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Abstract. Accurate representation of channel properties is
important for forecasting in hydrologic models, as it affects
the height, celerity, and attenuation of flood waves. Yet,
considerable uncertainty in the parameterization of chan-
nel geometry and hydraulic roughness (Manning’s n) ex-
ists within the NOAA National Water Model (NWM), due
largely to data scarcity; only ∼ 2800 out of the 2.7× 106

river reach segments in the NWM have measured channel
properties. In this study, we seek to improve channel rep-
resentativeness by updating channel geometry and rough-
ness parameters using a large, previously unpublished hy-
draulic geometry (HyG) dataset of approximately 48 000
gauges. We begin with a Sobol’ sensitivity analysis of chan-
nel geometry parameters for 12 small, semi-natural basins
across the continental U.S., which reveals an outsized sen-
sitivity of simulated flow to Manning’s n relative to chan-
nel geometry parameters. We then develop and evaluate a set
of regression-based regionalizations of channel parameters
estimated using the HyG dataset. Finally, we compare the
model output generated from updated channel parameter sets
to observations and the current NWM v2.1 parameterization.
We find that while the NWM land surface model holds the
most influence over flow, given its control over total volume,
the updated channel parameterization leads to improvements
in simulated streamflow performance relative to observed
flows, with a statistically significant mean R2 increase from
0.479 to 0.494 across approximately 7400 gauge locations.
HyG-based channel geometry and roughness provide a sub-
stantial overall improvement in channel representation over
the default parameterization, updating the previous set value

for most reaches of Manning’s n= 0.060 to a new range be-
tween 0.006 and 0.537 (median 0.077). This research pro-
vides a more representative, observationally based channel
parameter dataset for the NWM routing module and new in-
sight into the influence of the routing module within the over-
all modeling framework.

1 Introduction

In the continental United States (CONUS), flood events are
among the most significant natural disasters in terms of
damage to life and property. Direct losses from flooding
rank a close second to hurricanes and represent a quarter
of nationwide total damages stemming from natural hazards
at USD 144 billion in losses from 1960 to 2009 (Gall et
al., 2011). Flood waves generated from extreme precipita-
tion events or infrastructure failure propagate from the origin
along a channel network and are influenced by the geometric
and physical properties of the channels along its path. Fore-
cast centers simulate hydrologic processes using a frame-
work of atmospheric and hydrologic models coupled with
routing models to simulate flood wave propagation, and pa-
rameterization of channel properties within these models is
necessary for forecasting of flood waves and thus the mitiga-
tion of potential damage. Sparse observational data availabil-
ity renders the adequate characterization of channel proper-
ties a challenging task and typically requires some form of
parameter regionalization. In this study, we seek to improve
the flood simulation accuracy of the National Water Model
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(NWM) by replacing its current channel parameters with
those based on a regionalization of an extensive observa-
tional database. This research is focused on the NWM chan-
nel routing module and therefore does not investigate param-
eterization of the land surface models (LSMs), the gridded
routing module, or any other component of the NWM frame-
work.

Agencies such as the National Oceanic and Atmospheric
Administration (NOAA) supply much of the actionable flood
forecasting data for informed policymaking and emergency
management decisions. In many cases, these data are pro-
duced by LSMs continuously forced by weather forecast
data. This framework allows for the simulation of hydrologic
processes occurring at individual watersheds forecast into the
near future to produce actionable, time-sensitive hydrologic
information. One emerging hydrologic modeling framework
is the NOAA National Water Model (NWM). Launched in
2016, the NWM continuously simulates observed and fore-
cast streamflow for approximately 2.7× 106 river reaches
over CONUS. The basis of the NWM is the Weather Re-
search and Forecasting Model Hydrological modeling sys-
tem (WRF-Hydro; Gochis et al., 2020), which accepts forc-
ing data from a number of different sources to generate
short- (18 h), medium- (∼ 10 d), and long-range (30 d) fore-
casts, as well as analysis of current streamflow. WRF-Hydro
is one-way or two-way coupled (depending on configura-
tion) with the Noah Multi-Parameterization (Noah-MP; Niu
et al., 2011) LSM to simulate land surface processes at 1 km
resolution and a separate two-part channel routing system.
The first part routes flow on a 250 m grid using both diffu-
sive wave surface and saturated subsurface flow routing. The
second routes flow along the National Hydrography Dataset
Plus (NHDPlus) medium-resolution channel network using
the Muskingum–Cunge method (Cunge, 1969) of flow rout-
ing.

The two-part routing system (gridded and NHD network
based) employed by the NWM represents a higher degree
of sophistication compared to most other mainstream oper-
ational models. For example, the Sacramento Soil Moisture
Accounting Model (SAC-SMA; Burnash et al., 1973) does
not implicitly route flow between conceptual reservoirs, and
the Hydrology Laboratory–Research Distributed Hydrologic
Model (HL-RDHM; Koren et al., 2004) assumes uniform,
conceptual hillslopes within a relatively coarse 4km× 4km
grid within its hillslope and channel routing module (Fares
et al., 2014). Additionally, the channel routing component in
HL-RDHM relies on a unique relationship between the dis-
charge and cross-sectional area for each cell dependent on
just four parameters (slope, a roughness coefficient, a shape
parameter, and a top width parameter). To contrast, channels
within the NWM NHD-network-based routing module are
conceptualized using a trapezoidal geometry described by 11
parameters such as top width, bottom width, side slope, and
Manning’s n. These parameters are required for all 2.7×106

modeled reaches across CONUS and therefore necessitate a

significant amount of data for accurate channel representa-
tion. Currently, there is likely significant uncertainty in chan-
nel parameters due to a sparsity of data available for inferring
them. Approximately 2800 reaches containing physical mea-
surements are used to inform routing module parameters.

Additional observational data may enhance the represen-
tation of the routing module, thereby improving flood fore-
casts. The hydraulic geometry (HyG) dataset is a new, unpub-
lished collection of approximately 2.8× 106 field discharge
measurements from roughly 48 000 gauges well-distributed
across the CONUS, comprising discharge measurements
from both active and inactive gauges and eight state-wide
datasets. HyG was a result of development originating from
the smaller U.S. Geological Survey (USGS) HYDRoSWOT
database (Canova et al., 2016), a stream bathymetry and
hydraulic properties database from acoustic Doppler cur-
rent profiler data compiled for hydrologic modeling by the
NASA Surface Water and Ocean Topography (SWOT) mis-
sion. While HyG is gauge based and thus spatially discontin-
uous, the HyG collection is a significant source of large-scale
stream bathymetry and hydraulic data, representing a 20-fold
increase in observations compared to other databases. This
catalog is likely to only be surpassed after remote sensing
platforms are capable of achieving higher precisions, such as
the NASA SWOT mission (Biancamaria et al., 2016), which
is still a year or more away.

While HyG may be a significant improvement over the
current observational database used by the NWM, the uti-
lization of HyG across CONUS requires the estimation of
channel properties where observations are not available. This
form of parameter transfer is often termed regionalization.
Regionalization is defined here as the transfer of parameters
estimated at observed spatial units to unobserved units under
the assumption of hydrologic similarity. Largely due to the
diversity of contexts in which regionalization techniques are
typically applied, there is no consensus on which technique
is best (Ayzel et al., 2017). A wide variety of regionaliza-
tion techniques have historically been developed to make es-
timates at ungauged locations, though most may be broadly
categorized into one of two main forms, i.e., distance based
and regression based (He and Wilkerson, 2011; Livneh et
al., 2013).

The first group of regionalization methods is based on
distance, premised on the notion that parameters are con-
tinuously distributed through space, and the similarity be-
tween two arbitrary points is correlated with spatial prox-
imity. The spatial structure of this correlation is modeled
with varying types of interpolation, and the underlying sta-
tistical basis of these models varies widely. Typical regional-
ization methods which fall under this category include the
method of inverse distance weighting (IDW), the nearest-
neighbor (NN) method, and the method of Kriging, with the
latter two generally considered as being the most widely used
(Ayzel et al., 2017). For the specific application to the NWM
channel network, grid-based spatial interpolations of channel
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parameters may be inapplicable. While one routing module
in the NWM framework does route flow on a 250 m grid, the
river network within the routing module of interest is not rep-
resented as a spatially continuous grid but rather a dendritic
network of features overlaid on a spatially continuous land
surface. In this case, two seemingly proximal channels may
instead be distant from the perspective of the network and,
consequently, have dissimilar properties due to natural vari-
ations in geology and terrain, vegetation, and development-
related disturbances (e.g., urban drainage systems).

The second group of regionalization methods is not con-
strained by spatial proximity and instead seeks to transfer
parameters on the basis of similarity in physiographic fea-
tures (land cover, soil, slope, etc.). Rather than spatial in-
terpolation, similar catchment features can be found across
long distances, such that the regionalization proceeds along
dimensions of similar hydrologic features rather than dis-
tance. Regression-based approaches are examples of this cat-
egory and are typically of a linear form (e.g., Gitau and
Chaubey, 2010; Heuvelmans et al., 2006) although nonlin-
ear, weighted, and sequential forms have also been applied
(e.g., Abdulla and Lettenmaier, 1997; Kay et al., 2006; Li
et al., 2010). Regional-scale regression curves for channel
geometry, first developed by Dunne and Leopold (1978), op-
erate on the assumption of similarity in geology, soil, climate,
and hydrology within the region (Bieger et al., 2015). The
current implementation of the NWM routing module param-
eterizes channel geometry through regression-based regional
curves relating channel top width with the NHDPlus drainage
area following the method of Blackburn-Lynch et al. (2017).
Hydraulic roughness (Manning’s n) is currently based on ex-
pert opinion and a function of Strahler stream order. Updat-
ing these relatively simplistic regionalization approaches us-
ing new relationships across variable spatial scales may serve
to improve estimation at ungauged reaches.

In this study, we hypothesize that enhancements in simu-
lated streamflow goodness-of-fit (GOF) metrics performance
are possible through an update to the NWM channel routing
geometry and hydraulic roughness parameters. Therefore,
the objectives are to (1) better characterize the influence of
channel parameters on NWM-simulated streamflow, (2) de-
velop a regionalization strategy for the HyG dataset such
that a spatially complete and representative parameter dataset
may be developed, and (3) examine the effects of this re-
gionalized dataset on model flow GOF metrics performance.
A greatly expanded database of channel geometry and hy-
draulic roughness regionalized to unobserved reaches may
represent a substantial improvement to channel parameters
in the NWM. Furthermore, assessing the degree of improve-
ment attainable from updating channel routing parameters
addresses a knowledge gap relevant to future model calibra-
tion efforts.

2 Methods

2.1 Overview

The analysis begins with a description of selected NWM
channel parameters and transformations where applica-
ble (Sect. 2.2). A sensitivity analysis of these channel
parameters is then conducted to determine influence of chan-
nel parameters on simulated streamflow (Sect. 2.3). Follow-
ing this, channel parameters are developed from HyG data at
observed locations (Sect. 2.4) and regionalized through mul-
tiscale regression-based approaches to all 2.7× 106 reaches
CONUS-wide (Sect. 2.5). Finally, we update the NWM rout-
ing model with the regionalized parameter sets and evalu-
ate differences in model performance via streamflow simula-
tions and direct errors at gauging stations in the representa-
tive basins (Sect. 2.6).

2.2 Channel parameters

Channels within the NWM routing module are represented
by a compound trapezoidal geometry (Fig. 1), consisting of
a main channel that carries baseflow and runoff up to bank-
full flow conditions, and a conceptual floodplain which car-
ries overbank flow in times of flooding. For examination
of the sensitivity analysis, six parameters from the routing
module that describe the channel dimensions were selected,
namely bottom width (BW), top width (TW), floodplain top
width (TWcc), and channel side slope (m), along with the
Manning’s n roughness coefficient for both the main chan-
nel (n) and floodplain (ncc). Within this parameter set, there
is a physically based, ascending relationship between BW,
TW, and TWcc (i.e., BW<TW<TWcc). This presents an
issue for the sensitivity analysis, which is most effective
when sampling variables independently. Therefore, two new
parameters, channel depth (d) and floodplain change in width
(dxcc), were created, such that TW and TWcc are calculated
as a function of these new parameters, as follows:

dxcc =
TWcc−TW

2
. (1)

d =
TW−BW

2
×m. (2)

Thus, a final set of independent parameters including BW, d ,
dxcc, m, n, and ncc was established for examination in the
sensitivity analysis.

2.3 Sensitivity analysis

A sensitivity analysis was conducted to establish the influ-
ence of channel parameters on model streamflow output (Pi-
anosi et al., 2016). To generate combinations of values within
the parameter set, a Latin hypercube sampling (LHS) method
was used to systematically sample across a hyperdimensional
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Figure 1. Cross-sectional diagram of the trapezoidal channel
schematic used in the channel routing module of the NWM. This
compound channel representation consists of a main channel (dark
gray) and a floodplain (light gray) which becomes inundated in
times of overbank flooding in the main channel. Parameters in blue
were used to compute the parameters in orange for consistency
among inputs for the sensitivity analysis. Parameters in black re-
mained unchanged.

space. LHS is based on the Latin square design, which con-
tains a single sample in each row and column of a hypo-
thetical square with edges representing the ranges of two
parameters (McKay et al., 1979). In this method, cumulative
density functions (CDFs) for each parameter are divided into
equal partitions, and data points within each partition are se-
lected and randomly combined with other selected parameter
values. LHS was chosen as it offers an advantage over ran-
dom sampling techniques by ensuring representativeness of
the real variability among the parameters of each randomly
selected combination.

Given a lack of strict boundary conditions for the param-
eter values, inputs were instead varied as a function of their
nominal values developed from regional curve relationships
with drainage area (for estimating geometry parameters), fol-
lowing Blackburn-Lynch et al. (2017) and the expert opinion
scaled by Strahler stream order (for estimating Manning’s n
parameters). These were compared to the resulting variation
in model output expressed as a fraction of the output under
the default parameterization. Parameters were modified be-
tween a factor of 0.1 and 10 of their nominal values in an
effort to encompass the range of possible error in parame-
ter values. Uniform distributions of parameter scalars in the
[0.1,10] space were generated and combined using the ran-
domLHS function of the lhs R package (Carnell, 2020) and
subsequently multiplied with the relevant default parameters.
Here, d and dxcc were calculated from the original data us-
ing Eqs. (1)–(2), combined with multipliers, and transformed
back to the original parameter space.

We employ the variance-based method of Sobol’ (2001)
for analysis of the NWM channel routing module param-
eter sensitivity, following the precedent set by many prior
sensitivity analyses of hydrologic models (e.g., Abebe et
al., 2010; Baroni and Tarantola, 2014; Cibin et al., 2010; Her-
man et al., 2013; Massmann and Holzmann, 2012; Nossent
et al., 2011; Pappenberger et al., 2008; Reusser et al., 2011;
Song et al., 2012; Tang et al., 2007; Wagener et al., 2009;

Yang, 2011; Zelelew and Alfredsen, 2013). Specifically, we
follow the method of Saltelli (2002), using the sobolSalt
function within the sensitivity R module (Iooss et al., 2021)
to estimate the first-order (the influence of each parameter
alone) and total effect (first order plus all interactive effects)
indices, which implements a Monte Carlo estimation of the
Sobol’ indices at a cost of n∗(p+ 2) evaluations, where n is
sample size, and p is the number of parameters.

A total of n= 3360 unique channel parameter sets (70
groups of 48 members each) for p = 6 parameters were
tested in each of 12 basins distributed across CONUS over
an 8-year period from 1 October 2010 to 30 September
2018 (Fig. 2). Because running the analysis over all of
CONUS is computationally prohibitive, these basins were
selected to represent variability in NWM calibration basins
over CONUS. Calibration basins minimize volume errors,
while the 12 basins span a wide range of climate, land cover,
and terrain conditions.

A collection of output metrics describing model fit to ob-
served data, including normalized mean bias (NMB; Yu et
al., 2006), Nash–Sutcliffe efficiency (NSE; Nash and Sut-
cliffe, 1970), and Richards–Baker flashiness index (R–B in-
dex; Baker et al., 2004), were used to reduce the model out-
put time series to scalar values more readily comparable to
the input parameter set. Equations for these metrics are pro-
vided below, as follows:

NMB=
∑N
i=1 (Mi −Oi)

Oi
× 100% , (3)

NSE= 1−
∑N
i=1(Mi −Oi)

2∑N
i=1
(
Mi −Oi

)2 , (4)

R–B Index=
∑N
i=1 |Mi −Mi−1|∑N

i=1Mi

, (5)

whereM is the model streamflow,O is observed streamflow,
i is the time step, andN is the total number of time steps. The
optimal value for NMB is 0 %, the optimal value for NSE
is 1, and the optimal R–B index is 1, which matches obser-
vations. Normalized mean bias provides an unbiased, sym-
metric measure of tendency to overpredict or underpredict
scaled by the output flow values, NSE is a widely used mea-
sure of model GOF to the overall observational time series,
and R–B index flashiness evaluates how short-term changes
in streamflow are affected by the channel routing parame-
terization. These metrics were selected as they each provide
unique insights into model performance and have previously
been effectively used for the evaluation of hydrologic models
in similar applications (e.g., Avellaneda and Jefferson, 2020;
McInerney et al., 2018; Wu et al., 2012; Yeste et al., 2020).
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Figure 2. Map of study domains, with red points showing locations for 12 representative basins dispersed across CONUS used for the
channel routing module sensitivity analysis. These numbers correspond to the USGS gauge IDs listed in the table. Numbers and boundaries
on the map correspond to the 18 designations and the extents of Hydrologic Unit Code (HUC)2 regions.

2.4 Channel parameter development

Channel parameters were first estimated at HyG-associated
NHD reach segments and then subsequently estimated at all
CONUS river reaches through a regression-based regional-
ization approach. The at-a-station hydraulic geometry of a
channel (AHG) was calculated by relating the cross-sectional
variation in stream discharge with width, depth, and veloc-
ity using power law relationships (Leopold and Maddock,
1953), as follows:

w = aQb , (6)

d = cQf , (7)

v = kQm , (8)

where w is width, d is depth, v is velocity, Q is discharge
(equal to the product of w, d, and v), a, c, and k are fitted
coefficients which must multiply to 1, and b, f , and m are
fitted exponents which must sum to 1. Using the field mea-
surements ofQ available in HyG, we first estimated the fitted
coefficients (a, c, and k) and exponents (b, f , and m) at each
HyG location. For a given flow percentile, variablesw, d, and
v were then calculated using the fitted values in Eqs. (6)–(8).

Manning’s nwas estimated usingw, d , v, and longitudinal
slope (S) via Eqs. (9) and (10), as follows:

R =
w× d

w+ 2d
, (9)

n=
R2/3
× S1/2

v
, (10)

where R is the hydraulic radius. Equation (10) is a ver-
sion of the Manning’s equation. Generally, longitudinal wa-

ter surface slope is not measured at USGS and state stream
gauging locations. Instead, values for slope were obtained
from the NHDPlus dataset attribute ElevSlope, a longitu-
dinally smoothed slope product produced from topographic
data (USGS, 2001).

For estimating the channel geometry parameters of BW
and m used in the NWM routing model, a half-channel con-
ceptualization was used. For a given gauge, field measure-
ments of 1/2(w) and d together allow for calculation of the
channel side slope. This was fit through a linear regression,
as follows:

d =m×w+ b, (11)

and the point where d = 0 along this fitted line is taken to
be 1/2(BW). The slope of this fit is the channel side slope
(m). TW was estimated as the width of the channel at a high
percentile flow (e.g., 99th or 99.9th), which was analyzed
through the model validation described in Sect. 2.6.

2.5 Regionalization analysis

We conducted an analysis of the regionalization method us-
ing the Manning’s n parameter as a representative for the full
suite of channel parameters described in Fig. 1, given the im-
portance of roughness defined in prior studies. Manning’s n
was regionalized to unobserved channels in the stream net-
work using a regression-based method. We fit linear regres-
sions between log-transformed Manning’s n and S at a flow
percentile, i, as follows:

log(ni)=m× log(Si)+ b , (12)

where m is the slope of the regression line, and b is the inter-
cept.
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Training of the regionalization regression equations for
Manning’s n was performed at three spatial scales, i.e.,
HUC4, HUC2, and the full CONUS-wide domain. For each
scale, only the observed data available within each spatial
unit of that scale were used to estimate at reaches within
that unit. The purpose of this multiscale analysis was to at-
tribute error in estimated Manning’s n to variation in scale.
In other words, maximization of available observations to fit
the Eq. (9) regression and minimization of regression error
are competing objectives, such that the scale which results in
the least error may vary by location. Similarly, because Man-
ning’s n may vary based on the flow percentile used to es-
timate them (e.g., Eq. 8), the regionalization was conducted
using a range of flow percentiles at HyG locations, including
the 50th, 75th, 90th, 95th, and 99th percentile flow values.
The variation across three spatial scales and five flow per-
centiles results in a 3× 5 matrix of estimated Manning’s n
values at HyG locations.

To facilitate a standardized method for evaluating the re-
gionalization, a k-fold cross-validation (CV) was performed
using a value of k = 10 folds. In this approach, training data
were randomly divided into 10 equal-sized groups, and we
systematically withheld one group at a time while training
the model with the remaining nine. We then predicted Man-
ning’s n for the withheld group and compared regression-
predicted values with the HyG-derived estimates.

2.6 CONUS-wide evaluation experiments

To understand the regional- and national-scale implications
of new channel parameters, the NWM routing module was
run across the entirety of the 2.7×106 CONUS reaches, over
a period of 8 years from 1 October 2010 to 30 September
2018. As only the routing module was run (i.e., not the LSM),
total channel inflow volumes remained fixed across experi-
ments, such that any variation may be attributable to routing
parameterization. Here, nine channel parameter set config-
urations were used, in addition to the v2.1 default configu-
ration, for a total of 10 experimental trials. These configu-
rations included parameter sets with Manning’s n regional-
ized at HUC4, HUC2, and full CONUS-wide domain spatial
scales using 95th percentile flows. Channel geometry sets
included default parameter values along with HUC4-scale
regionalized estimates, with TW calculated using either the
99th (TW99) or 99.9th (TW99.9) percentile flows. This cre-
ates a 3× 3 matrix of Manning’s n and geometry combina-
tions in addition to the default parameterization (Fig. 3).

The experimental trials were evaluated with the objective
of identifying whether errors affecting the GOF metrics per-
formance were reduced relative to the default configuration.
This evaluative approach was used because the routing mod-
ule only controls the flow routing through the system rather
than total flow volume. We compared the hourly streamflow
output of each trial at observed reaches CONUS-wide, us-
ing available gauge observations, and also conducted a closer

Figure 3. Summary of Manning’s n and channel geometry config-
urations used for the routing module simulations conducted across
CONUS. Dark gray boxes indicate configurations where only Man-
ning’s n or channel geometry were updated from the default param-
eterization, and light gray boxes indicate configurations where both
were modified.

examination of simulated flows for a selection of individ-
ual gauges from the 12 representative basins (Fig. 2). For
the CONUS-wide analysis, GOF metrics such as percent
bias (Eq. 3), NSE (Eq. 4), and R2 were calculated at each
stream gauge. The difference between median experimental
trial output metrics and default output metrics was used to
quantify where and how updates to channel parameterization
resulted in the greatest differences. The variance among ex-
perimental trial output metrics was also examined to further
characterize agreement among trials.

3 Results

3.1 Sensitivity analysis

Across all calculated metrics and domains, Manning’s n was
shown to hold the highest first-order and total effect sensitiv-
ity indices, indicating a higher sensitivity of the model output
to Manning’s n (Fig. 4). The difference between Manning’s
n and other channel parameter sensitivities varied consider-
ably across these dimensions, however. Normalized bias in
comparison to gauge observations showed increased sensi-
tivity for other parameters relative to Manning’s n across all
basins, particularly BW and ncc, for total effect sensitivity.

3.2 Channel geometry regionalization

The regression fit between log(S) and log(ni) varied by lo-
cation and scale (Fig. 5). The CONUS-wide log-transformed
regression fit with 5777 observation points yielded an R2

=

0.29. At the HUC2 regionalization level,R2 varied from 0.12
in the Texas–Gulf region (12) to 0.66 in the Great Basin
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Figure 4. Sensitivity analysis results for the NWM channel routing module in 12 representative basins (Fig. 1). Estimated first-order indices
are listed in panels (a), (c), and (e), and total effect indices are in panels (b), (d), and (f). Indices closer to 1 indicate higher sensitivity, and
values less than 0 occur due to numerical instabilities within insensitive variables. Rows represent each of three metrics used to reduce the
flow time series to scalar values. Bar plot colors correspond to the domains for which the indices to apply.

region (16), with an overall median R2
= 0.37 and median

observation count of 290 points in each HUC2. At the HUC4
level, the variance was even greater, with R2 falling between
4×10−5 and 0.9 for subregions 0302 and 0704, respectively.
Overall, the medianR2

= 0.45 and median observation count
was 26 points per spatial unit. At this scale, there is also an
apparent east to west gradient of decreasing error, largely due
to the presence of low R2 HUC4 basins in the Texas–Gulf
(12) and South Atlantic–Gulf (03) regions. Kernel density
plots for errors in Manning’s n subdivided by regionalization
scale and HUC2 region are shown in Fig. A1.

CV results from the 3× 5 matrix of regionalization scale
and flow percentile combinations are summarized in Fig. 6.
General patterns of decreasing error with increasing flow per-
centile and finer scale were evident, with some exceptions.
For example, the regression determined from 90th percentile
flow yielded the smallest Manning’s n error in the Califor-
nia region (18), whereas the smallest error in the Tennessee
region (06) was achieved at the full CONUS-wide regional-
ization scale. However, channels in mountainous west HUC2
regions (e.g., 13–17) were poorly represented by the regres-
sion made at the full CONUS-wide scale, as evident by the
relatively strong underestimation of Manning’s n.

Overall, nearly half of the HUC2 regions (8 of 18) showed
the 99th percentile as the optimal flow percentile. However,
the optimal regression fit was relatively balanced between

Figure 5. Summaries of R2 values resulting from the regression fit
of Manning’s n as a function of channel longitudinal slope at HUC4,
HUC2, and full CONUS domain regionalization scales. Panel (a)
shows a spatial breakdown of R2 values at units within each scale,
and panel (b) shows kernel density plots for regressions made at the
HUC4 and HUC2 scales, with vertical lines denoting the R2 from
the full CONUS-wide fit and the median values for the HUC4 and
HUC2 scales.

the HUC2 and HUC4 regionalization scales, with eight re-
gions minimizing the error at HUC2 scale and nine re-
gions minimizing the error at the HUC4 scale. Variability
in the error was highest in the lower Mississippi region (08),
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Figure 6. A summary of median error in Manning’s n resulting from a k-fold CV (k = 10) across the matrix of tested regionalization scale
and flow percentile combinations. HUC2 regions are shown in each facet, and boxes with text indicate the combination that resulted in the
lowest error, which is shown within the box.

where the ratio between slope and Manning’s n varied greatly
among observed locations and there were fewer observations
(Fig. A2). In the western regions (e.g., 13–17), a strong pos-
itive bias in the estimated Manning’s n at the full CONUS-
wide regionalization scale was evident.

3.3 CONUS-wide channel parameters

In comparison to the default parameterization, the experi-
mental parameter combinations described in Fig. 3 resulted
in substantial differences to both the estimated Manning’s n
and channel cross-sectional area (Fig. 7), with the HUC4 re-
gionalization and TW99.9 geometry configuration present-
ing the greatest differences from the default version. The
majority of the channels (76 %) are represented in the de-
fault NWM version by a Manning’s n value of 0.06. The
regionalized Manning’s n updated these values to a new
range between 0.006 and 0.537 (median= 0.077), most no-
ticeably in mountainous headwaters regions, where rough-
ness increased by approximately 200 % under the HUC4 re-
gionalization scheme. Similar changes were also apparent
under the HUC2 (0.007 to 0.436; median= 0.076) and full
regionalization schemes (0.012 to 0.436; median= 0.072),
albeit to a lesser extent. Overall, the variance of Man-
ning’s n across CONUS increased with smaller regional-
ization spatial scales. Similar magnitudes of change were
evident in the channel cross-sectional area. Compared to
the default geometry parameterization cross-sectional area
(0.018 to 1990 m2; median= 2.03 m2), the TW99 config-
uration (8.53× 10−7 to 8610 m2; median= 0.927 m2) and
TW99.9 configuration (1.62× 10−4 to 7150 m2; median=
2.08 m2) both resulted in wider ranges, though the median
area for TW99 was reduced by an order of magnitude,

and this reduction was largely observable at reaches located
across the west. However, in the lower Mississippi region
(08), the cross-sectional area of the channel increased by ap-
proximately 200 % under the new regionalization schemes.

Across the 6841 USGS gauge locations with continuous
information across the experimental period, the median per-
cent difference between default Manning’s n and the HUC4-
regionalized Manning’s n was approximately −9 %, with a
standard deviation σ = 61 % (HUC2 – median=−8 % and
σ = 52 %; full – median=−10 % and σ = 49 %). For the
channel cross-sectional area using 99th percentile flow to es-
timate top width (TW99), this difference was −32 %, with a
standard deviation σ = 47 % (TW99.9 – median= 17 % and
σ = 88 %). Generally, the median channel size was reduced
in the TW99 configuration and increased in the TW99.9 con-
figuration (Fig. 8).

3.4 CONUS-wide evaluation experiments

Among the experimental trials, variance was generally low
(approx. 1× 10−5) in the bulk GOF metrics calculated from
the model output at gauge locations, indicating little differ-
ence in model output among the updated channel parame-
ter sets resulting from modifying routing module parameter-
ization alone. Yet, differences between median experimental
trial output metrics and the default output metrics yielded
some measurable differences, particularly for the agreement
index (σ = 2.8×10−2) and R2 (σ = 4.5×10−2) metrics. Ef-
fects on performance were negligible across most gauges,
with the median value for each metric approximately 0 in
all cases (Fig. 9). Spatial maps for other metrics are provided
in Fig. A3.
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Figure 7. Spatial maps illustrating default parameterizations, updated parameterizations, and their percent differences across CONUS for
Manning’s n and the channel-geometry-derived cross-sectional area at a random subsample of 1 % of the 2.7× 106 NHD-derived reaches
across CONUS. Panels (a) and (b) describe the default and HUC4-regionalized Manning’s n parameter, panels (d) and (e) describe the
default and TW99.9 configuration cross-sectional area, and panels (c) and (f) show the percent differences between default and updated
parameterizations for Manning’s n and cross-sectional area, respectively.

Figure 8. Density plots of percent changes in cross-sectional area and Manning’s n from default parameter values across CONUS under
experimental trial configurations.

Overall, meanR2 across gauges increased from the default
parameterization (mean R2

= 0.479) for all experimental tri-
als (from a mean R2

= 0.489 for the full TW99 configura-
tion to a mean R2

= 0.494 for the HUC4 TW99.9 config-
uration). The HUC4 TW99.9 configuration also resulted in
the largest overall influence on the model output overall (i.e.,
regardless of whether performance improved or worsened),

which is consistent with the degree of perturbation made to
the channel parameters relative to other configurations.

3.5 Analysis at selected gauges

Of the 12 representative basins (Fig. 2), two gauges at out-
lets were selected for further examination based on the rela-
tively high degree and opposing directions of change made to
the parameterization of Manning’s n and channel geometry
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Figure 9. Summary metrics at 4655 USGS gauge locations for the HUC4 regression scale and the TW99.9 combination experimental trial
calculated across CONUS-wide gauge locations. Panel (a) shows faceted density plots for each difference in that metric from the default
parameterization, and panel (b) shows the Pearson correlation among the metrics.

relative to the default parameterization and differences in
basin physiography and climate. The first is USGS gauge
09064600 at Eagle River near Minturn, CO. This gauge is
located in the mountainous headwaters region of the Col-
orado River basin (elevation 2467 m) and monitors flow over
a drainage area of 482 km2. From a default value of 0.055,
Manning’s n was increased for this gauged reach to 0.078,
0.073, and 0.097 for HUC4, HUC2, and full regionaliza-
tion scales, respectively. The cross-sectional area was re-
duced from a default of 19.9–4.9 and 6.4 m2 for TW99 and
TW99.9 configurations, respectively. The second is USGS
gauge 01664000 at Rappahannock River near Remington,
VA. This gauge is located at a lower elevation (92 m) and
monitors flow over a greater drainage area of 1603 km2. In
contrast to the Colorado gauge, the default value of 0.050 for
Manning’s n was decreased for this channel to 0.017, 0.015,
and 0.015 for HUC4, HUC2, and full regionalization scales,
respectively. The cross-sectional area was altered from a de-
fault of 37.5–35.4 and 65.7 m2 for TW99 and TW99.9 con-
figurations, respectively.

Noticeable differences in the behavior across the experi-
mental scenario results exist between the two selected gauges
(Fig. 10). While NSE, R2, and RMSE were relatively consis-
tent across experimental trials for gauge 09064600, there is a
noticeable trend of decreasing performance from the default
parameterization run and updated Manning’s n runs when the
channel geometry is updated. The highest differences across
experiments were those where channel geometry alone was
perturbed. NSE was 0.50 for the default parameterization and
0.51, 0.44, and 0.41 for the default geometry with updated
Manning’s n only, the TW99 channel geometry parameteri-
zation, and the TW99.9 channel geometry parameterization,
respectively. By contrast, experimental performance among

trials where only Manning’s n was perturbed were relatively
consistent and higher than the default parameterization for
both gauges. For gauge 09064600, R2 increased from the de-
fault parameterization (R2

= 0.77) for all runs, with the high-
est increase seen for the HUC4 TW99.9 run (R2

= 0.81).

4 Discussion

Results from the sensitivity analysis showed that channel
roughness (Manning’s n) holds a stronger influence on mod-
eled streamflow than channel dimensions in the routing mod-
ule. This finding is supported by prior literature suggesting
that Manning’s n is a significant determinant of flood wave
celerity (Anderson et al., 2006) and serves to attenuate and
delay the arrival of peak discharge at the catchment outlet
(Wolff and Burges, 1994; Woltemade and Potter, 1994). In
the NWM, attenuation is modeled through the Muskingum–
Cunge method of flood routing (Cunge, 1969), which uses
a diffusion wave representation subject to attenuation as it
propagates through a channel network. The relative sensitiv-
ity of model output variance to Manning’s n suggests that
the most efficient optimization strategy for improving rep-
resentation in the channel routing module is one that is fo-
cused on updating Manning’s n. However, the overall results
from the experimental simulations showed that runs where
channel geometry was varied in isolation generally yielded a
higher variance in model output than runs where Manning’s n
was varied in isolation. Such results show that combinatory
effects among the channel geometry parameters may result
in a stronger influence over the model hydrograph in com-
parison with varying the Manning’s n parameter alone. The
case for updating all geometry parameters is strengthened by
the fact that the HUC4 TW99.9 configuration, containing the
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Figure 10. A summary of experimental results at two gauge locations. Panels (a) and (b) describe hydrographs for USGS gauge 09064600
and USGS gauge 01664000, respectively, for 1 example month in June 2018, and panel (c) shows metric results computed across the entire
hydrograph at each gauge location for NSE, percent bias, R2, and RMSE.

most extreme perturbations of all parameters, was found to
increase R2 by the largest degree.

Though the results were largely conclusive, several aspects
of the sensitivity analysis may be modified in potential fu-
ture studies. For example, the selected boundary conditions
ranged from 0.1 to 10 times the nominal parameter values,
which may not be reflective of the true uncertainty in these
parameter values. The possibility also exists that parameter
sensitivity is flow dependent, which may be most obvious in
the case of the parameters TWcc and ncc, as flow depth is
often too low to reach the floodplain. Consideration for ob-
servational error in channel parameters and/or running the
model in data assimilation mode may address this possibility
and provide added value in future analyses.

The regionalization of channel parameters was performed
using a HUC-based approach, where discrete regions were
used to define the regression curves used to estimate chan-
nel parameters within those regions. The principal find-
ing in comparing regionalization scales was that a smaller
scale typically results in the lowest error (e.g., Fig. 6), and
the magnitude of this difference is likely dependent on the
inherent spatial variability in the region in which the re-
gressions were developed. For example, the relatively poor
performance of the full regression in the topographically

variable, mountainous HUC2 regions demonstrate the non-
representativeness of regressions developed using all mea-
surements across CONUS for these unique and topographi-
cally complex areas. Furthermore, the strong performance of
the HUC4 regionalization scale relative to HUC2 in the Mis-
souri region (10) speaks to the diversity of terrain conditions
within this region, as it encapsulates both mountainous ter-
rain in the west and flatter plains in the east. Overall, these
findings underscore the importance of taking into account
the spatial variability in the Manning’s n and longitudinal
slope relationship. Additional variables which demonstrate
strong relationships with channel properties may also be vi-
able for future regressions. For example, height above nearest
drainage (HAND) has been used to derive hydraulic proper-
ties for reaches along a river network and generate synthetic
rating curves relating flow to water level (Zheng et al., 2018).

The HUC-based discretization method, coupled with dif-
ferences in observational data uncertainty and availability,
naturally creates discontinuities at HUC boundaries in the re-
gression parameters. Alternative regionalization approaches
may help to alleviate or even remove the errors arising from
these discontinuities; for example, a downstream hydraulic
geometry (DHG)-based regionalization approach that takes
into account observational data from nested gauges within
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the network to generate channel parameters along a flow path
is one possibility that has seen previous success (Allen et
al., 2018; Neal et al., 2015).

The estimation of regional regression curves for Man-
ning’s n was performed across multiple flow percentiles, as
it was found that the regression parameters varied depending
on flow. Here, the objective was to identify a singular optimal
flow percentile that resulted in the lowest error in the region-
alized Manning’s n parameter. However, in nature, the celer-
ity and attenuation of a flood wave varies nonlinearly with
flow, despite standard engineering practice typically involv-
ing the use of the Muskingum–Cunge flood wave representa-
tion due to ease of implementation (i.e., a constant Manning’s
n), which is the case for the NWM. Future improvements to
the NWM may consider allowing Manning’s n to vary with
flow, as this may achieve a better representation of channel
hydraulics.

With only a modest sensitivity of model output to channels
parameters, results from both the sensitivity analysis and si-
mulations demonstrate the limited influence of the channel
routing module to improve GOF metrics within the overall
NWM framework. In most cases, low variability in GOF met-
rics among trials is evident; though in some instances, such
as at USGS gauge 09064600, there is some identifiable im-
provement from the default parameterization. Yet, even here,
model hydrographs were unable to match observations. This
is expected, as total volume is unaffected by the routing mod-
ule, and thus the mass is conserved regardless of channel pa-
rameterization. However, in the course of model improve-
ment, an appropriate philosophy is to do no harm, which
largely characterizes the outcome of these experiments.

Parameters within the Noah-MP LSM not included in the
sensitivity analysis or regionalization are likely the source
of a large percentage of error, with meteorology and physics
representations representing other potential sources. A pre-
vious sensitivity analysis conducted on the Noah-MP model
indicated high sensitivities for output states and fluxes such
as sensible and latent heat, soil moisture, and net ecosystem
exchange derived from soil and vegetation parameters (Arse-
nault et al., 2018). Another showed sensitivity for latent heat
and total runoff attributable to two-thirds of applicable stan-
dard parameters and the highest sensitivity derived from a
hard-coded parameter value in the model used in the formu-
lation of soil surface resistance for direct evaporation (Cuntz
et al., 2016). Given these results, future efforts focused on
the joint calibration of the Noah-MP LSM and channel rout-
ing module may result in noticeable GOF metrics improve-
ments.

5 Conclusion

This analysis explored the effects of modifying channel rout-
ing parameters in the National Water Model streamflow si-
mulations using a regionalized hydraulic geometry and Man-

ning’s n dataset. Based on a sensitivity analysis conducted
on a selection of channel parameters in the routing module,
it can be concluded that the Manning’s n roughness coef-
ficient holds an outsized effect on modeled flow relative to
parameters which describe the channel geometry. Yet, results
from experimental simulations of nine alternative parame-
ter configurations showed that the interactive effects among
geometry parameters in some geographic regions may be
greater than the Manning’s n parameter alone.

New estimates of NWM channel parameters following a
regression-based regionalization approach generally results
in a larger distribution of channel characteristics over the
NWM v2.1 default parameterization. Overall, variance in
both Manning’s n and cross-sectional area among channels
CONUS-wide increased from the default parameterization,
which also accompanied a modest increase to median R2

across gauge locations as well, from 0.479 to 0.494 for the
HUC4 TW99.9 configuration.

For Manning’s n, approximately 76 % of channels in the
default parameterization are currently represented by the
same nominal value of 0.06 (18 % with a value of 0.055 and
lesser percentages at further intervals of 0.005) and are not
based on observations but rather expert opinion, which is
scaled by the Strahler stream order. A new HyG-based Man-
ning’s n representation provides an observational foundation
for Manning’s n, which consequently increases roughness
across mountainous headwaters regions and decreases rough-
ness in lowlands and coastal areas to a new range between
0.006 and 0.537 (median 0.077), qualitatively changing the
distribution.

Channel geometry updates resulted in a longitudinal gra-
dient in the percent change in the cross-sectional area. In
the east, and particularly in the lower Mississippi region, the
cross-sectional area increased, while a decrease in area is vis-
ible throughout smaller streams in the more arid west.

The influence of the routing module over modeled stream-
flow GOF metric performance is limited compared to other
components of the NWM framework, such as the land sur-
face model and meteorological input data. Future approaches
towards the calibration of the NWM may yield the largest
benefits through a more holistic approach to calibrating the
overall framework, i.e., a comprehensive evaluation and cali-
bration of all model components. Towards this objective, our
characterization of the overall effects of strengthening chan-
nel routing module parameter representativeness may serve
as an important foundation for the further improvement of
the NWM and hydrologic modeling in CONUS. In turn, the
NWM becomes better positioned to meet the stated goal of
providing quality, actionable guidance for the mitigation of
flood-related damages.
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Appendix A

Figure A1. Kernel density plots showing the range of Manning’s n error resulting from each regression-based regionalization scale at gauge
locations, including full CONUS-wide (blue), HUC2 (green), and HUC4 (red). Facets indicate the HUC2 region in which the gauges are
located.

Figure A2. Scatterplots of log-transformed longitudinal slope (S) and Manning’s n (n) estimated at 99th percentile flows for HyG locations
in each HUC2 region are shown. The size of the points indicate the magnitude of error in the regression, and color indicates an underestimate
(blue) or overestimate (red).
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Figure A3. Spatial maps describing change in the agreement index, NSE, bias, and percent bias from default parameterization performance
at USGS gauge locations across CONUS.
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