of
high-resolution gauge-based rainfall datasets. One contribut-
ing factor is that the model grid resolution of the global
climate models (GCMs) used may not be high enough to
capture the dynamics of extreme events. Seasonal and lo-
cal characteristics may also not be captured by the GCMs.
Any resulting negative bias in precipitation propagates into
flood depths and impacts as less water enters the hydrody-
namic model and accumulates on the floodplain. The nega-
tive bias has been shown to exist in depths across the basins
studied, at river gauging stations and specifically at the lo-
cations of buildings which correspond to built-up areas ex-
posed to flooding. This finding is in line with Sampson et al.
(2014), who show ERA-Interim, an older product, underesti-
mated flood risk. Our results, however, do not indicate such a
stark bias, perhaps because the products used here are more
modern and advanced than ERA-Interim. This is backed up
by Towner et al. (2019), who have demonstrated improved
performance of ERA-5 over ERA-Interim using hydrologi-
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cal models of the Amazon. Hirpa et al. (2016) also illustrate
that ERA-Interim can underestimate flood risk, with spatial
variability, which further reinforces our finding. In contrast,
Andreadis et al. (2017) find flood extent to be overestimated
(relative to a benchmark simulation) when using the 20CRv2
reanalysis product. However, they did find that outflow dis-
charge was underestimated, which agrees with our results.
Their assessment of flood extent did not include flood depths
or effects on the inundation of exposed assets, as we have
done here, which may explain the observed overestimation to
some degree. We also did not replicate the underestimation
of streamflow found by Zhu et al. (2016) when using CFSR.
However, it is difficult to draw direct comparisons given the
major differences in methodology between studies.

We found that no precipitation product performed better in
all models, and each product performed differently depend-
ing on the basin. This implies that the optimum dataset to
use depends on the location of the model. JRA-55 was very
poor at capturing extreme rainfall and subsequently hydro-
graph peak and inundation magnitude in almost all cases.
This may be slightly influenced by the lower temporal res-
olution, but it is unlikely that the small difference in observa-
tion frequency would result in such a strong negative effect
on model performance. ERA-5 consistently performed bet-
ter than other reanalysis datasets in terms of capturing the
observed hydrograph peak, apart from in the Eden, where
CFSR was more accurate and also demonstrated a higher
CSI and lower RMSE relative to recorded outlines and wrack
mark depths. ERA-5, CFSR and MERRA2 were more evenly
matched in terms of floodplain water depth (Fig. 4) and im-
pacts (Fig. 8). We find no cause to favour any of these three
datasets and suggest that all three could be adopted in paral-
lel by reanalysis-based flood models to capture the range of
uncertainty.

Links between hydrograph performance and estimated
numbers of inundated buildings are present, but the rela-
tionship is not consistent. For example, in the Tyne basin,
CFSR estimates a higher gauge peak than JRA-55 but, at the
same time, inundates fewer buildings. Meanwhile, MERRA-
2 only has the lowest hydrograph peak in the Tyne, where
it estimates the lowest total building inundation compared to
other models. CEH-GEAR1hr is also both generally higher
in terms of both building inundation and hydrograph peak,
but the occasions where this is not the case do not corre-
spond to the same basin. These findings demonstrate that
there is generally a positive relationship between peak hy-
drograph depth and numbers of inundated buildings, but in-
creased river depth does not always lead to greater inunda-
tion. Therefore, hydrograph performance is not an entirely
reliable metric for assessing the accuracy of flood risk esti-
mated using global reanalysis products.

The physically based 2D hydrodynamic model achieves a
good fit to several indicators, despite a reported root mean
squared error (RMSE) for the OST50 DEM of 4 m. A key
reason for this is that the RMSE is the absolute accuracy of

elevation across the whole country. This combines systematic
(e.g. block linkages between photogrammetric observations)
and random errors from one end of the country to the other
and is therefore not an absolute measure of accuracy for a
given area of interest. Local precision, the relative accuracy
from point to point, is more important here and will be much
better than the RMSE over the (relatively) small river basins
(e.g. RICS, 2021, suggests an area of interest would likely
have relative precision of the order of decimetres). More-
over, OST50 has been validated to meet the positional re-
quirements for key features such as waterbodies and to cap-
ture topography (Ordnance Survey, 2022b). Although Yunus
et al. (2016) showed it likely led to a small overprediction of
flood impacts relative to lidar, it has been used successfully
for hydrological modelling (Chen et al., 2021). The combina-
tion of relative accuracy and positional validation against key
features of the DEM explains the performance of the hydro-
dynamic model. Whilst the hydrodynamic performance was
reassuring, calibration could have further improved model fit
(Maggioni and Massari, 2018). However, the focus of the
study is on the sensitivity of model performance to differ-
ent global rainfall products. We have, by choice, therefore
not adjusted any input data or undertaken any specific cali-
bration as this would compensate, differently for each catch-
ment being studied, for the errors and differences in the data
that this work is seeking to understand.

The underestimation of inundation magnitude caused by
using global precipitation data is counter to the overestima-
tion that results from using global DEM data, as demon-
strated by McClean et al. (2020). The negative inundation
bias caused by using reanalysis precipitation is, however, not
as strong as the positive bias from global DEM products. This
is because changes in rainfall input have a less significant
impact on the spatial distribution of flooding than changes
in DEM input. Therefore, it is anticipated that the combined
effects of using both global DEM and global reanalysis pre-
cipitation would not cancel themselves out and are likely to
produce a net positive bias.

Undoubtedly, the effects shown here are specific to the
study area, and other locations may present different patterns.
Each reanalysis product may behave differently across cli-
matic regions, for example. Similarly, the assumption of no
infiltration would lead to increased underestimation of flows
in arid climatic regions. Areas with highly constrained to-
pography are unlikely to be strongly affected by the choice
of precipitation data, in terms of flood extent and numbers of
inundated assets, because increases in total rainfall volume
will not greatly alter flood extent if there are no new avail-
able flow pathways.

A key limitation to applying our methodology in other lo-
cations is the requirement for high-quality gauge-based pre-
cipitation datasets and river stage observations to compare
against. Despite the caveat of locality, our results do demon-
strate the potential for underestimation of flood risk when
reanalysis products are involved. This underestimation has
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been observed in other areas using earlier reanalysis rainfall
products (Sampson et al., 2014), and users of models based
on reanalysis data should be aware of this effect.

5 Conclusions

Using precipitation from global reanalysis datasets results in
an underestimation of flood risk by 14 %–18 % of inundated
buildings (Table 3; excluding JRA-55 as it was far outside the
range of other products) relative to CEH-GEAR1hr, which
outperformed reanalysis products in terms of flood depth and
extent when compared to observations. The effect is location-
specific, though, and this study found that no product per-
formed best across all five of the catchments we studied. In
some areas, the reanalysis data did result in similar levels
of inundation to the national observed precipitation product.
This is a positive message for the use of reanalysis data in
flood risk modelling generally, and future progress in fore-
cast models will undoubtedly reduce this gap even further.

As climatic and land-use changes increase flood hazard,
the importance of accurately understanding current and fu-
ture flood risk is increasing. Reanalysis data have enabled
flood risk assessments to be undertaken more widely. How-
ever, this analysis shows global or regional reanalysis data
should not yet be considered as a replacement for local, high-
resolution observations. Uncertainties in flood risk assess-
ment using reanalysis data need to be properly quantified and
communicated to insurers, local and national authorities, and
communities, to ensure flood risk management decisions are
not misinformed.

While reanalysis datasets do show promising and im-
proving results (ERA-5 achieved a mean absolute hydro-
graph peak error of 29.4 %, equivalent to CEH-GEAR1hr,
and CFSR only inundated on average 14.4 % fewer build-
ings than CEH-GEAR1hr), caution should be used when
interpreting outputs from any models based on them due
to the underestimation of inundated buildings demonstrated
here. However, as no observed building inundation data were
available, our findings are not definitive. We suggest that
multiple products, such as ERA-5, CFSR and MERRA-2,
should be used where possible to capture the full range of
rainfall uncertainty. This is because each of these products
has been shown to perform better in different areas or when
using different performance measures. Based on the com-
paratively strong negative bias in inundation and flood peak
shown here for a limited set of events, JRA-55 may result in
substantially lower risk estimates than other reanalysis prod-
ucts, and users of model outputs based on it should take this
into account. However, as highlighted, certain products may
perform better in other areas, and further research is needed
to assess new and existing reanalysis products for flood mod-
elling across a wider range of climatic regions. To enable
this, a more systematic international strategy for the collec-
tion of rainfall data is needed to ensure more complete global

coverage of validation data, building on efforts from Lewis
et al. (2019). New reanalysis products continue to be de-
veloped, which may improve on the findings presented here
(Mu noz-Sabater et al., 2021) while bearing in mind the find-
ings of Bárdossy et al. (2022) on the fundamental uncertainty
of the reference rain gauge data. This will require ongoing
validation efforts to identify possible advancements in terms
of flood risk analysis

Code and data availability. The reanalysis products can be
downloaded using the DOIs in Table 1. All model re-
sults and code used to generate figures can be accessed at
https://doi.org/10.25405/data.ncl.c.6351914.v1 (McClean, 2022).
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