Articles | Volume 27, issue 7
https://doi.org/10.5194/hess-27-1477-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/hess-27-1477-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Hydrological response to climate change and human activities in the Three-River Source Region
Ting Su
State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
Qingyun Duan
College of Hydrology and Water Resources, Hohai University, Nanjing 210024, China
Jiaojiao Gou
State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
Xiaoying Guo
State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
Xi Zhao
State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
Related authors
No articles found.
Jinlong Hu, Chiyuan Miao, Jiajia Su, Qi Zhang, Jiaojiao Gou, and Qiaohong Sun
Earth Syst. Sci. Data, 17, 3987–4004, https://doi.org/10.5194/essd-17-3987-2025, https://doi.org/10.5194/essd-17-3987-2025, 2025
Short summary
Short summary
We developed a high-precision daily precipitation dataset for the Chinese mainland called CHM_PRE V2. Using data from 3746 rain gauges, 11 precipitation-related variables, and advanced machine learning methods, we created a daily precipitation dataset spanning 1960–2023 with unprecedented accuracy. Compared to existing datasets, it better captures rainfall events while reducing false alarms. This work provides a reliable tool for studying water resources, climate change, and disaster management.
Qi Zhang, Chiyuan Miao, Jiajia Su, Jiaojiao Gou, Jinlong Hu, Xi Zhao, and Ye Xu
Earth Syst. Sci. Data, 17, 837–853, https://doi.org/10.5194/essd-17-837-2025, https://doi.org/10.5194/essd-17-837-2025, 2025
Short summary
Short summary
Our study introduces CHM_Drought, an advanced meteorological drought dataset covering mainland China, offering detailed insights from 1961 to 2022 at a spatial resolution of 0.1°. This dataset incorporates six key drought indices, including multi-scale versions, facilitating early detection and monitoring of droughts. Through the provision of consistent and reliable data, CHM_Drought enhances our understanding of drought patterns, aiding in effective water management and agricultural planning.
Yi Wu, Chiyuan Miao, Yiying Wang, Qi Zhang, Jiachen Ji, and Yuanfang Chai
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-600, https://doi.org/10.5194/essd-2024-600, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
Our study introduces BMA-ET, a novel multi-dataset fusion product. Spanning 1980 to 2020 with spatial resolution of 0.5° and 1°, BMA-ET uses Bayesian model averaging (BMA) to combine thirty ET datasets. A key innovation is its dynamic weighting scheme, which adjusts for different vegetation types and non-common coverage years among ET datasets. BMA-ET provides a comprehensive resource for understanding global ET patterns and trends, addressing the limitation of prior ET fusion efforts.
Jingya Han, Chiyuan Miao, Jiaojiao Gou, Haiyan Zheng, Qi Zhang, and Xiaoying Guo
Earth Syst. Sci. Data, 15, 3147–3161, https://doi.org/10.5194/essd-15-3147-2023, https://doi.org/10.5194/essd-15-3147-2023, 2023
Short summary
Short summary
Constructing a high-quality, long-term daily precipitation dataset is essential to current hydrometeorology research. This study aims to construct a long-term daily precipitation dataset with different spatial resolutions based on 2839 gauge observations. The constructed precipitation dataset shows reliable quality compared with the other available precipitation products and is expected to facilitate the advancement of drought monitoring, flood forecasting, and hydrological modeling.
Cited articles
Ahmed, N., Wang, G., Booij, M. J., Oluwafemi, A., Hashmi, M. Z.-u.-R., Ali, S., and Munir, S.: Climatic Variability and Periodicity for Upstream Sub-Basins of the Yangtze River, China, Water, 12, 842, https://doi.org/10.3390/w12030842, 2020.
Ahmed, N., Wang, G., Booij, M. J., Xiangyang, S., Hussain, F., and Nabi, G.: Separation of the Impact of Landuse/Landcover Change and Climate Change on Runoff in the Upstream Area of the Yangtze River, China, Water Resour. Manag., 36, 181–201, https://doi.org/10.1007/s11269-021-03021-z, 2021.
Ashouri, H., Hsu, K.-L., Sorooshian, S., Braithwaite, D. K., Knapp, K. R., Cecil, L. D., Nelson, B. R., and Prat, O. P.: PERSIANN-CDR Daily Precipitation Climate Data Record from Multisatellite Observations for Hydrological and Climate Studies, B. Am. Meteorol. Soc., 96, 69–83, https://doi.org/10.1175/bams-d-13-00068.1, 2015.
Bahr, D. B., Meier, M. F., and Peckham, S. D.: The physical basis of glacier volume-area scaling, J. Geophys. Res., 102, 20355–20362, https://doi.org/10.1029/97JB01696, 1997.
Bai, P. and Liu, X.: Evaluation of Five Satellite-Based Precipitation Products in Two Gauge-Scarce Basins on the Tibetan Plateau, Remote Sens.-Basel, 10, 1316, https://doi.org/10.3390/rs10081316, 2018.
Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a warming climate on water availability in snow-dominated regions, Nature, 438, 303–309, https://doi.org/10.1038/nature04141, 2005.
Cai, Y., Luo, S., Wang, J., Qi, D., and Hu, X.: Spatiotemporal variations in precipitation in the Three-River Headwater region from 1961 to 2019, Pratacultural Science, 39, 10–20, 2022.
Cao, L. and Pan, S.: Changes in precipitation extremes over the “Three-River Headwaters” region, hinterland of the Tibetan Plateau, during 1960–2012, Quatern. Int., 321, 105–115, https://doi.org/10.1016/j.quaint.2013.12.041, 2014.
Chandel, V. S. and Ghosh, S.: Components of Himalayan River Flows in a Changing Climate, Water Resour. Res., 57, e2020WR027589, https://doi.org/10.1029/2020wr027589, 2021.
Chen, X., Long, D., Hong, Y., Zeng, C., and Yan, D.: Improved modeling of snow and glacier melting by a progressive two-stage calibration strategy with GRACE and multisource data: How snow and glacier meltwater contributes to the runoff of the Upper Brahmaputra River basin?, Water Resour. Res., 53, 2431–2466, https://doi.org/10.1002/2016wr019656, 2017.
Cherkauer, K. A. and Lettenmaier, D. P.: Hydrologic effects of frozen soils in the upper Mississippi River basin, J. Geophys. Res.-Atmos., 104, 19599–19610, https://doi.org/10.1029/1999jd900337, 1999.
Cherkauer, K. A. and Lettenmaier, D. P.: Simulation of spatial variability in snow and frozen soil, J. Geophys. Res.-Atmos., 108, 8858, https://doi.org/10.1029/2003jd003575, 2003.
Cuo, L., Zhang, Y., Bohn, T. J., Zhao, L., Li, J., Liu, Q., and Zhou, B.: Frozen soil degradation and its effects on surface hydrology in the northern Tibetan Plateau, J. Geophys. Res.-Atmos., 120, 8276–8298, https://doi.org/10.1002/2015jd023193, 2015.
Cuo, L., Li, N., Liu, Z., Ding, J., Liang, L., Zhang, Y., and Gong, T.: Warming and human activities induced changes in the Yarlung Tsangpo basin of the Tibetan plateau and their influences on streamflow, J. Hydrol.-Reg. Stud., 25, 100625, https://doi.org/10.1016/j.ejrh.2019.100625, 2019.
Deng, C. and Zhang, W.: Spatiotemporal distribution and the characteristics of the air temperature of a river source region of the Qinghai-Tibet Plateau, Environ. Monit. Assess., 190, 368, https://doi.org/10.1007/s10661-018-6739-7, 2018.
Feng, A., Li, Y., Gao, J., Wu, S., and Feng, A.: The determinants of streamflow variability and variation in Three-River Source of China: climate change or ecological restoration?, Environ. Earth Sci., 76, 696, https://doi.org/10.1007/s12665-017-7026-6, 2017.
Gao, J., Yao, T., Masson-Delmotte, V., Steen-Larsen, H. C., and Wang, W.: Collapsing glaciers threaten Asia's water supplies, Nature, 565, 19–21, https://doi.org/10.1038/d41586-018-07838-4, 2019.
Gou, J., Miao, C., Duan, Q., Tang, Q., Di, Z., Liao, W., Wu, J., and Zhou, R.: Sensitivity Analysis-Based Automatic Parameter Calibration of the VIC Model for Streamflow Simulations Over China, Water Resour. Res., 56, e2019WR025968, https://doi.org/10.1029/2019wr025968, 2020.
Gou, J., Miao, C., Samaniego, L., Xiao, M., Wu, J., and Guo, X.: CNRD v1.0: A High-Quality Natural Runoff Dataset for Hydrological and Climate Studies in China, B. Am. Meteorol. Soc., 102, E929–E947, https://doi.org/10.1175/bams-d-20-0094.1, 2021.
Gupta, H. V., Sorooshian, S., and Yapo, P. O.: Status of Automatic Calibration for Hydrologic Models: Comparison with Multilevel Expert Calibration, J. Hydrol. Eng., 4, 135–143, https://doi.org/10.1061/(asce)1084-0699(1999)4:2(135), 1999.
Han, P., Long, D., Han, Z., Du, M., Dai, L., and Hao, X.: Improved understanding of snowmelt runoff from the headwaters of China's Yangtze River using remotely sensed snow products and hydrological modeling, Remote Sens. Environ., 224, 44–59, https://doi.org/10.1016/j.rse.2019.01.041, 2019.
He, Z., Duethmann, D., and Tian, F.: A meta-analysis based review of quantifying the contributions of runoff components to streamflow in glacierized basins, J. Hydrol., 603, 126890, https://doi.org/10.1016/j.jhydrol.2021.126890, 2021.
Hock, R.: Temperature index melt modelling in mountain areas, J. Hydrol., 282, 104–115, https://doi.org/10.1016/s0022-1694(03)00257-9, 2003.
Hoegh-Guldberg, O., Jacob, D., Taylor, M., Bolanos, T. G., Bindi, M., Brown, S., Camilloni, I. A., Diedhiou, A., Djalante, R., Ebi, K., Engelbrecht, F., Guiot, J., Hijioka, Y., Mehrotra, S., Hope, C. W., Payne, A. J., Portner, H. O., Seneviratne, S. I., Thomas, A., Warren, R., and Zhou, G.: The human imperative of stabilizing global climate change at 1.5 ∘C, Science, 365, eaaw6974, https://doi.org/10.1126/science.aaw6974, 2019.
Huang, X., Deng, J., Wang, W., Feng, Q., and Liang, T.: Impact of climate and elevation on snow cover using integrated remote sensing snow products in Tibetan Plateau, Remote Sens. Environ., 190, 274–288, https://doi.org/10.1016/j.rse.2016.12.028, 2017.
Immerzeel, W. W., van Beek, L. P. H., and Bierkens, M. F. P.: Climate Change Will Affect the Asian Water Towers, Science, 328, 1382–1385, https://doi.org/10.1126/science.1183188, 2010.
Immerzeel, W. W., Pellicciotti, F., and Bierkens, M. F. P.: Rising river flows throughout the twenty-first century in two Himalayan glacierized watersheds, Nat. Geosci., 6, 742–745, https://doi.org/10.1038/ngeo1896, 2013.
Ji, P. and Yuan, X.: High-Resolution Land Surface Modeling of Hydrological Changes Over the Sanjiangyuan Region in the Eastern Tibetan Plateau: 1. Model Development and Evaluation, J. Adv. Model. Earth Sy., 10, 2806–2828, https://doi.org/10.1029/2018MS001412, 2018a.
Ji, P. and Yuan, X.: High-Resolution Land Surface Modeling of Hydrological Changes Over the Sanjiangyuan Region in the Eastern Tibetan Plateau: 2. Impact of Climate and Land Cover Change, J. Adv. Model. Earth Sy., 10, 2829–2843, https://doi.org/10.1029/2018ms001413, 2018b.
Ji, P., Yuan, X., Ma, F., and Pan, M.: Accelerated hydrological cycle over the Sanjiangyuan region induces more streamflow extremes at different global warming levels, Hydrol. Earth Syst. Sci., 24, 5439–5451, https://doi.org/10.5194/hess-24-5439-2020, 2020.
Jiang, C., Li, D., Gao, Y., Liu, W., and Zhang, L.: Impact of climate variability and anthropogenic activity on streamflow in the Three Rivers Headwater Region, Tibetan Plateau, China, Theor. Appl. Climatol., 129, 667–681, https://doi.org/10.1007/s00704-016-1833-7, 2016.
Liang, X., Lettenmaier, D. P., Wood, E. F., and Burges, S. J.: A simple hydrologically based model of land surface water and energy fluxes for general circulation models, J. Geophys. Res.-Atmos., 99, 14415–14428, https://doi.org/10.1029/94jd00483, 1994.
Liang, X., Wood, E. F., and Lettenmaier, D. P.: Surface soil moisture parameterization of the VIC-2L model: Evaluation and modification, Global Planet. Change, 13, 195–206, https://doi.org/10.1016/0921-8181(95)00046-1, 1996.
Liu, D., Cao, C., Dubovyk, O., Tian, R., Chen, W., Zhuang, Q., Zhao, Y., and Menz, G.: Using fuzzy analytic hierarchy process for spatio-temporal analysis of eco-environmental vulnerability change during 1990–2010 in Sanjiangyuan region, China, Ecol. Indic., 73, 612–625, https://doi.org/10.1016/j.ecolind.2016.08.031, 2017.
Liu, S. Y., Sun, W. X., Shen, Y. P., and Li, G.: Glacier changes since the Little Ice Age maximum in the western Qilian Shan, northwest China, and consequences of glacier runoff for water supply, J. Glaciol., 49, 117–124, https://doi.org/10.3189/172756503781830926, 2003.
Liu, W., Xie, C., Wang, W., Yang, G., Zhang, Y., Wu, T., Liu, G., Pang, Q., Zou, D., and Liu, H.: The Impact of Permafrost Degradation on Lake Changes in the Endorheic Basin on the Qinghai–Tibet Plateau, Water, 12, 1287, https://doi.org/10.3390/w12051287, 2020.
Liu, X., Yang, T., Hsu, K., Liu, C., and Sorooshian, S.: Evaluating the streamflow simulation capability of PERSIANN-CDR daily rainfall products in two river basins on the Tibetan Plateau, Hydrol. Earth Syst. Sci., 21, 169–181, https://doi.org/10.5194/hess-21-169-2017, 2017.
Lohmann, D., Nolte-Holube, R., and Raschke, E.: A large-scale horizontal routing model to be coupled to land surface parametrization schemes, Tellus A, 48, 708–721, https://doi.org/10.1034/j.1600-0870.1996.t01-3-00009.x, 1996.
Luo, S., Fang, X., Lyu, S., Zhang, Y., and Chen, B.: Improving CLM4.5 Simulations of Land-Atmosphere Exchange during Freeze-Thaw Processes on the Tibetan Plateau, J. Meteorol. Res.-PRC, 31, 916–930, https://doi.org/10.1007/s13351-017-6063-0, 2017.
Luo, Y., Qin, N., Zhou, B., Li, J., Liu, J., Wang, C., and Pang, Y.: Change of Runoff in the Source Regions of the Yangtze River from 1961 to 2016, Res. Soil Water Conserv., 26, 123–128, 2019.
Lutz, A. F., Immerzeel, W. W., Shrestha, A. B., and Bierkens, M. F. P.: Consistent increase in High Asia's runoff due to increasing glacier melt and precipitation, Nat. Clim. Change, 4, 587–592, https://doi.org/10.1038/nclimate2237, 2014.
Ma, L., Liu, Z., Zhao, B., Lyu, J., Zheng, F., Xu, W., and Gan, X.: Variations of runoff and sediment and their response to human activities in the source region of the Yellow River, China, Environ. Earth Sci., 80, 552, https://doi.org/10.1007/s12665-021-09850-w, 2021.
Meng, X., Chen, H., Li, Z., Zhao, L., Zhou, B., Lu, S., Deng, M., Liu, Y., and Li, G.: Review of Climate Change and Its Environmental Influence on the Three-River Regions, Plateau Meteorol., 39, 1133–1143, 2020.
Miao, C., Gou, J., Fu, B., Tang, Q., Duan, Q., Chen, Z., Lei, H., Chen, J., Guo, J., Borthwick, A. G. L., Ding, W., Duan, X., Li, Y., Kong, D., Guo, X., and Wu, J.: High-quality reconstruction of China's natural streamflow, Sci. Bull., 67, 547–556, https://doi.org/10.1016/j.scib.2021.09.022, 2022.
Qiu, J.: The third pole, Nature, 454, 393–396, https://doi.org/10.1038/454393a, 2008.
Radic, V., Hock, R., and Oerlemans, J.: Analysis of scaling methods in deriving future volume evolutions of valley glaciers, J. Glaciol., 54, 601–612, https://doi.org/10.3189/002214308786570809, 2008.
Shangguan, D., Guo, W., Zhao, C., Xu, J., Han, H., Wang, J., Ding, Y. J., Zhang, S., and Zhao, Q.: Modeling Hydrologic Response to Climate Change and Shrinking Glaciers in the Highly Glacierized Kunma Like River Catchment, Central Tian Shan, J. Hydrometeorol., 16, 2383–2402, https://doi.org/10.1175/jhm-d-14-0231.1, 2015.
Shen, Y.-J., Shen, Y., Fink, M., Kralisch, S., Chen, Y., and Brenning, A.: Trends and variability in streamflow and snowmelt runoff timing in the southern Tianshan Mountains, J. Hydrol., 557, 173–181, https://doi.org/10.1016/j.jhydrol.2017.12.035, 2018.
Shi, R., Wang, T., Yang, D., and Yang, Y.: Streamflow decline threatens water security in the upper Yangtze river, J. Hydrol., 606, 127448, https://doi.org/10.1016/j.jhydrol.2022.127448, 2022.
Spencer, S. A., Silins, U., and Anderson, A. E.: Precipitation-Runoff and Storage Dynamics in Watersheds Underlain by Till and Permeable Bedrock in Alberta's Rocky Mountains, Water Resour. Res., 55, 10690–10706, https://doi.org/10.1029/2019wr025313, 2019.
Storck, P., and Lettenmaier D. P.: Predicting the effect of a forest canopy on ground snow accumulation and ablation in maritime climates, in: 67th Annual Western Snow Conference, April 1999, South Lake Tahoe, California, 1–12, https://westernsnowconference.org/node/308 (last access: 5 April 2023), 1999.
Su, F., Zhang, L., Ou, T., Chen, D., Yao, T., Tong, K., and Qi, Y.: Hydrological response to future climate changes for the major upstream river basins in the Tibetan Plateau, Global Planet. Change, 136, 82–95, https://doi.org/10.1016/j.gloplacha.2015.10.012, 2016.
Sun, H. and Su, F.: Precipitation correction and reconstruction for streamflow simulation based on 262 rain gauges in the upper Brahmaputra of southern Tibetan Plateau, J. Hydrol., 590, 125484, https://doi.org/10.1016/j.jhydrol.2020.125484, 2020.
Todini, E.: The ARNO rainfall-runoff model, J. Hydrol., 175, 339–382, https://doi.org/10.1016/s0022-1694(96)80016-3, 1996.
Tong, X., Jun-bang, W., and Zhuo-qi, C.: Vulnerability of Grassland Ecosystems in the Sanjiangyuan Region Based on NPP, Resour. Sci., 32, 323–330, 2010.
Wang, L., Yao, T., Chai, C., Cuo, L., Su, F., Zhang, F., Yao, Z., Zhang, Y., Li, X., Qi, J., Hu, Z., Liu, J., and Wang, Y.: TP-River: Monitoring and Quantifying Total River Runoff from the Third Pole, B. Am. Meteorol. Soc., 102, E948–E965, https://doi.org/10.1175/bams-d-20-0207.1, 2021.
Wang, Y., Xie, X., Shi, J., and Zhu, B.: Ensemble runoff modeling driven by multi-source precipitation products over the Tibetan Plateau, Chinese Sci. Bull., 66, 4169–4186, https://doi.org/10.1360/tb-2020-1557, 2021.
Wu, J., Miao, C., Yang, T., Duan, Q., and Zhang, X.: Modeling streamflow and sediment responses to climate change and human activities in the Yanhe River, China, Hydrol. Res., 49, 150–162, https://doi.org/10.2166/nh.2017.168, 2018.
Xie, C., Ding, Y., and Liu, S.: Changes of weather and hydrological environment for the last 50 years in the source regions of Yangtze and Yellow Rivers, Ecol. Envir., 13, 520–523, 2004.
Xu, Z. X., Gong, T. L., and Li, J. Y.: Decadal trend of climate in the Tibetan Plateau – regional temperature and precipitation, Hydrol. Process., 22, 3056–3065, https://doi.org/10.1002/hyp.6892, 2008.
Xue, B.-L., Wang, L., Li, X., Yang, K., Chen, D., and Sun, L.: Evaluation of evapotranspiration estimates for two river basins on the Tibetan Plateau by a water balance method, J. Hydrol., 492, 290–297, https://doi.org/10.1016/j.jhydrol.2013.04.005, 2013.
Yang, Y., Xiao, H., Wei, Y., Zhao, L., Zou, S., Yang, Q., and Yin, Z.: Hydrological processes in the different landscape zones of alpine cold regions in the wet season, combining isotopic and hydrochemical tracers, Hydrol. Process., 26, 1457–1466, https://doi.org/10.1002/hyp.8275, 2012.
Yao, T.: Tackling on environmental changes in Tibetan Plateau with focus on water, ecosystem and adaptation, Sci. Bull., 64, 417, https://doi.org/10.1016/j.scib.2019.03.033, 2019.
Ye, Q., Zong, J., Tian, L., Cogley, J. G., Song, C., and Guo, W.: Glacier changes on the Tibetan Plateau derived from Landsat imagery: mid-1970s-2000-13, J. Glaciol., 63, 273–287, https://doi.org/10.1017/jog.2016.137, 2017.
Yi, X., Yin, Y., Li, G., and Peng, J.: Temperature Variation in Recent 50 Years in the Three-River Headwaters Region of Qinghai Province, Acta Geogr. Sin., 66, 1451–1465, 2011.
Zeng, N., Ren, X., He, H., Zhang, L., Li, P., and Niu, Z.: Estimating the grassland aboveground biomass in the Three-River Headwater Region of China using machine learning and Bayesian model averaging, Environ. Res. Lett., 16, 114020, https://doi.org/10.1088/1748-9326/ac2e85, 2021.
Zhai, X., Yan, C., Xing, X., Jia, H., Wei, X., and Feng, K.: Spatial-temporal changes and driving forces of aeolian desertification of grassland in the Sanjiangyuan region from 1975 to 2015 based on the analysis of Landsat images, Environ. Monit. Assess., 193, 2, https://doi.org/10.1007/s10661-020-08763-8, 2021.
Zhang, G., Yao, T., Piao, S., Bolch, T., Xie, H., Chen, D., Gao, Y., O'Reilly, C. M., Shum, C. K., Yang, K., Yi, S., Lei, Y., Wang, W., He, Y., Shang, K., Yang, X., and Zhang, H.: Extensive and drastically different alpine lake changes on Asia's high plateaus during the past four decades, Geophys. Res. Lett., 44, 252–260, https://doi.org/10.1002/2016gl072033, 2017.
Zhang, L., Su, F., Yang, D., Hao, Z., and Tong, K.: Discharge regime and simulation for the upstream of major rivers over Tibetan Plateau, J. Geophys. Res.-Atmos., 118, 8500–8518, https://doi.org/10.1002/jgrd.50665, 2013.
Zhang, L., Fan, J., Zhou, D., and Zhang, H.: Ecological Protection and Restoration Program Reduced Grazing Pressure in the Three-River Headwaters Region, China, Rangeland Ecol. Manag., 70, 540–548, https://doi.org/10.1016/j.rama.2017.05.001, 2017.
Zhang, T., Li, D., and Lu, X.: Response of runoff components to climate change in the source-region of the Yellow River on the Tibetan plateau, Hydrol. Process., 36, e14633, https://doi.org/10.1002/hyp.14633, 2022.
Zhang, W., Jin, H., Shao, H., Li, A., Li, S., and Fan, W.: Temporal and Spatial Variations in the Leaf Area Index and Its Response to Topography in the Three-River Source Region, China from 2000 to 2017, ISPRS Int. J. Geo-Inf., 10, 33, https://doi.org/10.3390/ijgi10010033, 2021.
Zhang, Y., Liu, S. Y., and Ding, Y. J.: Observed degree-day factors and their spatial variation on glaciers in western China, Ann. Glaciol., 43, 301–306, https://doi.org/10.3189/172756406781811952, 2006.
Zhang, Y., Fan, J., Wang, S., Zhang, H., and Guan, H.: An assessment and analysis of constraint factors on ecological carrying capacity and ecological security for the Sanjiangyuan Region, Shou Lei Xue Bao, 39, 360–372, 2019.
Zhao, Q., Ye, B., Ding, Y., Zhang, S., Yi, S., Wang, J., Shangguan, D., Zhao, C., and Han, H.: Coupling a glacier melt model to the Variable Infiltration Capacity (VIC) model for hydrological modeling in north-western China, Environ. Earth Sci., 68, 87–101, https://doi.org/10.1007/s12665-012-1718-8, 2012.
Zhao, Q., Ding, Y., Wang, J., Gao, H., Zhang, S., Zhao, C., Xu, J., Han, H., and Shangguan, D.: Projecting climate change impacts on hydrological processes on the Tibetan Plateau with model calibration against the glacier inventory data and observed streamflow, J. Hydrol., 573, 60–81, https://doi.org/10.1016/j.jhydrol.2019.03.043, 2019.
Zheng, H., Zhang, L., Zhu, R., Liu, C., Sato, Y., and Fukushima, Y.: Responses of streamflow to climate and land surface change in the headwaters of the Yellow River Basin, Water Resour. Res., 45, W00A19, https://doi.org/10.1029/2007wr006665, 2009.
Zhou, D. and Huang, R.: Response of water budget to recent climatic changes in the source region of the Yellow River, Chinese Sci. Bull., 57, 2155–2162, https://doi.org/10.1007/s11434-012-5041-2, 2012.
Zhu, M., Yao, T., Yang, W., Wu, G., Li, S., Zhao, H., and Thompson, L. G.: Possible Causes of Anomalous Glacier Mass Balance in the Western Kunlun Mountains, J. Geophys. Res.-Atmos., 127, e2021JD035705, https://doi.org/10.1029/2021jd035705, 2022.
Short summary
The Three-River Source Region (TRSR) plays an extremely important role in water resources security and ecological and environmental protection in China and even all of Southeast Asia. This study used the variable infiltration capacity (VIC) land surface hydrologic model linked with the degree-day factor algorithm to simulate the runoff change in the TRSR. These results will help to guide current and future regulation and management of water resources in the TRSR.
The Three-River Source Region (TRSR) plays an extremely important role in water resources...