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1 Abstract

An error in the experiment setup code was found by the au-
thors that led to an incorrect splitting of training and test-
ing data. This error has been corrected, and changes from
the original publication are explained here. This corrigendum
maintains the same section names and numbering as the orig-
inal publication but only includes text and figures that have
been corrected.

2  Methods
2.1 Models
2.1.1 ML models and training

The original publication stated that the third training/test
period split all training and test years in each basin by
at least 1 year. We found an error in our code that cre-
ated these 1-year splits; specifically, the Python notebook
split_test_val_train.ipynb used the date 10 January (yyyy-01-
10), rather than 1 October (yyyy-10-01), as the beginning of
the annual period when splitting basin years into training,
validation, and test sets. This error has been corrected in the
code, and the affected figures are replotted in Sect. 3.1 and
Appendix C in this corrigendum. It was also stated, in the
original publication, that the third training/test period split

used all water years in the Catchment Attributes and Mete-
orology for Large-sample Studies (CAMELS) data set with
a 5-year or lower return period peak flow for training. This
phrasing was erroneous. The third training/test period split
used only the first 13 water years following 1981 with a 5-
year or lower return period peak flow for training.

3 Results
3.1 Benchmarking peak flows

The correction in the data splits slightly alters the results pre-
sented in Fig. 2, which shows the average absolute percent
bias of annual peak flows for water years with different re-
turn periods, from models with a training/test split based on
return periods, with all test data coming from the water years
1996-2014. It is important to point out that the three models
that are trained/calibrated on only the high-probability years
(return periods less than or equal to 5) all show similar per-
formance degradation as the event return period increases.
This is consistent with the results when the training period
was not split by the return period of peak annual flow, as
shown in Fig. 1 of the original publication.

This error slightly alters the results presented in Figs. 2
and C2. The three models that were trained/calibrated using
the data splits all had relatively similar changes to their per-
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Figure 2. Average absolute percent bias of daily peak flow estimates from four models binned down by return period, showing results from
models trained only on water years with return periods less than 5 years. The 1-5 year return period bin (left of the black dashed line) show
statistics calculated on training data, while bins with return period years 5+ (to the right of the black dashed line) show statistics calculated
on testing data. The LSTM, MC-LSTM, and SAC-SMA models were all trained (calibrated) on the same data and time period. The NWM
was calibrated on with the same forcing data, but on a contiguous time period that does not exclude extreme events.

formance in the extreme-event scenarios. The US National
Water Model CONUS Retrospective Dataset 2 (NWM-Rv2)
was not calibrated specifically for this study, so those re-
sults do not change. In these corrected results, the NWM-
Rv2 outperforms the long short-term memory (LSTM),
mass-conserving LSTM (MC-LSTM) and Sacramento Soil
Moisture Accounting (SAC-SMA) models in the lowest-
probability events (return periods 25+); however, these re-
sults of the NWM-Rv2 and the other models presented are
not directly comparable, as the NWM-Rv2 was calibrated.

Appendix C: Benchmarking annual return period
metrics

Figure C2 shows the nine performance metrics calculated
on model test results split into bins according to the re-
turn period of the peak annual flow event. The LSTM, MC-
LSTM and SAC-SMA models were calibrated/trained on wa-
ter years with a peak annual flow event that had a return
period of less than 5 years (i.e., bin 1-5, indicated by the
dashed line). The results shown in this figure are for the water
years 1996-2014. The LSTM and MC-LSTM perform better
than the SAC-SMA model according to every metric and for
all bins. There are several instances where the NWM-Rv2
performs best, particularly for the lower-probability events.
Although the NWM-Rv2 calibration does not correspond to
the training/calibration period of SAC-SMA, LSTM or MC-
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LSTM, the NWM-Rv2 results are for reference and are not a
formal component of the experiment.

Code and data availability. Interactive  Python  scripts  that
have corrected the aforementioned error, containing all
post hoc analysis reported in this paper, including calculat-
ing metrics and generating tables and figures, are available at
https://doi.org/10.5281/zenodo.7314083 (Frame, 2022).
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Figure C2. Metrics for the models trained only on high-probability years. The bins for return periods greater than 5 are out of sample for the
LSTM, MS-LSTM and SAC-SMA models. The total number of samples in each bin is as follows: n = 5969 for 1-5, n = 1260 for 50-25,

n = 185 for 25-50, n = 91 for 50-100 and n = 84 for 100+
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