Articles | Volume 26, issue 23
https://doi.org/10.5194/hess-26-6121-2022
https://doi.org/10.5194/hess-26-6121-2022
Research article
 | 
06 Dec 2022
Research article |  | 06 Dec 2022

Evaluation of a new observationally based channel parameterization for the National Water Model

Aaron Heldmyer, Ben Livneh, James McCreight, Laura Read, Joseph Kasprzyk, and Toby Minear

Related authors

Predicting streamflow drought in the conterminous United States using machine learning and a donor-gage approach, 1982–2020
Aaron Heldmyer, Roy Sando, Caelan Simeone, Michael Wieczorek, Scott Hamshaw, Philip Goodling, Ryan McShane, Jeremy Diaz, David Watkins, Bryce Pulver, Apoorva Shastry, Konrad Hafen, and John Hammond
EGUsphere, https://doi.org/10.5194/egusphere-2025-6064,https://doi.org/10.5194/egusphere-2025-6064, 2026
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary

Cited articles

Abdulla, F. A. and Lettenmaier, D. P.: Development of regional parameter estimation equations for a macroscale hydrologic model, J. Hydrol., 197, 230–257, https://doi.org/10.1016/S0022-1694(96)03262-3, 1997. 
Abebe, N. A., Ogden, F. L., and Pradhan, N. R.: Sensitivity and uncertainty analysis of the conceptual HBV rainfall–runoff model: Implications for parameter estimation, J. Hydrol., 389, 301–310, https://doi.org/10.1016/j.jhydrol.2010.06.007, 2010. 
Allen, G. H., Pavelsky, T. M., Barefoot, E. A., Lamb, M. P., Butman, D., Tashie, A., and Gleason, C. J.: Similarity of stream width distributions across headwater systems, Nat, Commun,, 9, 610, https://doi.org/10.1038/s41467-018-02991-w, 2018. 
Anderson, B. G., Rutherfurd, I. D., and Western, A. W.: An analysis of the influence of riparian vegetation on the propagation of flood waves, Environ. Modell. Softw., 21, 1290–1296, https://doi.org/10.1016/j.envsoft.2005.04.027, 2006. 
Arsenault, K. R., Nearing, G. S., Wang, S., Yatheendradas, S., and Peters-Lidard, C. D.: Parameter Sensitivity of the Noah-MP Land Surface Model with Dynamic Vegetation, J. Hydrometeorol., 19, 815–830, https://doi.org/10.1175/jhm-d-17-0205.1, 2018. 
Download
Short summary
Measurements of channel characteristics are important for accurate forecasting in the NOAA National Water Model (NWM) but are scarcely available. We seek to improve channel representativeness in the NWM by updating channel geometry and roughness parameters using a large, previously unpublished, dataset of approximately 48 000 gauges. We find that the updated channel parameterization from this new dataset leads to improvements in simulated streamflow performance and channel representation.
Share