Articles | Volume 26, issue 1
https://doi.org/10.5194/hess-26-1-2022
https://doi.org/10.5194/hess-26-1-2022
Research article
 | 
03 Jan 2022
Research article |  | 03 Jan 2022

Synthesizing the impacts of baseflow contribution on concentration–discharge (CQ) relationships across Australia using a Bayesian hierarchical model

Danlu Guo, Camille Minaudo, Anna Lintern, Ulrike Bende-Michl, Shuci Liu, Kefeng Zhang, and Clément Duvert

Related authors

A Bayesian approach to understanding the key factors influencing temporal variability in stream water quality – a case study in the Great Barrier Reef catchments
Shuci Liu, Dongryeol Ryu, J. Angus Webb, Anna Lintern, Danlu Guo, David Waters, and Andrew W. Western
Hydrol. Earth Syst. Sci., 25, 2663–2683, https://doi.org/10.5194/hess-25-2663-2021,https://doi.org/10.5194/hess-25-2663-2021, 2021
Short summary
A data-based predictive model for spatiotemporal variability in stream water quality
Danlu Guo, Anna Lintern, J. Angus Webb, Dongryeol Ryu, Ulrike Bende-Michl, Shuci Liu, and Andrew William Western
Hydrol. Earth Syst. Sci., 24, 827–847, https://doi.org/10.5194/hess-24-827-2020,https://doi.org/10.5194/hess-24-827-2020, 2020
Short summary
Sensitivity of potential evapotranspiration to changes in climate variables for different Australian climatic zones
Danlu Guo, Seth Westra, and Holger R. Maier
Hydrol. Earth Syst. Sci., 21, 2107–2126, https://doi.org/10.5194/hess-21-2107-2017,https://doi.org/10.5194/hess-21-2107-2017, 2017
Short summary

Related subject area

Subject: Rivers and Lakes | Techniques and Approaches: Modelling approaches
Estimating velocity distribution and flood discharge at river bridges using entropy theory – insights from computational fluid dynamics flow fields
Farhad Bahmanpouri, Tommaso Lazzarin, Silvia Barbetta, Tommaso Moramarco, and Daniele P. Viero
Hydrol. Earth Syst. Sci., 28, 3717–3737, https://doi.org/10.5194/hess-28-3717-2024,https://doi.org/10.5194/hess-28-3717-2024, 2024
Short summary
Isotopic evaluation of the National Water Model reveals missing agricultural irrigation contributions to streamflow across the western United States
Annie L. Putman, Patrick C. Longley, Morgan C. McDonnell, James Reddy, Michelle Katoski, Olivia L. Miller, and J. Renée Brooks
Hydrol. Earth Syst. Sci., 28, 2895–2918, https://doi.org/10.5194/hess-28-2895-2024,https://doi.org/10.5194/hess-28-2895-2024, 2024
Short summary
Timing of spring events changes under modelled future climate scenarios in a mesotrophic lake
Jorrit P. Mesman, Inmaculada C. Jiménez-Navarro, Ana I. Ayala, Javier Senent-Aparicio, Dennis Trolle, and Don C. Pierson
Hydrol. Earth Syst. Sci., 28, 1791–1802, https://doi.org/10.5194/hess-28-1791-2024,https://doi.org/10.5194/hess-28-1791-2024, 2024
Short summary
Effects of high-quality elevation data and explanatory variables on the accuracy of flood inundation mapping via Height Above Nearest Drainage
Fernando Aristizabal, Taher Chegini, Gregory Petrochenkov, Fernando Salas, and Jasmeet Judge
Hydrol. Earth Syst. Sci., 28, 1287–1315, https://doi.org/10.5194/hess-28-1287-2024,https://doi.org/10.5194/hess-28-1287-2024, 2024
Short summary
A hybrid data-driven approach to analyze the drivers of lake level dynamics
Márk Somogyvári, Dieter Scherer, Frederik Bart, Ute Fehrenbach, Akpona Okujeni, and Tobias Krueger
EGUsphere, https://doi.org/10.5194/egusphere-2023-2111,https://doi.org/10.5194/egusphere-2023-2111, 2023
Short summary

Cited articles

Ator, S. W., Brakebill, J. W., and Blomquist, J. D.: Sources, fate, and transport of nitrogen and phosphorus in the Chesapeake Bay watershed: An empirical model, Vol. 5167, US Department of the Interior, US Geological Survey, Baltimore, MD 21228, 2011. 
Beck, H. E., van Dijk, A. I. J. M., Miralles, D. G., de Jeu, R. A. M., Bruijnzeel, L. A., McVicar, T. R., and Schellekens, J.: Global patterns in base flow index and recession based on streamflow observations from 3394 catchments, Water Resour. Res., 49, 7843–7863, https://doi.org/10.1002/2013WR013918, 2013. 
Bende-Michl, U., Verburg, K., and Cresswell, H. P.: High-frequency nutrient monitoring to infer seasonal patterns in catchment source availability, mobilisation and delivery, Environ. Monit. Assess., 185, 9191–9219, https://doi.org/10.1007/s10661-013-3246-8, 2013. 
Cartwright, I.: Concentration vs. streamflow (C-Q) relationships of major ions in south-eastern Australian rivers: Sources and fluxes of inorganic ions and nutrients, Appl. Geochem., 120, 104680, https://doi.org/10.1016/j.apgeochem.2020.104680, 2020. 
Dupas, R., Abbott, B. W., Minaudo, C., and Fovet, O.: Distribution of Landscape Units Within Catchments Influences Nutrient Export Dynamics, Front. Environ. Sci., 7, p. 43, https://doi.org/10.3389/fenvs.2019.00043, 2019. 
Download
Short summary
We investigate the impact of baseflow contribution on concentration–flow (CQ) relationships across the Australian continent. We developed a novel Bayesian hierarchical model for six water quality variables across 157 catchments that span five climate zones. For sediments and nutrients, the CQ slope is generally steeper for catchments with a higher median and a greater variability of baseflow contribution, highlighting the key role of variable flow pathways in particulate and solute export.