Articles | Volume 26, issue 18
https://doi.org/10.5194/hess-26-4721-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-4721-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Present and future thermal regimes of intertidal groundwater springs in a threatened coastal ecosystem
Jason J. KarisAllen
Department of Civil and Resource Engineering and Centre for Water
Resources Studies, Dalhousie University, Halifax, NS B3H 4R2, Canada
Aaron A. Mohammed
Department of Civil and Resource Engineering and Centre for Water
Resources Studies, Dalhousie University, Halifax, NS B3H 4R2, Canada
Department of Earth and Planetary Sciences, McGill University,
Montreal, QC H3A 0E8, Canada
Joseph J. Tamborski
Department of Ocean and Earth Sciences, Old Dominion University,
Norfolk, VA 23529, USA
Rob C. Jamieson
Department of Civil and Resource Engineering and Centre for Water
Resources Studies, Dalhousie University, Halifax, NS B3H 4R2, Canada
Serban Danielescu
Canada Centre for Inland Waters, Environment and Climate
Change Canada, Burlington, ON L7S 1A1, Canada
Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB E3B 4Z7, Canada
Department of Civil and Resource Engineering and Centre for Water
Resources Studies, Dalhousie University, Halifax, NS B3H 4R2, Canada
Related authors
No articles found.
Jeffrey M. McKenzie, Barret L. Kurylyk, Michelle A. Walvoord, Victor F. Bense, Daniel Fortier, Christopher Spence, and Christophe Grenier
The Cryosphere, 15, 479–484, https://doi.org/10.5194/tc-15-479-2021, https://doi.org/10.5194/tc-15-479-2021, 2021
Short summary
Short summary
Groundwater is an underappreciated catalyst of environmental change in a warming Arctic. We provide evidence of how changing groundwater systems underpin surface changes in the north, and we argue for research and inclusion of cryohydrogeology, the study of groundwater in cold regions.
B. L. Kurylyk, K. T. B. MacQuarrie, D. Caissie, and J. M. McKenzie
Hydrol. Earth Syst. Sci., 19, 2469–2489, https://doi.org/10.5194/hess-19-2469-2015, https://doi.org/10.5194/hess-19-2469-2015, 2015
Short summary
Short summary
Changes in climate and land cover are known to warm streams by altering surface heat fluxes. However, the influence of these disturbances on shallow groundwater temperature are not as well understood. In small streams, groundwater discharge may also exert a control on stream temperature, and thus groundwater warming may eventually produce additional stream warming not considered in most existing models. This study investigates these processes and suggests stream temperature model improvements.
K. Menberg, P. Blum, B. L. Kurylyk, and P. Bayer
Hydrol. Earth Syst. Sci., 18, 4453–4466, https://doi.org/10.5194/hess-18-4453-2014, https://doi.org/10.5194/hess-18-4453-2014, 2014
B. L. Kurylyk, C. P.-A. Bourque, and K. T. B. MacQuarrie
Hydrol. Earth Syst. Sci., 17, 2701–2716, https://doi.org/10.5194/hess-17-2701-2013, https://doi.org/10.5194/hess-17-2701-2013, 2013
Related subject area
Subject: Groundwater hydrology | Techniques and Approaches: Mathematical applications
Technical note: Removing dynamic sea-level influences from groundwater-level measurements
Estimating karst groundwater recharge from soil moisture observations – a new method tested at the Swabian Alb, southwest Germany
Understanding the potential of climate teleconnections to project future groundwater drought
Sources and fate of nitrate in groundwater at agricultural operations overlying glacial sediments
Contaminant source localization via Bayesian global optimization
Analysis of three-dimensional unsaturated–saturated flow induced by localized recharge in unconfined aquifers
Analysis of groundwater flow and stream depletion in L-shaped fluvial aquifers
On the coupled unsaturated–saturated flow process induced by vertical, horizontal, and slant wells in unconfined aquifers
Technical Note: Three-dimensional transient groundwater flow due to localized recharge with an arbitrary transient rate in unconfined aquifers
Thermal damping and retardation in karst conduits
Large-scale 3-D modeling by integration of resistivity models and borehole data through inversion
Estimation of heterogeneous aquifer parameters using centralized and decentralized fusion of hydraulic tomography data
Analysis of groundwater drought building on the standardised precipitation index approach
Anomalous frequency characteristics of groundwater level before major earthquakes in Taiwan
Transient drawdown solution for a constant pumping test in finite two-zone confined aquifers
Scale dependency of fractional flow dimension in a fractured formation
Groundwater fluctuations in heterogeneous coastal leaky aquifer systems
Application of integral pumping tests to investigate the influence of a losing stream on groundwater quality
Patrick Haehnel, Todd C. Rasmussen, and Gabriel C. Rau
Hydrol. Earth Syst. Sci., 28, 2767–2784, https://doi.org/10.5194/hess-28-2767-2024, https://doi.org/10.5194/hess-28-2767-2024, 2024
Short summary
Short summary
While groundwater recharge is important for water resources management, nearshore sea levels can obscure this signal. Regression deconvolution has previously been used to remove other influences from groundwater levels (e.g., barometric pressure, Earth tides) by accounting for time-delayed responses from these influences. We demonstrate that it can also remove sea-level influences from measured groundwater levels.
Romane Berthelin, Tunde Olarinoye, Michael Rinderer, Matías Mudarra, Dominic Demand, Mirjam Scheller, and Andreas Hartmann
Hydrol. Earth Syst. Sci., 27, 385–400, https://doi.org/10.5194/hess-27-385-2023, https://doi.org/10.5194/hess-27-385-2023, 2023
Short summary
Short summary
Karstic recharge processes have mainly been explored using discharge analysis despite the high influence of the heterogeneous surface on hydrological processes. In this paper, we introduce an event-based method which allows for recharge estimation from soil moisture measurements. The method was tested at a karst catchment in Germany but can be applied to other karst areas with precipitation and soil moisture data available. It will allow for a better characterization of karst recharge processes.
William Rust, Ian Holman, John Bloomfield, Mark Cuthbert, and Ron Corstanje
Hydrol. Earth Syst. Sci., 23, 3233–3245, https://doi.org/10.5194/hess-23-3233-2019, https://doi.org/10.5194/hess-23-3233-2019, 2019
Short summary
Short summary
We show that major groundwater resources in the UK exhibit strong multi-year cycles, accounting for up to 40 % of total groundwater level variability. By comparing these cycles with recorded widespread groundwater droughts over the past 60 years, we provide evidence that climatic systems (such as the North Atlantic Oscillation) ultimately drive drought-risk periods in UK groundwater. The recursive nature of these drought-risk periods may lead to improved preparedness for future droughts.
Sarah A. Bourke, Mike Iwanyshyn, Jacqueline Kohn, and M. Jim Hendry
Hydrol. Earth Syst. Sci., 23, 1355–1373, https://doi.org/10.5194/hess-23-1355-2019, https://doi.org/10.5194/hess-23-1355-2019, 2019
Short summary
Short summary
Agricultural operations can result in nitrate contamination of groundwater, lakes and streams. At two confined feeding operations in Alberta, Canada, nitrate in groundwater from temporary manure piles and pens exceeded nitrate from earthen manure storages. Identified denitrification reduced agriculturally derived nitrate concentrations in groundwater by at least half. Infiltration to groundwater systems where nitrate can be naturally attenuated is likely preferable to off-farm export via runoff.
Guillaume Pirot, Tipaluck Krityakierne, David Ginsbourger, and Philippe Renard
Hydrol. Earth Syst. Sci., 23, 351–369, https://doi.org/10.5194/hess-23-351-2019, https://doi.org/10.5194/hess-23-351-2019, 2019
Short summary
Short summary
To localize the source of a contaminant in the subsurface, based on concentration observations at some wells, we propose to test different possible locations and minimize the misfit between observed and simulated concentrations. We use a global optimization technique that relies on an expected improvement criterion, which allows a good exploration of the parameter space, avoids the trapping of local minima and quickly localizes the source of the contaminant on the presented synthetic cases.
Chia-Hao Chang, Ching-Sheng Huang, and Hund-Der Yeh
Hydrol. Earth Syst. Sci., 22, 3951–3963, https://doi.org/10.5194/hess-22-3951-2018, https://doi.org/10.5194/hess-22-3951-2018, 2018
Short summary
Short summary
Existing analytical solutions associated with groundwater recharge are only applicable to the studies of saturated flow in aquifers. This paper develops an analytical solution for 3-D unsaturated–saturated flow due to localized recharge into an unconfined aquifer. The effects of unsaturated flow on the recharge process are analyzed. The present solution agrees well with a finite-difference solution. The solution’s predictions also match well with observed data obtained by a field experiment.
Chao-Chih Lin, Ya-Chi Chang, and Hund-Der Yeh
Hydrol. Earth Syst. Sci., 22, 2359–2375, https://doi.org/10.5194/hess-22-2359-2018, https://doi.org/10.5194/hess-22-2359-2018, 2018
Short summary
Short summary
An semanalytical model is developed for estimating the groundwater flow and stream depletion rates (SDR) from two streams in an L-shaped fluvial aquifer located at Gyeonggi-do, Korea. The predicted spatial and temporal hydraulic heads agree well with those of simulations and measurements. The model can be applied to evaluate the contribution of extracted water from storage and nearby streams.
Xiuyu Liang, Hongbin Zhan, You-Kuan Zhang, and Jin Liu
Hydrol. Earth Syst. Sci., 21, 1251–1262, https://doi.org/10.5194/hess-21-1251-2017, https://doi.org/10.5194/hess-21-1251-2017, 2017
Chia-Hao Chang, Ching-Sheng Huang, and Hund-Der Yeh
Hydrol. Earth Syst. Sci., 20, 1225–1239, https://doi.org/10.5194/hess-20-1225-2016, https://doi.org/10.5194/hess-20-1225-2016, 2016
Short summary
Short summary
Most previous solutions for groundwater flow due to localized recharge assumed either aquifer incompressibility or 2-D flow without vertical flow. This paper develops a 3-D flow model for hydraulic head change induced by the recharge with random transient rates in a compressible unconfined aquifer. The analytical solution of the model for the head is derived. The quantitative criteria for the validity of those two assumptions are presented by the developed solution.
A. J. Luhmann, M. D. Covington, J. M. Myre, M. Perne, S. W. Jones, E. C. Alexander Jr., and M. O. Saar
Hydrol. Earth Syst. Sci., 19, 137–157, https://doi.org/10.5194/hess-19-137-2015, https://doi.org/10.5194/hess-19-137-2015, 2015
Short summary
Short summary
Water temperature is a non-conservative tracer. Variations in recharge temperature are damped and retarded as water moves through an aquifer due to heat exchange between water and rock. This paper presents relationships that describe thermal damping and retardation in karst conduits determined using analytical solutions and numerical simulations, with some support provided by field data. These relationships may be used with field data to estimate unknown flow path geometry in karst aquifers.
N. Foged, P. A. Marker, A. V. Christansen, P. Bauer-Gottwein, F. Jørgensen, A.-S. Høyer, and E. Auken
Hydrol. Earth Syst. Sci., 18, 4349–4362, https://doi.org/10.5194/hess-18-4349-2014, https://doi.org/10.5194/hess-18-4349-2014, 2014
A. H. Alzraiee, D. Baú, and A. Elhaddad
Hydrol. Earth Syst. Sci., 18, 3207–3223, https://doi.org/10.5194/hess-18-3207-2014, https://doi.org/10.5194/hess-18-3207-2014, 2014
J. P. Bloomfield and B. P. Marchant
Hydrol. Earth Syst. Sci., 17, 4769–4787, https://doi.org/10.5194/hess-17-4769-2013, https://doi.org/10.5194/hess-17-4769-2013, 2013
C.-H. Chen, C.-H. Wang, S. Wen, T.-K. Yeh, C.-H. Lin, J.-Y. Liu, H.-Y. Yen, C. Lin, R.-J. Rau, and T.-W. Lin
Hydrol. Earth Syst. Sci., 17, 1693–1703, https://doi.org/10.5194/hess-17-1693-2013, https://doi.org/10.5194/hess-17-1693-2013, 2013
C.-T. Wang, H.-D. Yeh, and C.-S. Tsai
Hydrol. Earth Syst. Sci., 16, 441–449, https://doi.org/10.5194/hess-16-441-2012, https://doi.org/10.5194/hess-16-441-2012, 2012
Y.-C. Chang, H.-D. Yeh, K.-F. Liang, and M.-C. T. Kuo
Hydrol. Earth Syst. Sci., 15, 2165–2178, https://doi.org/10.5194/hess-15-2165-2011, https://doi.org/10.5194/hess-15-2165-2011, 2011
M.-H. Chuang, C.-S. Huang, G.-H. Li, and H.-D. Yeh
Hydrol. Earth Syst. Sci., 14, 1819–1826, https://doi.org/10.5194/hess-14-1819-2010, https://doi.org/10.5194/hess-14-1819-2010, 2010
S. Leschik, A. Musolff, R. Krieg, M. Martienssen, M. Bayer-Raich, F. Reinstorf, G. Strauch, and M. Schirmer
Hydrol. Earth Syst. Sci., 13, 1765–1774, https://doi.org/10.5194/hess-13-1765-2009, https://doi.org/10.5194/hess-13-1765-2009, 2009
Cited articles
Abraham, J. P., Baringer, M., Bindoff, N. L., Boyer, T., Cheng, L. J.,
Church, J. A., Conroy, J. L., Domingues, C. M., Fasullo, J. T., Gilson, J.,
Goni, G., Good, S. A., Gorman, J. M., Gouretski, V., Ishii, M., Johnson, G.
C., Kizu, S., Lyman, J. M., Macdonald, A. M., Minkowycz, W. J., Moffitt, S. E., Palmer, M. D., Piola, A. R., Reseghetti, F., Schuckmann, K., Trenberth K. E., Velicogna, I., and Willis, J. K.: A
review of global ocean temperature observations: Implications for ocean heat
content estimates and climate change, Rev. Geophys., 51, 450–483,
https://doi.org/10.1002/rog.20022, 2013.
Anderson, M.: Heat as a groundwater tracer, Groundwater, 43, 951–968,
https://doi.org/10.1111/j.1745-6584.2005.00052.x, 2005.
Anderson, R. P.: A framework for using niche models to estimate impacts of
climate change on species distributions, Ann. NY Acad.
Sci., 1297, 8–28, https://doi.org/10.1111/nyas.12264, 2013.
Bartlett, G. L.: Quantifying the temporal variability of discharge and
nitrate loadings for intertidal springs in two Prince Edward Island
estuaries, MS thesis, University of New Brunswick, New Brunswick, Canada,
2011.
Bejannin, S., van Beek, P., Stieglitz, T., Souhaut, M., and Tamborski, J.:
Combining airborne thermal infrared images and radium isotopes to study
submarine groundwater discharge along the French Mediterranean coastline, J.
Hydrol.-Regional Studies, 13, 72–90,
https://doi.org/10.1016/j.ejrh.2017.08.001, 2017.
Bense, V. F. and Kurylyk, B. L.: Tracking the subsurface signal of decadal
climate warming to quantify vertical groundwater flow rates, Geophys. Res.
Lett., 44, 244–253, https://doi.org/10.1002/2017GL076015, 2017.
Benson, V. S., VanLeeuwen, J. A., Stryhn, H., and Somers, G. H.: Temporal
analysis of groundwater nitrate concentrations from wells in Prince Edward
Island, Canada: Application of a linear mixed effects model, Hydrogeol. J.,
15, 1009–1019, https://doi.org/10.1007/s10040-006-0153-x, 2007.
Benz, S. A., Menberg, K., Bayer, P., and Kurylyk, B. L.: Shallow subsurface
heat recycling is a sustainable global space heating alternative, Nat. Comm.,
13, 3962, https://doi.org/10.1038/s41467-022-31624-6, 2022.
Bird, N., Chen, L., and McLachlan, J.: Effects of temperature, light and
salinity on growth in culture of Chondrus crispus, Furcellaria lumbricalis,
Gracilaria tikvahiae (Gigartinales, Rhodophyta), and Fucus serratus (Fucales, Phaeophyta), Bot. Mar., 22,
521–527, https://doi.org/10.1515/botm.1979.22.8.521, 1979.
Bonan, G. B.: Ecological Climatology: Concepts and Applications, 2nd ed.,
Cambridge University Press, https://doi.org/10.1017/CBO9780511805530,
Cambridge, United Kingdom, 2008.
Brandon, L. V.: Groundwater hydrology and water supply of Prince Edward
Island (Paper 64-38), Geological Survey of Canada,
https://doi.org/10.4095/101003, 1966.
Briggs, M. A., Johnson, Z. C., Snyder C. D., Hitt, N. P., Kurylyk B. L.,
Lautz, L., Irvine, D. J., Hurley, S. T., and Lane, J. W.: Inferring
watershed hydraulics and cold-water habitat persistence using multi-year air
and stream temperature signals, Sci. Total Environ., 636, 1117–1127,
https://doi.org/10.1016/j.scitotenv.2018.04.344, 2018a.
Briggs, M. A., Lane, J. W., Snyder, C. D., White, E. A., Johnson, Z. C.,
Nelms, D. L., and Hitt, N. P.: Shallow bedrock limits groundwater seepage-based
headwater climate refugia, Limnologica, 68, 142–156,
https://doi.org/10.1016/j.limno.2017.02.005, 2018b.
Brookfield, A. E., Sudicky, E. A., Park, Y.-J., and Conant Jr., B.: Thermal
transport modelling in a fully integrated surface/subsurface framework,
Hydrol. Process., 23, 2150–2164, https://doi.org/10.1002/hyp.7282,
2009.
Burnett, W. C. and Dulaiova, H.: Estimating the dynamics of groundwater
input into the coastal zone via continuous radon-222 measurements, J.
Environ. Rad., 69, 21–35, https://doi.org/10.1016/S0265-931X(03)00084-5,
2003.
Cantonati, M., Stevens, L. E., Segadelli, S., Springer, A. E., Goldscheider,
N., Celico, F., Filippini, M., Ogata, K., and Gargini, A.: Ecohydrogeology: The
interdisciplinary convergence needed to improve the study and stewardship of
springs and other groundwater-dependent habitats, biota, and ecosystems,
Ecol. Indic., 10, 105802, https://doi.org/10.1016/j.ecolind.2019.105803,
2020.
Caissie, D.: The thermal regime of rivers: A review, Freshwater Biol.,
51, 1389–1406, https://doi.org/10.1111/j.1365-2427.2006.01597.x, 2006.
Chikita, K. A., Uyehara, H., Mamun, A. Al, Umgiesser, G., Iwasaka, W.,
Hossain, M. M., and Sakata, Y.: Water and heat budgets in a coastal lagoon
controlled by groundwater outflow to the ocean, Limnology, 16, 149–157,
https://doi.org/10.1007/s10201-015-0449-4, 2015.
Coluccio, K., Santos, I., Jeffrey, L. C., Katurji, M., Coluccio, S., and
Morgan, L. K.: Mapping groundwater discharge to a coastal lagoon using
combined spatial airborne thermal imaging, radon (222Rn) and multiple
physicochemical variables, Hydrol. Process., 34, 4592–4608,
https://doi.org/10.1002/hyp.13903, 2020.
Crowl, G. H.: Geology of Mount Stewart-Souris map-area, Prince Edward Island
(11 L/7, L/8) (Paper 67-66), Geological Survey of Canada,
https://doi.org/10.4095/102347, 1969a.
Crowl, G. H.: Surficial geology, Mount Stewart – Souris, Prince Edward
Island, “A;; Series Map 1260A, (Paper 67-66), Geological Survey of Canada,
https://doi.org/10.4095/108918, 1969b.
Danielescu, S., MacQuarrie, K. T. B., and Faux, R.: The integration of
thermal infrared imaging, discharge measurements and numerical simulation to
quantify the relative contributions of freshwater inflows to small estuaries
in Atlantic Canada, Hydrol. Process., 23, 2847–2859,
https://doi.org/10.1002/hyp.7383, 2009.
Desbruyères, D., McDonagh, E. L., King, B. A., and Thierry, V.: Global
and full-depth ocean temperature trends during the early twenty-first
century from Argo and repeat hydrography, J. Climate, 30, 1985–1997,
https://doi.org/10.1175/JCLI-D-16-0396.1, 2017.
DFO: Ecological assessment of Irish moss (Chondrus crispus) in Basin Head Marine Protected
Area (corrected August 2011) (Gulf Region CSAS Science Advisory Report
2008/059), Fisheries and Oceans Canada, Moncton, Canada, https://waves-vagues.dfo-mpo.gc.ca/library-bibliotheque/335723.pdf (last access: 3 September 2022), 2009.
DeVries, D. A.: Thermal properties of soils, in: Physics of Plant
Evironment, edited by: Van Wijk, W. R., North-Holland
Publishing Co., p. 382, https://www.worldcat.org/title/physics-of-plant-environment/oclc/1660671 (last access: 5 September 2022), 1963.
DJI: Zenmuse XT 2 – User manual V1.0,
https://dl.djicdn.com/downloads/Zenmuse XT 2/Zenmuse XT 2 User Manual v1.0_.pdf (last access: 3 September 2022), 2018.
Dowd, W. W. and Somero, G. N.: Behavior and survival of Mytilus congeners following
episodes of elevated body temperature in air and seawater, J. Exp. Biol.,
216, 502–514, https://doi.org/10.1242/jeb.076620, 2013.
Dugdale, S. J., Hannah, D. M., and Malcolm, I. A.: River temperature
modelling: A review of process-based approaches and future directions, Earth
Sci. Rev., 175, 97–113, https://doi.org/10.1016/j.earscirev.2017.10.009,
2017.
Dugdale, S. J., Kelleher, C. A., Malcolm, I. A., Caldwell, S., and Hannah,
D. M.: Assessing the potential of drone-based thermal infrared imagery for
quantifying river temperature heterogeneity, Hydrol. Process., 33,
1152–1163, https://doi.org/10.1002/hyp.13395, 2019.
Dugdale, S. J., Klaus, J., and Hannah, D. M.: Looking to the skies: realising
the combined potential of drones and thermal infrared imagery to advance
hydrological process understanding in headwaters, Wat. Resour. Res., 58,
e2021WR031168, https://doi.org/10.1029/2021WR031168, 2022.
ECCC (Environment and Climate Change Canada): Hourly data report,
East Point Weather Station (Climate ID 8300418), Prince Edward Island,
https://climate.weather.gc.ca/climate_data/daily_data_e.html?StationID=7177 (last access: 3 September 2022), 2021a.
ECCC (Environment and Climate Change Canada): Hourly data report, St.
Peters Weather Station (Climate ID 8300562), Prince Edward, https://climate.weather.gc.ca/climate_data/daily_data_e.html?StationID=41903 (last access: 3 September 2022), 2021b.
ECCC (Environment and Climate Change Canada): Computer Research Institute of
Montréal (CRIM), Ouranos, the Pacific Climate Impacts Consortium (PCIC),
the Prairie Climate Centre (PCC), & HabitatSeven: Climate data for a
resilient Canada, https://climatedata.ca/ (last access: 3 September 2022), 2021c.
Flerchinger, G.: The simultaneous heat and water (SHAW) model: Technical
documentation (version 3.0) (Technical Report NWRC 2000-09), USDA
Agricultural Research Service,
https://www.ars.usda.gov/ARSUserFiles/20520000/shawdocumentation.pdf (last access: 3 September 2022), 2017.
Flerchinger, G. and Saxton, K.: Simultaneous Heat and Water Model of a
freezing snow-residue-soil system I. Theory and development, T. ASAE,
32, 565–571, https://doi.org/10.13031/2013.31040, 1989.
Gilfedder, B. S., Frei, S., Hofmann, H., and Cartwright, I.: Groundwater
discharge to wetlands driven by storm and flood events: Quantification using
continuous Radon-222 and electrical conductivity measurements and dynamic
mass-balance modelling, Geochim. Cosmochim. Ac., 165, 161–177,
https://doi.org/10.1016/j.gca.2015.05.037, 2015.
Government of PEI: Water well information system, Kingsboro well logs from 1974 to 2012, https://data.princeedwardisland.ca/Environment-and-Food/OD0040-Water-Well-Records/4zg3-he2k (last access: 3 September 2022), 2019.
Government of PEI: Ground water data: Observation well data, Souris Line
Road,
http://www.gov.pe.ca/envengfor/groundwater/app.php?map=YES&id=SL&lang=E (last access: 3 September 2022),
2021.
Graf, T. and Therrien, R.: Coupled thermohaline groundwater flow and
single-species reactive solute transport in fractured porous media, Adv.
Water Resour., 30, 742–771, https://doi.org/10.1016/j.advwatres.2006.07.001,
2007.
Grzelak, K., Tamborski, J., Lotwicki, L., and Bokuniewicz, H.:
Ecostructuring of marine nematode communities by submarine groundwater
discharge, Marine Environ. Res., 136, 106–119,
https://doi.org/10.1016/j.marenvres.2018.01.013, 2008.
Gunawardhana, L. N. and Kazama, S.: Climate change impacts on groundwater
temperature change in the Sendai plain, Japan, Hydrol. Process., 25,
2665–2678, https://doi.org/10.1002/hyp.8008, 2011.
Gunawardhana L. N., Kazama, S., and Kawagoe, S.: Impact of urbanization and
climate change on aquifer thermal regimes, Water Resour. Manage., 25,
3247–3276, https://doi.org/10.1007/s11269-011-9854-6, 2011.
Hannah, D. M. and Garner, G.: River water temperature in the United
Kingdom: Changes over the 20th century and possible changes over the 21st
century, Prog. Phys. Geog., 39, 68–92,
https://doi.org/10.1177/0309133314550669, 2015.
Hayashi, M. and Rosenberry, D. O.: Effects of ground water exchange on the
hydrology and ecology of surface water, Ground Water, 40, 309–216,
https://doi.org/10.1111/j.1745-6584.2002.tb02659.x, 2002.
IPCC: Climate change 2014 Synthesis Report – Contribution of working groups
I, II and III to the fifth Assessment Report of the Intergovernmental Panel
on Climate Change, edited by: Core writing team, Pachauri, R. K., and Meyer, L. A., https://www.ipcc.ch/site/assets/uploads/2018/05/SYR_AR5_FINAL_full_wcover.pdf (last access: 3 September 2022), 2014.
Irvine, D. J., Kurylyk, B. L., Cartwright, I., Bonham, M., Post, V. E. A.,
Banks, E. W., and Simmons, C. T.: Groundwater flow estimation using
temperature-depth profiles in a complex environment and a changing climate,
Sci. Total Environ., 574, 272–281, 2017.
Isaak, D. J., Wenger, S. J., Peterson, E. E., Ver Hoef, J. M., Nagel, D. E.,
Luce, C. H., Hostetler, S. W., Dunham, J. B., Roper, B. B., Wollrab, S. P.,
Chandler, G. L., Horan, D. L., and Parkes-Payne, S.: The NorWeST summer
stream temperature model and scenarios for the western U.S.: A crowd-sourced
database and new geospatial tools foster a user community and predict broad
climate warming of rivers and streams, Water Resour. Res., 53,
9181–9205, https://doi.org/10.1016/j.scitotenv.2016.08.212, 2017.
Ji, Z.-G.: Hydrodynamics, in: Hydrodynamics and Water Quality: Modelling
Rivers, Lakes, and Estuaries, 2nd ed., John Wiley & Sons
Inc., 11–71, https://doi.org/10.1002/9780470241066.ch2, 2017.
Johnson, Z. C., Johnson B. G., Briggs, M. A., Devine, W. D., Snyder, C. D.,
Hitt, N. P., Hare, D. K., and Minkova T. V.: Paired air-water annual
temperature patterns reveal hydrogeological controls on stream thermal
regimes at watershed to continental scales, J. Hydrol., 587, 124929,
https://doi.org/10.1016/j.jhydrol.2020.124929, 2020.
Joseph, V., Thériault, M.-H., Novaczek, I., Coffin, M., Cairns, D.,
Nadeau, A., Boudreau, M., Plourde, M.-A., Quijon, P. A., and Tummon Flynn,
P.: Review of monitoring activities in the Basin Head Marine Protected Area
in the context of their effectiveness in evaluating attainment of
conservation objectives (Canadian Science Advisory Secretariat Research
Document 2021/044), Fisheries and Oceans Canada, Moncton, Canada,
https://www.dfo-mpo.gc.ca/csas-sccs/Publications/ResDocs-DocRech/2021/2021_044-eng.pdf (last access: 3 September 2022), 2021.
Kaandorp, V. P., Doornenbal, P. J., Kooi, H., Peter Broers, H., and de
Louw, P. G. B.: Temperature buffering by groundwater in ecologically
valuable lowland streams under current and future climate conditions, J.
Hydrol. X, 3, 100031, https://doi.org/10.1016/j.hydroa.2019.100031, 2019.
Kalacska, M., Lucanus, O., Arroyo-Mora, J. P., Laliberté, É., Elmer,
K., Leblanc, G., and Groves, A.: Accuracy of 3D landscape reconstruction
without ground control points using different UAS platforms, Drones, 4,
13, https://doi.org/10.3390/drones4020013, 2020.
KarisAllen, J. J., Mohammed, A. A., Tamborski, J. J., Jamieson, R. C., Danielescu, S., and Kurylyk, B. L.: Basin Head Shaw model files, Borealis [data set] https://borealisdata.ca/dataverse/hess, last access: 4 September 2022a.
KarisAllen, J. J., Mohammed, A. A., Tamborski, J. J., Jamieson, R. C., Danielescu, S. and Kurylyk, B. L.: Basin Head Field Data, Borealis [data set], https://doi.org/10.5683/SP3/3IGN9W, 2022b.
KarisAllen, J. J. and Kurylyk, B. L.: Drone-based characterization of
intertidal spring cold-water plume dynamics, Hydrol. Process., 35,
e14258, https://doi.org/10.1002/hyp.14258, 2021.
Kelleher, C., Wagener, T., Gooseff, M., McGlynn, B., McGuire, K., and
Marshall, L.: Investigating controls on the thermal sensitivity of
Pennsylvania streams, Hydrol. Process., 26, 771–785,
https://doi.org/10.1002/hyp.8186, 2012.
Kelly, J., Kljun, N., Olsson, P.-O., Mihai, L., Liljeblad, B., Weslien, P.,
Klemedtsson, L., and Eklundh, L.: Challenges and best practices for
deriving temperature data from an uncalibrated UAV thermal infrared camera,
Remote Sensing, 11, 567, https://doi.org/10.3390/rs11050567, 2019a.
Kübler, J. E. and Davison, I. R.: High-temperature tolerance of
photosynthesis in the red alga Chondrus crispus, Mar. Biol., 117, 327–335,
https://doi.org/10.1007/BF00345678, 1993.
Kurylyk, B. L., MacQuarrie, K. T. B., and McKenzie, J. M.: Climate change
impacts on groundwater and soil temperatures in cold and temperate regions:
Implications, mathematical theory, and emerging simulation tools, Earth-Sci.
Rev., 138, 313–334, https://doi.org/10.1016/j.earscirev.2014.06.006, 2014a.
Kurylyk, B. L., MacQuarrie, K. T. B., and Voss, C. I.: Climate change
impacts on the temperature and magnitude of groundwater discharge from
shallow, unconfined aquifers, Water Resour. Res., 50, 3253–3274,
https://doi.org/10.1002/2013WR014588, 2014b.
Kurylyk, B. L., MacQuarrie, K. T. B., Linnansaari, T., Cunjak, R. A., and
Curry, R. A.: Preserving, augmenting, and creating cold-water thermal
refugia in rivers: concepts derived from research on the Miramichi River,
New Brunswick (Canada), Ecohydrology, 8, 1095–1108,
https://doi.org/10.1002/eco.1566, 2015a.
Kurylyk, B. L., MacQuarrie, K. T. B., Caissie, D., and McKenzie, J. M.: Shallow groundwater thermal sensitivity to climate change and land cover disturbances: derivation of analytical expressions and implications for stream temperature modeling, Hydrol. Earth Syst. Sci., 19, 2469–2489, https://doi.org/10.5194/hess-19-2469-2015, 2015b.
Kurylyk, B. L., Moore, R. D., and MacQuarrie, K. T. B.: Scientific
briefing: Quantifying streambed heat advection associated with
groundwater–surface water interactions, Hydrol. Process., 30, 987–992,
https://doi.org/10.1002/hyp.10709, 2016.
Langford, J. E., Schincariol, R. A., Nagare, R. M., Quinton, W. L., and
Mohammed, A. A.: Transient and transition factors in modeling permafrost thaw
and groundwater flow, Groundwater, 58, 258–268, https://https://doi.org/10.1111/gwat.12903, 2020.
Lecher, A. L. and Mackey, R. M.: Synthesizing the effects of submarine
groundwater discharge on marine biota, Hydrology, 5, 60,
https://doi.org/10.3390/hydrology5040060, 2018.
Lee, E., Kang, K., Hyun, S. P., Lee, K.-Y., Yoon, H., Kim, S. H., Kim, Y.,
Xu, Z., Kim, D., Koh, D.-C., and Ha, K.: Submarine groundwater discharge
revealed by aerial thermal infrared imagery: a case study on Jeju Island,
Korea, Hydrol. Process., 30, 3494–3506,
https://doi.org/10.1002/hyp.10868, 2016a.
Lee, E., Yoon, H., Hyun, S. P., Burnett, W. C., Koh, D.-C., Ha, K., Kim, D.,
Kim, Y., and Kang, K.: Unmanned aerial vehicles (UAVs)-based thermal
infrared (TIR) mapping, a novel approach to assess groundwater discharge
into the coastal zone, Limnol. Ocean.-Meth., 14, 725–735,
https://doi.org/10.1002/lom3.10132, 2016b.
LeRoux, N. K., Kurylyk, B. L., Briggs, M. A., Irvine, D. J., Tamborski, J.
J., and Bense, V. F.: Using heat to trace vertical water fluxes in sediment
experiencing concurrent tidal pumping and groundwater discharge, Water
Resour. Res., 57, e2020WR027904, https://doi.org/10.1029/2020WR027904,
2021.
Liu, S., Xie, Z., Liu, B., Wang, Y., Gao, J., Zeng, Y., Xie, J., Xie, Z.,
Jia, B., Qin, P., Li, R., Wang, L., and Chen, S.: Global river water
warming due to climate change and anthropogenic heat emission, Global
Planet. Change, 193, 103289,
https://doi.org/10.1016/j.gloplacha.2020.103289, 2020.
Luijendijk, E., Gleeson, T., and Moosdorf, N.: Fresh groundwater discharge
insignificant for the world's oceans but important for coastal ecosystems,
Nat. Comm., 11, 1260, https://doi.org/10.1038/s41467-020-15064-8, 2020.
Lüning, K., Guiry, M. D., and Masuda, M.: Upper temperature tolerance
of North Atlantic and North Pacific geographical isolates of Chondrus
species (Rhodophyta), Helgoländer Meeresunter., 41, 297–306,
https://doi.org/10.1007/BF02366194, 1986.
MacIntyre, S., Wanninkhof, R., and Chanto, J. P.: Trace gas exchange across
the air-water interface in freshwater and coastal marine environments, in:
Biogenic Trace Gases: Measuring Emissions from Soil and Water,
edited by: P. A. Matson and Harris, R. C., Blackwell Science, 52–97, ISBN 978-0-632-03641-7, 1995.
Mathieson, A. C. and Burns, R. L.: Ecological studies of economic red
algae. I. Photosynthesis and respiration of Chondrus crispus Stackhouse and Gigartina stellata (stackhouse)
batters, J. Exp. Mar. Biol. Ecol., 7, 197–206,
https://doi.org/10.1016/0022-0981(71)90031-1, 1971.
Mayer, T. D.: Controls of summer stream temperature in the Pacific
Northwest, J. Hydrol.,, 475, 323–335,
https://doi.org/10.1016/j.jhydrol.2012.10.012, 2012.
Menberg, K., Blum, P., Kurylyk, B. L., and Bayer, P.: Observed groundwater temperature response to recent climate change, Hydrol. Earth Syst. Sci., 18, 4453–4466, https://doi.org/10.5194/hess-18-4453-2014, 2014.
Mohammed, A. A., Schincariol, R. A., Quinton, W. L., Nagare, R. M., and
Flerchinger, G.: On the use of mulching to mitigate permafrost thaw due to
linear disturbances in sub-arctic peatlands, Ecol. Eng., 102, 207–223,
https://doi.org/10.1016/j.ecoleng.2017.02.020, 2017.
Morash, A. J., Speers-Roesch, B., Andrew, S., and Currie, S.: The
physiological ups and downs of thermal variability in temperate freshwater
ecosystems, J. Fish Biol., 98, 1524–1535,
https://doi.org/10.1111/jfb.14655, 2021.
Mundy, E., Gleeson, T., Roberts, M., Baraer, M., and McKenzie, J. M.:
Thermal imagery of groundwater seeps: possibilities and limitations,
Groundwater, 55, 160–170, https://doi.org/10.1111/gwat.12451, 2017.
Newton, A. and Mudge, S. M.: Temperature and salinity regimes in a
shallow, mesotidal lagoon, the Ria Formosa, Portugal, Estuar. Coast.
Shelf S., 57, 73–85, https://doi.org/10.1016/S0272-7714(02)00332-3,
2003.
Nunes, R. A. and Lennon, G. W.: Episodic stratification and gravity
currents in a marine environment of modulated turbulence, J. Geophys. Res.-Oceans, 92, 5465–5480, https://doi.org/10.1029/JC092iC05p05465, 1987.
O'Sullivan, A. M., Devito, K. J., and Curry, R. A.: The influence of
landscape characteristics on the spatial variability of river temperatures,
Catena, 177, 70–93, https://doi.org/10.1016/j.catena.2019.02.006, 2019.
Ouellet, V., St-Hilaire, A., Dugdale, S. J., Hannah, D. M., Krause, S., and
Proulx-Ouellet, S.: River temperature research and practice: Recent
challenges and emerging opportunities for managing thermal habitat
conditions in stream ecosystems, Sci. Total Environ., 736, 139679,
https://doi.org/10.1016/j.scitotenv.2020.139679, 2020.
Peterson, R. N., Santos, I. R., and Burnett, W. C.: Evaluating groundwater
discharge to tidal rivers based on a Rn-222 time-series approach, Estuar.
Coast. Shelf S., 86, 165–178,
https://doi.org/10.1016/j.ecss.2009.10.022, 2010.
Prest, V. K.: Surficial deposits of Prince Edward Island, “A” Series
Map 1366A, Geological Survey of Canada, https://doi.org/10.4095/108971, 1973.
Rivard, C., Parent, M., Lavoie, D., Cousineau, P., MacQuarrie, K. T. B., Somers, G., Lamontagne, C., Drage, J., and Daigle, A.: Appalachians, in: Canada's Groundwater Resources, Fitzhenry & Whiteside, 541–596, https://publications.gc.ca/site/eng/9.854795/publication.html (last access: 3 September 2022), 2014.
Rodellas, V., Stieglitz, T. C., Tamborski, J. J., van Beek, P., Andrisoa,
A., and Cook, P. G.: Conceptual uncertainties in groundwater and porewater
fluxes estimated by radon and radium mass balances, Limnol. Ocean., 66,
1237–1255, https://doi.org/10.1002/lno.11678, 2021.
Rodríguez-Rodríguez, M. and Moreno-Ostos, E.: Heat budget,
energy storage and hydrological regime in a coastal lagoon, Limnologica,
36, 217–227, https://doi.org/10.1016/j.limno.2006.05.003, 2006.
Roseen, R. M.: Quantifying groundwater discharge using thermal imagery and
conventional groundwater exploration techniques for estimating the nitrogen
loading to a meso-scale estuary, Doctoral dissertation, University of New
Hampshire, New Hampshire, United States,
https://scholars.unh.edu/dissertation/77 (last access: 3 September 2022), 2002.
Sadat-Noori, M., Santos, I. R., Sanders, C. J., Sanders, L. M., and Maher,
D. T.: Groundwater discharge into an estuary using spatially distributed
radon time series and radium isotopes, J. Hydrol., 528, 703–719,
https://doi.org/10.1016/j.jhydrol.2015.06.056, 2015.
Schubert, M., Paschke, A., Lieberman, E., and Burnett, W. C.: Air–Water
partitioning of 222Rn and its dependence on water temperature and salinity,
Environ. Sci. Technol., 46, 3905–3911,
https://doi.org/10.1021/es204680n, 2012.
Sparks, A.: Nasapower: A NASA POWER global meteorology, surface solar energy
and climatology data client for R, Journal of Open Source Software, 3,
1035, https://doi.org/10.21105/joss.01035, 2018.
Stallman, R. W.: Steady one-dimensional fluid flow in a semi-infinite porous
medium with sinusoidal surface temperature, J. Geophys. Res., 70, 2821–2827,
https://doi.org/10.1029/JZ070i012p02821, 1965.
Sullivan, C. J., Vokoun, J. C., Helton, A. M., Briggs, M. A., and Kurylyk,
B. L.: An ecohydrological typology for thermal refuges in streams and
rivers, Ecohydrology, 14, e2295, https://doi.org/10.1002/eco.2295, 2021.
Swarzenski, P. W.: U Th series radionuclides as coastal groundwater tracers,
Chem. Rev., 107, 663–674, https://doi.org/10.1021/cr0503761, 2007.
Tamborski, J. J., Rogers, A. D., Bokuniewicz, H. J., Cochran, J. K., and
Young, C. R.: Identification and quantification of diffuse fresh submarine
groundwater discharge via airborne thermal infrared remote sensing, Remote
Sens. Environ., 171, 202–217,
https://doi.org/10.1016/j.rse.2015.10.010, 2015.
Tasende, M. A. and Fraga, M. I.: Efecto de las condiciones de cultivo en
la germinación de esporas de Chondrus crispus stackh, (Gigartinales,
Rhodophyta), Cah. Biol. Mar., 33, 407–415, 1992.
Torgersen, C. E., Ebersole, J. L., and Keenan, D. M.: Primer for
identifying cold-water refuges to protect and restore thermal diversity in
riverine landscapes. U.S. Geological Survey,
http://pubs.er.usgs.gov/publication/70037945 (last access: 3 September 2022), 2012.
U.S. Dept of Agriculture: SHAW Model – Version 3.0.2 Release with Graphical User Interface, https://www.ars.usda.gov/pacific-west-area/boise-id/northwest-watershed-research-center/docs/shaw-model/ (last access: 5 September 2022), 2019.
van de Poll, H. W.: Lithostratigraphy of the Prince Edward Island redbeds,
Atlantic Geol., 25, 23–35, https://doi.org/10.4138/1668, 1989.
Voldoire, A., Sanchez-Gomez, E., Mélia, D., Decharme, B., Cassou, C.,
Senesi, S., Valcke, S., Beau, I., Alias, A., Chevallier, M., Déqué,
M., Deshayes, J., Douville, H., Fernandez, E., Madec, G., Maisonnave, E.,
Moine, M.-P., Planton, S., Saint-Martin, D., and Chauvin, F.: The
CNRM-CM5.1 global climate model: Description and basic evaluation, Clim.
Dynam., 40, 2091–2121, https://doi.org/10.1007/s00382-011-1259-y, 2013.
Warner, S.: Assessing the potential impact of climate change on the surface
hydrology of Prince Edward Island, MS thesis, Dalhousie University,
Halifax, Canada, http://hdl.handle.net/10222/72317 (last access: 3 September 2022), 2016.
Wells, M. L., Karlson, B., Wulff, A., Kudela, R., Trick, C., Asnaghi, V.,
Berdalet, E., Cochlan, W., Davidson, K., De Rijcke, M., Dutkiewicz, S.,
Hallegraeff, G., Flynn, K. J., Legrand, C., Paerl, H., Silke, J., Suikkanen,
S., Thompson, P., and Trainer, V. L.: Future HAB science: Directions and
challenges in a changing climate, Harmful Algae, 91, 101632,
https://doi.org/10.1016/j.hal.2019.101632, 2020.
Wilbur, N. M., O'Sullivan, A. M., MacQuarrie, K. T. B., Linnansaari, T.,
and Curry, R. A.: Characterizing physical habitat preferences and thermal
refuge occupancy of brook trout (Salvelinus fontinalis) and Atlantic salmon (Salmo salar) at high river
temperatures, River Res. Appl., 36, 769–783,
https://doi.org/10.1002/rra.3570, 2020.
Short summary
We used a combination of aerial, thermal, hydrologic, and radionuclide monitoring to investigate intertidal springs flowing into a coastal lagoon with a threatened ecosystem. Field data highlight the critical hydrologic and thermal role of these springs in the nearshore zone, and modelling results reveal that the groundwater springs will likely warm substantially in the coming decades due to climate change. Springs sourced from shallower zones in the aquifer will warm first.
We used a combination of aerial, thermal, hydrologic, and radionuclide monitoring to investigate...