Articles | Volume 26, issue 13
Research article
05 Jul 2022
Research article |  | 05 Jul 2022

Deep learning rainfall–runoff predictions of extreme events

Jonathan M. Frame, Frederik Kratzert, Daniel Klotz, Martin Gauch, Guy Shalev, Oren Gilon, Logan M. Qualls, Hoshin V. Gupta, and Grey S. Nearing


Total article views: 8,801 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
5,947 2,739 115 8,801 125 110
  • HTML: 5,947
  • PDF: 2,739
  • XML: 115
  • Total: 8,801
  • BibTeX: 125
  • EndNote: 110
Views and downloads (calculated since 18 Aug 2021)
Cumulative views and downloads (calculated since 18 Aug 2021)

Viewed (geographical distribution)

Total article views: 8,801 (including HTML, PDF, and XML) Thereof 8,231 with geography defined and 570 with unknown origin.
Country # Views %
  • 1


Latest update: 21 Jun 2024

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
The most accurate rainfall–runoff predictions are currently based on deep learning. There is a concern among hydrologists that deep learning models may not be reliable in extrapolation or for predicting extreme events. This study tests that hypothesis. The deep learning models remained relatively accurate in predicting extreme events compared with traditional models, even when extreme events were not included in the training set.