Articles | Volume 27, issue 13
https://doi.org/10.5194/hess-27-2509-2023
https://doi.org/10.5194/hess-27-2509-2023
Research article
 | 
10 Jul 2023
Research article |  | 10 Jul 2023

Improving soil aquifer treatment efficiency using air injection into the subsurface

Ido Arad, Aviya Ziner, Shany Ben Moshe, Noam Weisbrod, and Alex Furman

Related authors

Continuum modeling of bioclogging of soil aquifer treatment systems segregating active and inactive biomass
Edwin Saavedra Cifuentes, Alex Furman, Ravid Rosenzweig, and Aaron I. Packman
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-251,https://doi.org/10.5194/hess-2024-251, 2024
Preprint under review for HESS
Short summary
Continuous monitoring of a soil aquifer treatment system's physico-chemical conditions to optimize operational performance
Tuvia Turkeltaub, Alex Furman, Ron Mannheim, and Noam Weisbrod
Hydrol. Earth Syst. Sci., 26, 1565–1578, https://doi.org/10.5194/hess-26-1565-2022,https://doi.org/10.5194/hess-26-1565-2022, 2022
Short summary
Numerical modeling of physical and biochemical processes in the subsurface and their impacts on the self-potential signature
Xin Liu, Zengyu Zhang, and Alex Furman
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-31,https://doi.org/10.5194/hess-2022-31, 2022
Manuscript not accepted for further review
Short summary
Geophysically based analysis of breakthrough curves and ion exchange processes in soil
Shany Ben Moshe, Pauline Kessouri, Dana Erlich, and Alex Furman
Hydrol. Earth Syst. Sci., 25, 3041–3052, https://doi.org/10.5194/hess-25-3041-2021,https://doi.org/10.5194/hess-25-3041-2021, 2021
Short summary
On the role of operational dynamics in biogeochemical efficiency of a soil aquifer treatment system
Shany Ben Moshe, Noam Weisbrod, Felix Barquero, Jana Sallwey, Ofri Orgad, and Alex Furman
Hydrol. Earth Syst. Sci., 24, 417–426, https://doi.org/10.5194/hess-24-417-2020,https://doi.org/10.5194/hess-24-417-2020, 2020
Short summary

Related subject area

Subject: Ecohydrology | Techniques and Approaches: Instruments and observation techniques
Seasonal shifts in depth-to-water uptake by young thinned and overstocked lodgepole pine (Pinus contorta) forests under drought conditions in the Okanagan Valley, British Columbia, Canada
Emory C. Ellis, Robert D. Guy, and Xiaohua A. Wei
Hydrol. Earth Syst. Sci., 28, 4667–4684, https://doi.org/10.5194/hess-28-4667-2024,https://doi.org/10.5194/hess-28-4667-2024, 2024
Short summary
Hydrological and pedological effects of combining Italian alder and blackberries in an agroforestry windbreak system in South Africa
Svenja Hoffmeister, Rafael Bohn Reckziegel, Ben du Toit, Sibylle K. Hassler, Florian Kestel, Rebekka Maier, Jonathan P. Sheppard, and Erwin Zehe
Hydrol. Earth Syst. Sci., 28, 3963–3982, https://doi.org/10.5194/hess-28-3963-2024,https://doi.org/10.5194/hess-28-3963-2024, 2024
Short summary
Rainfall redistribution in subtropical Chinese forests changes over 22 years
Wanjun Zhang, Thomas Scholten, Steffen Seitz, Qianmei Zhang, Guowei Chu, Linhua Wang, Xin Xiong, and Juxiu Liu
Hydrol. Earth Syst. Sci., 28, 3837–3854, https://doi.org/10.5194/hess-28-3837-2024,https://doi.org/10.5194/hess-28-3837-2024, 2024
Short summary
The influence of hillslope topography on beech water use: a comparative study in two different climates
Ginevra Fabiani, Julian Klaus, and Daniele Penna
Hydrol. Earth Syst. Sci., 28, 2683–2703, https://doi.org/10.5194/hess-28-2683-2024,https://doi.org/10.5194/hess-28-2683-2024, 2024
Short summary
Real-time biological early-warning system based on freshwater mussels’ valvometry data
Ashkan Pilbala, Nicoletta Riccardi, Nina Benistati, Vanessa Modesto, Donatella Termini, Dario Manca, Augusto Benigni, Cristiano Corradini, Tommaso Lazzarin, Tommaso Moramarco, Luigi Fraccarollo, and Sebastiano Piccolroaz
Hydrol. Earth Syst. Sci., 28, 2297–2311, https://doi.org/10.5194/hess-28-2297-2024,https://doi.org/10.5194/hess-28-2297-2024, 2024
Short summary

Cited articles

Aharoni, A., Negev, I., Cohen, E., Bar, O., Shtrasler, L., Orgad, O., Gabay, R., and Shevach, Y.: Monitoring Shafdan effluents recharge and the third line project: 2019 Yearly Report, Mekorot – National water co., Tel Aviv-Yafo, Israel, 2020. 
Amy, G. and Drewes, J.: Soil aquifer treatment (SAT) as a natural and sustainable wastewater reclamation/reuse technology: Fate of wastewater effluent organic Matter (EfoM) and trace organic compounds, Environ. Monit. Assess., 129, 19–26, https://doi.org/10.1007/s10661-006-9421-4, 2007. 
Arad, I., Ziner, A., Ben Moshe, S., Weisbrod, N., and Furman, A.: Improving soil aquifer treatment efficiency using air injection into the subsurface – Data set, Zenodo [data set], https://doi.org/10.5281/zenodo.7265560, 2023. 
Barry, K. E., Vanderzalm, J. L., Miotlinski, K., and Dillon, P. J.: Assessing the impact of recycled water quality and clogging on infiltration rates at a pioneering Soil Aquifer Treatment (SAT) site in Alice Springs, Northern Territory (NT), Australia, Water, 9, 179, https://doi.org/10.3390/w9030179, 2017. 
Ben Moshe, S., Weisbrod, N., Barquero, F., Sallwey, J., Orgad, O., and Furman, A.: On the role of operational dynamics in biogeochemical efficiency of a soil aquifer treatment system, Hydrol. Earth Syst. Sci., 24, 417–426, https://doi.org/10.5194/hess-24-417-2020, 2020. 
Download
Short summary
In a series of long-column experiments, subsurface air injection in soil aquifer treatment (Air-SAT) was tested as an alternative to conventional flooding–drying operation (FDO) in tertiary wastewater (WW) treatment. Our results show that Air-SAT allows for the treatment of increased WW volumes and results in similar or better effluent quality compared with FDO. These results highlight the possibility of using air injection to treat more effluent and alleviate the pressure on existing SAT sites.