Articles | Volume 26, issue 23
https://doi.org/10.5194/hess-26-6121-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-6121-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluation of a new observationally based channel parameterization for the National Water Model
Department of Civil, Environmental, and Architectural Engineering,
University of Colorado Boulder, Boulder, CO 80309, USA
Ben Livneh
Department of Civil, Environmental, and Architectural Engineering,
University of Colorado Boulder, Boulder, CO 80309, USA
Cooperative Institute for Research in Environmental Sciences,
University of Colorado Boulder, Boulder, CO 80309, USA
James McCreight
National Center for Atmospheric Research, Boulder, CO 80305, USA
Laura Read
National Center for Atmospheric Research, Boulder, CO 80305, USA
Joseph Kasprzyk
Department of Civil, Environmental, and Architectural Engineering,
University of Colorado Boulder, Boulder, CO 80309, USA
Toby Minear
Cooperative Institute for Research in Environmental Sciences,
University of Colorado Boulder, Boulder, CO 80309, USA
Related authors
No articles found.
Parthkumar A. Modi, Jared C. Carbone, Keith S. Jennings, Hannah Kamen, Joseph R. Kasprzyk, Bill Szafranski, Cameron W. Wobus, and Ben Livneh
Hydrol. Earth Syst. Sci., 29, 5593–5623, https://doi.org/10.5194/hess-29-5593-2025, https://doi.org/10.5194/hess-29-5593-2025, 2025
Short summary
Short summary
This study shows that, in unmanaged snow-dominated basins, high forecast accuracy does not always lead to high economic value, especially during extreme conditions like droughts. It highlights how irregular errors in modern forecasting systems weaken the connection between accuracy and value. These findings call for forecast evaluations to focus not only on accuracy but also on economic impacts, providing valuable guidance for better water resource management under uncertainty.
Mohamad El Gharamti, Arezoo Rafieeinasab, and James L. McCreight
Hydrol. Earth Syst. Sci., 28, 3133–3159, https://doi.org/10.5194/hess-28-3133-2024, https://doi.org/10.5194/hess-28-3133-2024, 2024
Short summary
Short summary
This study introduces a hybrid data assimilation scheme for precise streamflow predictions during intense rainfall and hurricanes. Tested in real events, it outperforms traditional methods by up to 50 %, utilizing ensemble and climatological background covariances. The adaptive algorithm ensures reliability with a small ensemble, offering improved forecasts up to 18 h in advance, marking a significant advancement in flood prediction capabilities.
Justin M. Pflug, Yiwen Fang, Steven A. Margulis, and Ben Livneh
Hydrol. Earth Syst. Sci., 27, 2747–2762, https://doi.org/10.5194/hess-27-2747-2023, https://doi.org/10.5194/hess-27-2747-2023, 2023
Short summary
Short summary
Wolverine denning habitat inferred using a snow threshold differed for three different spatial representations of snow. These differences were based on the annual volume of snow and the elevation of the snow line. While denning habitat was most influenced by winter meteorological conditions, our results show that studies applying thresholds to environmental datasets should report uncertainties stemming from different spatial resolutions and uncertainties introduced by the thresholds themselves.
Elsa S. Culler, Ben Livneh, Balaji Rajagopalan, and Kristy F. Tiampo
Nat. Hazards Earth Syst. Sci., 23, 1631–1652, https://doi.org/10.5194/nhess-23-1631-2023, https://doi.org/10.5194/nhess-23-1631-2023, 2023
Short summary
Short summary
Landslides have often been observed in the aftermath of wildfires. This study explores regional patterns in the rainfall that caused landslides both after fires and in unburned locations. In general, landslides that occur after fires are triggered by less rainfall, confirming that fire helps to set the stage for landslides. However, there are regional differences in the ways in which fire impacts landslides, such as the size and direction of shifts in the seasonality of landslides after fires.
Mohamad El Gharamti, James L. McCreight, Seong Jin Noh, Timothy J. Hoar, Arezoo RafieeiNasab, and Benjamin K. Johnson
Hydrol. Earth Syst. Sci., 25, 5315–5336, https://doi.org/10.5194/hess-25-5315-2021, https://doi.org/10.5194/hess-25-5315-2021, 2021
Short summary
Short summary
The article introduces novel ensemble data assimilation (DA) techniques for streamflow forecasting using WRF-Hydro and DART. Model-related biases are tackled through spatially and temporally varying adaptive prior and posterior inflation. Spurious and physically incorrect correlations, on the other hand, are mitigated using a topologically based along-the-stream localization. Hurricane Florence (2018) in the Carolinas, USA, is used as a test case to investigate the performance of DA techniques.
Erin Towler and James L. McCreight
Hydrol. Earth Syst. Sci., 25, 2599–2615, https://doi.org/10.5194/hess-25-2599-2021, https://doi.org/10.5194/hess-25-2599-2021, 2021
Short summary
Short summary
We present a wavelet-based approach to quantify streamflow timing errors for model evaluation and development. We demonstrate the method using real and simulated stream discharge data from several locations. We show how results can be used to identify potential hydrologic processes contributing to the timing errors. Furthermore, we illustrate how the method can document model performance by comparing timing errors across versions of the National Water Model.
Cited articles
Abdulla, F. A. and Lettenmaier, D. P.: Development of regional parameter
estimation equations for a macroscale hydrologic model, J. Hydrol., 197, 230–257, https://doi.org/10.1016/S0022-1694(96)03262-3, 1997.
Abebe, N. A., Ogden, F. L., and Pradhan, N. R.: Sensitivity and uncertainty
analysis of the conceptual HBV rainfall–runoff model: Implications for
parameter estimation, J. Hydrol., 389, 301–310,
https://doi.org/10.1016/j.jhydrol.2010.06.007, 2010.
Allen, G. H., Pavelsky, T. M., Barefoot, E. A., Lamb, M. P., Butman, D.,
Tashie, A., and Gleason, C. J.: Similarity of stream width distributions
across headwater systems, Nat, Commun,, 9, 610,
https://doi.org/10.1038/s41467-018-02991-w, 2018.
Anderson, B. G., Rutherfurd, I. D., and Western, A. W.: An analysis of the
influence of riparian vegetation on the propagation of flood waves,
Environ. Modell. Softw., 21, 1290–1296, https://doi.org/10.1016/j.envsoft.2005.04.027, 2006.
Arsenault, K. R., Nearing, G. S., Wang, S., Yatheendradas, S., and
Peters-Lidard, C. D.: Parameter Sensitivity of the Noah-MP Land Surface
Model with Dynamic Vegetation, J. Hydrometeorol., 19, 815–830,
https://doi.org/10.1175/jhm-d-17-0205.1, 2018.
Avellaneda, P. M. and Jefferson, A. J.: Sensitivity of Streamflow Metrics to
Infiltration-Based Stormwater Management Networks, Water Resour. Res., 56, e2019WR026555, https://doi.org/10.1029/2019WR026555, 2020.
Ayzel, G. V., Gusev, E. M., and Nasonova, O. N.: River runoff evaluation for
ungauged watersheds by SWAP model. 2. Application of methods of physiographic similarity and spatial geostatistics, Water Resour., 44, 547–558, https://doi.org/10.1134/S0097807817040029, 2017.
Baker, D. B., Richards, R. P., Loftus, T. T., and Kramer, J. W.: A New
Flashiness Index: Characteristics and Applications to Midwestern Rivers and
Streams, J. Am. Water Resour. As., 40, 503–522, https://doi.org/10.1111/j.1752-1688.2004.tb01046.x, 2004.
Baroni, G. and Tarantola, S.: A General Probabilistic Framework for
uncertainty and global sensitivity analysis of deterministic models: A
hydrological case study, Environ. Modell. Softw., 51, 26–34,
https://doi.org/10.1016/j.envsoft.2013.09.022, 2014.
Biancamaria, S., Lettenmaier, D. P., and Pavelsky, T. M.: The SWOT Mission
and Its Capabilities for Land Hydrology, in: Remote Sensing and Water
Resources, edited by: Cazenave, A., Champollion, N., Benveniste, J., and
Chen, J., Springer International Publishing, Cham, 117–147,
https://doi.org/10.1007/978-3-319-32449-4_6, 2016.
Bieger, K., Rathjens, H., Allen, P. M., and Arnold, J. G.: Development and
Evaluation of Bankfull Hydraulic Geometry Relationships for the
Physiographic Regions of the United States, J. Am. Water Resour. As., 51, 842–858, https://doi.org/10.1111/jawr.12282, 2015.
Blackburn-Lynch, W., Agouridis, C. T., and Barton, C. D.: Development of
Regional Curves for Hydrologic Landscape Regions (HLR) in the Contiguous
United States, J. Am. Water Resour. As., 53, 903–928, https://doi.org/10.1111/1752-1688.12540, 2017.
Burnash, R. J. C., Ferral, R. L., and McGuire, R. A.: A Generalized
Streamflow Simulation System: Conceptual Modeling for Digital Computers,
U.S. Department of Commerce, National Weather Service, and State of
California, Department of Water Resources, 220 pp., 1973.
Canova, M., Fulton, J., and Bjerklie, D.: USGS HYDRoacoustic dataset in
support of the Surface Water Oceanographic Topography satellite mission
(HYDRoSWOT), U.S. Geological Survey [data set], https://doi.org/10.5066/F7D798H6, 2016.
Carnell, R.: lhs: Latin Hypercube Samples, https://cran.r-project.org/web/packages/lhs/index.html (last access: 26 September 2022), 2020.
Cibin, R., Sudheer, K. P., and Chaubey, I.: Sensitivity and identifiability
of stream flow generation parameters of the SWAT model, Hydrol. Process., 24, 1133–1148, https://doi.org/10.1002/hyp.7568, 2010.
Cunge, J. A.: On The Subject Of A Flood Propagation Computation Method
(Musklngum Method), J. Hydraul. Res., 7, 205–230, https://doi.org/10.1080/00221686909500264, 1969.
Cuntz, M., Mai, J., Samaniego, L., Clark, M., Wulfmeyer, V., Branch, O., Attinger, S., and Thober, S.: The impact of standard and hard-coded parameters on the hydrologic fluxes in the Noah-MP land surface model, J. Geophys. Res.-Atmos., 121, 10676–10700, https://doi.org/10.1002/2016JD025097, 2016.
Dunne, T. and Leopold, L. B.: Water in Environmental Planning, Macmillan,
852 pp., ISBN-13: 978-0716700791, 1978.
Fares, A., Awal, R., Michaud, J., Chu, P.-S., Fares, S., Kodama, K., and
Rosener, M.: Rainfall-Runoff Modeling in a Flashy Tropical Watershed Using
the Distributed HL-RDHM Model, J. Hydrol., 519, 3436–3447,
https://doi.org/10.1016/j.jhydrol.2014.09.042, 2014.
Gall, M., Borden, K. A., Emrich, C. T., and Cutter, S. L.: The Unsustainable
Trend of Natural Hazard Losses in the United States, Sustainability, 3, 2157–2181, https://doi.org/10.3390/su3112157, 2011.
Gitau, M. and Chaubey, I.: Regionalization of SWAT Model Parameters for Use
in Ungauged Watersheds, Water, 2, 849–871, https://doi.org/10.3390/w2040849, 2010.
Gochis, D. J., Barlage, M., Cabell, R., Casali, M., Dugger, A.,
FitzGerald, K., McAllister, M., McCreight, J., RafieeiNasab, A., Read, L., Sampson, K., Yates, D., and Zhang, Y.: The WRF-Hydro® modeling system
technical description, Version 5.1.1, NCAR Technical Note, 107 pp., https://ral.ucar.edu/sites/default/files/public/WRFHydroV511TechnicalDescription.pdf (26 September 2022), 2020.
He, L. and Wilkerson, G. V.: Improved Bankfull Channel Geometry Prediction Using Two-Year Return-Period Discharge1, J. Am. Water Resour. As., 47, 1298–1316, https://doi.org/10.1111/j.1752-1688.2011.00567.x, 2011.
Herman, J. D., Kollat, J. B., Reed, P. M., and Wagener, T.: Technical Note: Method of Morris effectively reduces the computational demands of global sensitivity analysis for distributed watershed models, Hydrol. Earth Syst. Sci., 17, 2893–2903, https://doi.org/10.5194/hess-17-2893-2013, 2013.
Heuvelmans, G., Muys, B., and Feyen, J.: Regionalisation of the parameters
of a hydrological model: Comparison of linear regression models with
artificial neural nets, J. Hydrol., 319, 245–265,
https://doi.org/10.1016/j.jhydrol.2005.07.030, 2006.
Iooss, B., Veiga, S. D., Pujol, A. J. and G., Broto, with contributions from
B., Boumhaout, K., Delage, T., Amri, R. E., Fruth, J., Gilquin, L.,
Guillaume, J., Idrissi, M. I., Gratiet, L. L., Lemaitre, P., Marrel, A.,
Meynaoui, A., Nelson, B. L., Monari, F., Oomen, R., Rakovec, O., Ramos, B.,
Roustant, O., Song, E., Staum, J., Sueur, R., Touati, T., and Weber, F.:
sensitivity: Global Sensitivity Analysis of Model Outputs, https://cran.r-project.org/web/packages/sensitivity/ (26 September 2022), 2021.
Kay, A. L., Jones, D. A., Crooks, S. M., Calver, A., and Reynard, N. S.: A
comparison of three approaches to spatial generalization of rainfall–runoff
models, Hydrol. Process., 20, 3953–3973, https://doi.org/10.1002/hyp.6550, 2006.
Koren, V., Reed, S., Smith, M., Zhang, Z., and Seo, D.-J.: Hydrology
laboratory research modeling system (HL-RMS) of the US national weather
service, J. Hydrol., 291, 297–318, https://doi.org/10.1016/j.jhydrol.2003.12.039, 2004.
Leopold, L. B. and Maddock Jr., T.: The hydraulic geometry of stream
channels and some physiographic implications, The hydraulic geometry of
stream channels and some physiographic implications, U.S. Government
Printing Office, Washington, D.C., https://doi.org/10.3133/pp252, 1953.
Li, M., Shao, Q., Zhang, L., and Chiew, F. H. S.: A new regionalization
approach and its application to predict flow duration curve in ungauged
basins, J. Hydrol., 389, 137–145, https://doi.org/10.1016/j.jhydrol.2010.05.039, 2010.
Livneh, B., Rosenberg, E. A., Lin, C., Nijssen, B., Mishra, V., Andreadis, K. M., Maurer, E. P., and Lettenmaier, D. P.: A Long-Term Hydrologically Based Dataset of Land Surface Fluxes and States for the Conterminous United States: Update and Extensions, J. Climate, 26, 9384–9392, https://doi.org/10.1175/JCLI-D-12-00508.1, 2013.
Massmann, C. and Holzmann, H.: Analysis of the behavior of a
rainfall–runoff model using three global sensitivity analysis methods
evaluated at different temporal scales, J. Hydrol., 475, 97–110,
https://doi.org/10.1016/j.jhydrol.2012.09.026, 2012.
McInerney, D., Thyer, M., Kavetski, D., Githui, F., Thayalakumaran, T., Liu,
M., and Kuczera, G.: The Importance of Spatiotemporal Variability in
Irrigation Inputs for Hydrological Modeling of Irrigated Catchments, Water Resour. Res., 54, 6792–6821, https://doi.org/10.1029/2017WR022049, 2018.
McKay, M. D., Beckman, R. J., and Conover, W. J.: A Comparison of Three
Methods for Selecting Values of Input Variables in the Analysis of Output
from a Computer Code, Technometrics, 21, 239–245, https://doi.org/10.2307/1268522, 1979.
Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual
models part I – A discussion of principles, J. Hydrol., 10,
282–290, https://doi.org/10.1016/0022-1694(70)90255-6, 1970.
Neal, J. C., Odoni, N. A., Trigg, M. A., Freer, J. E., Garcia-Pintado, J.,
Mason, D. C., Wood, M., and Bates, P. D.: Efficient incorporation of channel
cross-section geometry uncertainty into regional and global scale flood
inundation models, J. Hydrol., 529, 169–183, https://doi.org/10.1016/j.jhydrol.2015.07.026, 2015.
Niu, G.-Y., Yang, Z.-L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M.,
Kumar, A., Manning, K., Niyogi, D., Rosero, E., Tewari, M., and Xia, Y.: The
community Noah land surface model with multiparameterization options
(Noah-MP): 1. Model description and evaluation with local-scale measurements, J. Geophys. Res., 116, D12109, https://doi.org/10.1029/2010JD015139, 2011.
Nossent, J., Elsen, P., and Bauwens, W.: Sobol' sensitivity analysis of a
complex environmental model, Environ. Modell. Softw., 26,
1515–1525, https://doi.org/10.1016/j.envsoft.2011.08.010, 2011.
Pappenberger, F., Beven, K. J., Ratto, M., and Matgen, P.: Multi-method
global sensitivity analysis of flood inundation models, Adv. Water Resour., 31, 1–14, https://doi.org/10.1016/j.advwatres.2007.04.009, 2008.
Pianosi, F., Beven, K., Freer, J., Hall, J. W., Rougier, J., Stephenson, D.
B., and Wagener, T.: Sensitivity analysis of environmental models: A
systematic review with practical workflow, Environ. Modell. Softw., 79, 214–232, https://doi.org/10.1016/j.envsoft.2016.02.008, 2016.
Reusser, D. E., Buytaert, W., and Zehe, E.: Temporal dynamics of model
parameter sensitivity for computationally expensive models with the Fourier
amplitude sensitivity test, Water Resour. Res., 47, W07551, https://doi.org/10.1029/2010WR009947, 2011.
Saltelli, A.: Sensitivity Analysis for Importance Assessment, Risk Anal., 22, 579–590, https://doi.org/10.1111/0272-4332.00040, 2002.
Sobol', I. M.: Global sensitivity indices for nonlinear mathematical models
and their Monte Carlo estimates, Math. Comput. Simulat., 55, 271–280, https://doi.org/10.1016/S0378-4754(00)00270-6, 2001.
Song, X., Zhan, C., Xia, J., and Kong, F.: An efficient global sensitivity
analysis approach for distributed hydrological model, J. Geogr. Sci., 22,
209–222, https://doi.org/10.1007/s11442-012-0922-5, 2012.
Tang, Y., Reed, P., Wagener, T., and van Werkhoven, K.: Comparing sensitivity analysis methods to advance lumped watershed model identification and evaluation, Hydrol. Earth Syst. Sci., 11, 793–817, https://doi.org/10.5194/hess-11-793-2007, 2007.
USGS: National Hydrography Dataset (NHD), U.S. Geological Survey [data set], Reston, VA, https://doi.org/10.3133/70046927, 2001.
Wagener, T., van Werkhoven, K., Reed, P., and Tang, Y.: Multiobjective
sensitivity analysis to understand the information content in streamflow
observations for distributed watershed modeling, Water Resour. Res., 45, W02501, https://doi.org/10.1029/2008WR007347, 2009.
Wolff, C. G. and Burges, S. J.: An analysis of the influence of river
channel properties on flood frequency, J. Hydrol., 153, 317–337,
https://doi.org/10.1016/0022-1694(94)90197-X, 1994.
Woltemade, C. J. and Potter, K. W.: A watershed modeling analysis of fluvial
geomorphologic influences on flood peak attenuation, Water Resour. Res., 30, 1933–1942, https://doi.org/10.1029/94WR00323, 1994.
Wu, H., Lye, L., and Chen, B.: A design of experiment aided sensitivity
analysis and parameterization for hydrological modeling, Can. J. Civil Eng., 39, 460–472, https://doi.org/10.1139/l2012-017, 2012.
Yang, J.: Convergence and uncertainty analyses in Monte-Carlo based
sensitivity analysis, Environ. Modell. Softw., 26, 444–457,
https://doi.org/10.1016/j.envsoft.2010.10.007, 2011.
Yeste, P., García-Valdecasas Ojeda, M., Gámiz-Fortis, S. R.,
Castro-Díez, Y., and Esteban-Parra, M. J.: Integrated sensitivity
analysis of a macroscale hydrologic model in the north of the Iberian
Peninsula, J. Hydrol., 590, 125230, https://doi.org/10.1016/j.jhydrol.2020.125230, 2020.
Yu, S., Eder, B., Dennis, R., Chu, S.-H., and Schwartz, S. E.: New unbiased
symmetric metrics for evaluation of air quality models, Atmos. Sci. Lett., 7, 26–34, https://doi.org/10.1002/asl.125, 2006.
Zelelew, M. B. and Alfredsen, K.: Sensitivity-guided evaluation of the HBV
hydrological model parameterization, J. Hydroinform., 15, 967–990, https://doi.org/10.2166/hydro.2012.011, 2013.
Zheng, Z., Molotch, N. P., Oroza, C. A., Conklin, M. H., and Bales, R. C.:
Spatial snow water equivalent estimation for mountainous areas using
wireless-sensor networks and remote-sensing products, Remote Sens. Environ., 215, 44–56, https://doi.org/10.1016/j.rse.2018.05.029, 2018.
Short summary
Measurements of channel characteristics are important for accurate forecasting in the NOAA National Water Model (NWM) but are scarcely available. We seek to improve channel representativeness in the NWM by updating channel geometry and roughness parameters using a large, previously unpublished, dataset of approximately 48 000 gauges. We find that the updated channel parameterization from this new dataset leads to improvements in simulated streamflow performance and channel representation.
Measurements of channel characteristics are important for accurate forecasting in the NOAA...