Deep learning rainfall–runoff predictions of extreme events
Data sets
CAMELS return period analysis https://doi.org/10.4211/hs.c7739f47e2ca4a92989ec34b7a2e78dd
MC-LSTM, model runs https://doi.org/10.4211/hs.d750278db868447dbd252a8c5431affd
The CAMELS data set: catchment attributes and meteorology for large-sample studies https://doi.org/10.5065/D6G73C3Q
NOAA National Water Model CONUS Retrospective Dataset https://registry.opendata.aws/nwm-archive
Model code and software
Code for calibrating SAC-SMA https://github.com/Upstream-Tech/SACSMA-SNOW17
NeuralHydrology (https://github.com/neuralhydrology/neuralhydrology) https://doi.org/10.21105/joss.04050
SPOTting Model Parameters Using a Ready-Made Python Package https://pypi.org/project/spotpy/
jmframe/mclstm_2021_extrapolate: Submit to HESS 5_August_2021 https://doi.org/10.5281/zenodo.5165216
Log-Pearson Flood Flow Frequency using USGS 17B https://www.mathworks.com/matlabcentral/fileexchange/22628-log-pearson-flood-flow-frequency-using-usgs-17b