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Abstract. Understanding concentration–discharge (C–Q)
relationships can inform catchment solute and particulate ex-
port processes. Previous studies have shown that the extent to
which baseflow contributes to streamflow can affect C–Q re-
lationships in some catchments. However, the current under-
standing on the effects of baseflow contribution in shaping
the C–Q patterns is largely derived from temperate catch-
ments. As such, we still lack quantitative understanding of
these effects across a wide range of climates (e.g. arid, trop-
ical and subtropical). The study aims to assess how baseflow
contributions, as defined by the median and the range of daily
baseflow indices within individual catchments (BFI_m and
BFI_range, respectively), influence C–Q slopes across 157
catchments in Australia spanning five climate zones. This
study focuses on six water quality variables: electrical con-
ductivity (EC), total phosphorus (TP), soluble reactive phos-
phorus (SRP), total suspended solids (TSS), the sum of ni-
trate and nitrite (NOx) and total nitrogen (TN). The impact
of baseflow contributions is explored with a novel Bayesian
hierarchical model.

For sediments and nutrient species (TSS, NOx , TN and
TP), we generally see largely positive C–Q slopes, which
suggest a dominance of mobilization export patterns. Further,

for TSS, NOx and TP we see stronger mobilization (steeper
positive C–Q slopes) in catchments with higher values in
both the BFI_m and BFI_range, as these two metrics are pos-
itively correlated for most catchments. The enhanced mobi-
lization in catchments with higher BFI_m or BFI_range is
likely due to the more variable flow pathways that occur in
catchments with higher baseflow contributions. These vari-
able flow pathways can lead to higher concentration gradi-
ents between low flows and high flows, where the former
is generally dominated by groundwater/slow subsurface flow
while the latter by surface water sources, respectively. This
result highlights the crucial role of flow pathways in deter-
mining catchment exports of solutes and particulates. Our
study also demonstrates the need for further studies on how
the temporal variations of flow regimes and baseflow contri-
butions influence flow pathways and the potential impacts of
these flow pathways on catchment C–Q relationships.
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1 Introduction

Understanding the causes of spatiotemporal variability in
riverine chemistry is critical to support water quality man-
agement strategies for both human and environmental end
users. The relationship between the river chemistry and
streamflow (concentration–discharge, or C–Q relationship)
often shows distinct patterns that are specific to water qual-
ity variables and catchments. These C–Q patterns are deter-
mined by (i) the spatial distribution of constituent sources
within individual catchments and (ii) the interplay between
the biogeochemical and hydrological processes, which con-
trols constituent mobilization and transport through each
catchment (Ebeling et al., 2021; Godsey et al., 2019; Musolff
et al., 2015). The C–Q relationship therefore tells us about
the key catchment processes controlling river water quality.
As such, the C–Q relationship can help inform catchment
management and mitigation strategies to improve catchment
water quality (Dupas et al., 2019; Moatar et al., 2020).

However, it is challenging to identify the key catchment
processes from analysing C–Q relationships, due to the
high variability in water quality and hydrological condi-
tions across both space and time. First, water chemistry and
streamflow characteristics can vary significantly across mul-
tiple spatial scales, from small headwater catchments (where
key processes are easier to identify) (Dupas et al., 2021;
Jensen et al., 2019; McGuire et al., 2014) to basin and conti-
nental scales (e.g. Minaudo et al., 2019; Ebeling et al., 2021).
Many previous studies have assessed the spatial variations in
C–Q relationships for nutrients, carbon and geogenic water
quality variables. These studies highlighted a number of crit-
ical drivers for these spatial variations, such as land use, land
management, lithology and topography (e.g. Ebeling et al.,
2021; Minaudo et al., 2019). Second, high-frequency water
quality monitoring studies have shown high temporal vari-
ability in water chemistry (e.g. Kirchner et al., 2004; Rode
et al., 2016). Besides variation in concentrations, recent high-
frequency monitoring also highlighted the high variability of
C–Q relationships over time. These temporal changes in C–
Q relationships are driven by a series of mechanisms such
as chemical build-up and flushing under varying flow magni-
tudes and also by contrasting baseflow contributions during
different stages of the hydrograph (Bende-Michl et al., 2013;
Knapp et al., 2020; Musolff et al., 2021; Rusjan et al., 2008;
Tunqui Neira et al., 2020b).

Hydrological characteristics of catchments have been
highlighted as key influencing factors of the C–Q relation-
ships of a catchment, as the catchment hydrology defines
the flow pathways and magnitudes that are critical to the
transport processes (Tunqui Neira et al., 2020a, b). Prior
studies have explored the links between C–Q relationships
and baseflow index (BFI) and similar hydrological metrics
at an interannual scale (e.g. Ebeling et al., 2021; Moatar
et al., 2017; Musolff et al., 2015) or at the scale of storm
events (e.g. Knapp et al., 2020; Minaudo et al., 2019; Mu-

solff et al., 2021). Across both long and short timescales, a
consistent finding is that, within a particular catchment, the
C–Q relationship (and thus export behaviour) is dependent
on whether streamflow is dominated by baseflow or quick-
flow, i.e. the baseflow contribution to total flow (Gorski and
Zimmer, 2021; Knapp et al., 2020; Minaudo et al., 2019).
These studies also identified baseflow contribution as a key
driver of the variation in C–Q relationships across catch-
ments (Musolff et al., 2015; Moatar et al., 2017). For ex-
ample, Knapp et al. (2020) found that for solutes that are
partly derived from atmospheric inputs, such as nitrate and
chloride, mobilization behaviours (i.e. positive C–Q slopes)
often occur during events with drier antecedent conditions.
For nitrate, baseflow contributions can further affect theC–Q
relationships via changing the connectivity between surface
flow and groundwater (Minaudo et al., 2019). Baseflow vari-
ation also affects the capacity of nutrient removal via chang-
ing the relative importance of hydrological and biogeochem-
ical processes (Moatar et al., 2017). Further, the variation in
the baseflow contribution of a catchment is also a key fea-
ture that can be linked to the shift between different dom-
inant flow paths during low and high flow (e.g. von Frey-
berg et al., 2018), leading to contrasting sources and mobi-
lization behaviours for solutes and particulates. Although a
substantial body of knowledge has been established on the
impact of baseflow contributions on C–Q relationships, the
existing studies have largely focused on catchments in tem-
perate climates in Europe and North America (Knapp et al.,
2020; Gorski and Zimmer, 2021; Minaudo et al., 2019; Mu-
solff et al., 2015). The narrow range of climate conditions
explored so far implies a potential limitation in transferring
and systematically comparing new findings to other climate
zones and other parts of the world because climate is proven
a key control of the hydrological regime, especially regard-
ing the baseflow contribution and flow paths of individual
catchments (Beck et al., 2013; von Freyberg et al., 2018).

The current knowledge gap in understanding catchment
export regimes for regions other than Europe and North
America was partially addressed in Lintern et al. (2021),
which focused on differences in water quality status and
the C–Q relationships across different climate zones in the
Australian continent. One remaining question that Lintern
et al. (2021) highlighted is our lack of understanding of the
substantial variations in C–Q relationships within each cli-
mate zone.

This study aims to assess the impact of catchment base-
flow contributions on the C–Q relationships of sediment, nu-
trients and electrical conductivity across catchments within
different climate zones in Australia. Our research questions
are as follows:

1. How well can we explain the spatial variation in C–Q
slopes across Australian catchments with baseflow con-
tributions?
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2. How do baseflow contributions influence C–Q slopes
within and across climate zones?

For the first question, we hypothesize that a substantial
proportion of spatial variation in C–Q slopes in Australian
catchment can be explained by baseflow contribution. Based
on the above-mentioned literature, we hypothesize that the
median baseflow contribution of a catchment is a key control
of the C–Q slope of that catchment. We also hypothesize
that the range of variation in the baseflow contributions of a
catchment is a key control of the C–Q slope of that catch-
ment because a high (low) range of variation likely reflects
the diversity (uniformity) of flow pathways contributing to
streamflow, which may influence the activation and mobiliza-
tion of different chemical species.

Since climate strongly influences the hydrological regimes
of catchments, our hypothesis for the second research ques-
tion is that baseflow contributions will affect C–Q relation-
ships differently in different climate zones. We answer our
research questions and test our hypotheses with a Bayesian
hierarchical model (BHM) (Gelman et al., 2013), which is an
integrated framework that enables information to be shared
across catchments to strengthen the statistical power of ex-
plaining variation in individual catchments. The model is a
powerful approach to capture water quality variability across
catchments of varying conditions and record lengths, which
is the case for Australian water quality data (Guo et al., 2019,
2020; Liu et al., 2021). We use a subset of the grand dataset
that Lintern et al. (2021) used, which enables us to focus
on representative catchments with water quality records cap-
tured under a wider range of flow conditions. As such, by
analysing the impacts of baseflow contributions on C–Q re-
lationships, this study will (i) explain the variations in C–Q
relationships within individual climate zones and (ii) broaden
the existing knowledge of how baseflow contribution impacts
C–Q relationships to a wider range of climate conditions and
thus infer key constituent transport pathways in different cli-
mate zones.

2 Method

2.1 Data and study catchments

2.1.1 Water quality and flow data

This study relies on water quality and streamflow data col-
lected across Australia by seven state agencies. These in-
clude the Department of Land, Water and Planning (VIC
DELWP, Victoria); WaterNSW (New South Wales); Depart-
ment of Resources and Department of Environment and Sci-
ence (QLD DNRME, Queensland); Department for Water
and Environment (SA DEW, South Australia); Department
of Water and Environmental Regulation (WA DER, West-
ern Australia); Department of Primary Industries, Parks, Wa-
ter and Environment (TAS DPIPWE, Tasmania) and Depart-

ment of Environment, Parks and Water Security (NT DE-
PWS, Northern Territory).

All available water quality data were obtained from all
seven state agencies in late 2019 and collated into a single
national-scale database (see more details in Lintern et al.,
2021). Quality control of the data was performed using qual-
ity codes, flags and detection limits provided by individ-
ual state agencies (as detailed in Table S1 in the Supple-
ment). The dataset consists of a mixture of grab samples
and high-frequency (continuously measured) water quality
data. A daily average is taken if more than one water quality
sample was collected on any day at any site – see the per-
centage of records where more than one samples were taken
in 1 d at individual catchments in Table S2 (in the Supple-
ment). This is because that streamflow in Australia is largely
recorded at a daily time step, which limits our ability to anal-
yse all high-frequency water quality records. This study fo-
cuses on six water quality variables: total suspended solids
(TSS), total phosphorus (TP), soluble reactive phosphorus
(SRP), total nitrogen (TN), the sum of nitrate and nitrite
(NOx) and electrical conductivity (EC). These six variables
have been included because they are of key concern for Aus-
tralian riverine water quality and are well monitored across
Australia both spatially and temporally, as illustrated in Lin-
tern et al. (2021).

For each monitoring site for the above-mentioned six vari-
ables, we also obtained the corresponding available daily
streamflow data from the same seven state agencies as listed
above. At each site, any missing or erroneous data were
identified by the quality code (Table S1 in the Supplement)
and removed for subsequent analyses. The daily streamflow
data generally had good quality, with a median of < 5 %
missing or erroneous data for individual water quality vari-
ables across individual monitoring sites (Table S3 in the Sup-
plement). These gaps and low-quality samples in the daily
streamflow records were then filled in using streamflow mod-
elled by the Australian Bureau of Meteorology (BoM)’s op-
erational landscape water balance model (AWRA-L), which
simulates daily streamflow across Australia (Frost et al.,
2016).

For this study, we focused only on monitoring sites (catch-
ments) with water quality and flow data that satisfy the fol-
lowing criteria.

1. There are over 50 pairs of corresponding concentration
and flow data points; this ensures that the C–Q relation-
ships observed are more robust against outliers (Lintern
et al., 2021).

2. There are water quality time series that span at least
3 years; this ensures that a wide range of water quality
and flow conditions are captured (e.g. across different
seasons, high and low flows).

3. At least 75 % of the range of flow quantiles (with un-
constrained bounds e.g. 5 % to 80 %, 10 % to 85 %) is
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covered by water quality samples; this ensures that C–
Q relationships are not biased by samples obtained at
only high or low flows for individual catchments.

We performed the above catchment selection for each wa-
ter quality variable and found a total of 157 sites (catch-
ments). As the monitored water quality variables vary be-
tween catchments, there are 50–83 catchments used to inves-
tigate each variable. These catchments are distributed across
five main Australian climate zones as defined by Lintern
et al. (2021): arid, Mediterranean, temperate, subtropical and
tropical (Fig. 1). A summary of the temporal coverage of wa-
ter quality and flow data is provided in Fig. S1 in the Supple-
ment. Water quality data generally cover the full range of
flow quantiles of individual catchments (Fig. S2 in the Sup-
plement). Some sites are biased towards high flows, which
is likely due to (i) monitoring priority for high-flow events
to better represent export loads and (ii) practical constraints
to sample low flows in intermittent rivers and ephemeral
streams.

2.1.2 Representing catchment baseflow contribution
with baseflow index

We summarize catchment baseflow contribution with the
baseflow index (BFI), which represents the proportion of dis-
charge that occurs as baseflow (Eckhardt, 2008; Lyne and
Hollick, 1979; Nathan and McMahon, 1990; Zhang et al.,
2017). The daily BFIs were estimated using a Lynne–Hollick
baseflow filter with α= 0.98 and a burn-in period of 30 d
at both ends of the time series, as recommended for the
Murray–Darling Basin in south-eastern Australia (Ladson
et al., 2013), within which a large number of the study catch-
ments are located.

We aim to test our hypothesis that the median and the
range of variation in catchment baseflow contributions are
key controls of the C–Q slopes, based on previous literature.
Therefore, for each of the 157 catchments we used two met-
rics of the daily BFI, namely BFI_m and BFI_range. BFI_m
takes the median of all daily BFIs, which represents the over-
all baseflow contribution of the catchment. BFI_range is the
difference between the 10th and 90th percentiles of daily
BFIs (BFI_10th and BFI_90th). These quantile-based met-
rics were preferred over the mean and standard deviation as
they are more robust against outliers.

2.2 Modelling the impacts of catchment baseflow
contribution on C–Q slopes

We developed a Bayesian hierarchical model (BHM) to ex-
plore the effect of catchment baseflow contributions on C–Q
slopes. The key reason for choosing this model is the high
heterogeneity in the national C–Q dataset in both the record
period and the representation of individual climate zones, as
illustrated in Sect. 2.1.1. BHM is effective in handling data-
limited situations via its “information sharing” or “borrowing

power” across space (Gelman et al., 2013; Webb and King,
2009), which has been shown to be highly effective in ex-
plaining variability in spatial–temporal data when data are
scarce. This has been highlighted in several recent studies
in modelling water quality over large regions in Australia
(Guo et al., 2019, 2020; Liu et al., 2021). Another advan-
tage of BHM is the ability to account for uncertainty, which
is especially important for analysing water quality data, as
these data are often associated with high uncertainty due to
sparse sampling of the natural variability of chemical species
in river flow (Guo et al., 2020; Liu et al., 2021).

The model considered a classic C–Q relationship for any
site s at any time step t (Eq. 1), where βs specifies the C–Q
slope for a catchment (Godsey et al., 2009):

log
(
Cs,t

)
= αs+βs log(Qs,t ). (1)

Our model is based on such a singleC–Q relationship at each
catchment. However, our model enables the slope term (βs)
for individual catchments to change according to their base-
flow contributions. This model conceptualization is based on
previous literature on the effects of baseflow contribution on
C–Q slopes within individual catchments (Gorski and Zim-
mer, 2021; Minaudo et al., 2019) while aiming to further ex-
plore the impact of baseflow contributions on C–Q slopes
across multiple catchments. We assume that for each wa-
ter quality variable, the C–Q slopes of all catchments have
a “grand mean”, β0. Then the variation of C–Q slopes be-
tween catchments, away from β0, is explained by changes
in the catchment baseflow contribution. The use of a mean
C–Q slope here is based on our preceding study across Aus-
tralian catchments, which suggested that for each water qual-
ity variable, export patterns – as represented by C–Q slopes
– did not differ significantly between climate zones (Lintern
et al., 2021). Our model conceptualization also assumes that
the catchment baseflow contribution is the only controlling
variable of the spatial variation ofC–Q slopes, enabling us to
understand how well the C–Q slopes can be explained solely
by differences in baseflow contributions across catchments.
We chose to investigate the effects of baseflow contributions
for individual climate zones separately to identify any statis-
tically significant differences of these impacts between cli-
mate zones. If there is no significant difference between cli-
mate zones, the model is also capable of indicating this –
as would be shown with similar, undistinguishable modelled
effects of baseflow contribution for individual climate zones.
Thus, our BHM incorporates different models for individual
climate zones and compares them within one comprehensive
modelling framework.

Thus, the resultant catchment C–Q slope βs is

βs = β0+BFIs× δBFI_climate. (2)

In Eq. (2), BFIs is a catchment-scale metric of the baseflow
contribution, i.e. BFI_m or BFI_range. For each of these
two metrics, its effect on the C–Q slope is considered with
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Figure 1. Catchments included in the study for each water quality variable (total number of catchments shown in panel titles). The colours
denote five key climate zones in Australia. States and territories of Australia on the map are New South Wales – NSW, Queensland – QLD,
South Australia – SA, Tasmania – TAS, Victoria – VIC, Western Australia -WA, and Northern Territory – NT. The number of catchments
across all six water quality variables for each climate zone is specified in the legend.

the climate-specific model parameter δBFI_climate to assess
whether the effects of baseflow contribution differ between
climate zones.

The model conceptualization is illustrated in Fig. 2 with
daily flow time series from two catchments (panel a) and the
time series of daily BFIs along with its median (BFI_m) and
the 10th and 90th percentiles used to calculate BFI_range
(panel b). Figure 2c illustrates the modelled C–Q slope for
EC for the two catchments, β1 and β2, for which BFI_m was
considered as the main predictor following Eq. (2). The alter-
native model structure with BFI_range as the main predictor
of C–Q slope was developed following the same rationale.

Our conceptualization of the effects of baseflow contribu-
tion leads to a modified C–Q relationship for each catchment
as

log(Cs,t )= αs+ (β0+BFIs× δBFI_climate)× log(Qs,t ). (3)

Equation (3) is the final form of the BHM, which was cali-
brated for each water quality variable across all catchments
simultaneously. BFI_m and BFI_range were each used in
separate models to independently assess the effects of these
two metrics on C–Q slopes.

To calibrate the BHM, we used the R package rstan (Stan
Development Team, 2018). The package first sampled pa-
rameter values from the Bayesian prior distributions with
Markov chain Monte Carlo and then evaluated candidate

models to derive the posterior parameter distributions. Each
of the unknown model parameters, β0,αs and δBFI_climate,
was independently derived by sampling from a minimally
informative normal prior distribution of N(0,10) (Gelman
et al., 2013; Stan Development Team, 2018). We used four
independent Markov chains in each model run, with a total
of 50 000 model iterations for each chain. Convergence of
the chains was ensured by checking the Rhat value (Sturtz
et al., 2005), which is the rstan output that summarizes the
consistency of the four Markov chains used in model cali-
bration. Specifically, we ensured that the Rhat value is below
1.1, which suggests that the independent Markov chains have
been well mixed and converged (Stan Development Team,
2018). The stan codes for both models (with either BFI_m or
BFI_range as the main predictor) are included in Figs. S10
and S11 in the Supplement.

To interpret the calibrated models, we focused on the per-
formance and on the model parameter δBFI_climate, which in-
forms the climate-specific effects of catchment baseflow con-
tributions on C–Q slopes. We specifically assessed the fol-
lowing model outputs as presented in Sect. 3.3:

1. Model performance. For each BFI-based model of the
C–Q slopes (Eq. 3 with either BFI_m or BFI_range as
the main predictor), we assessed the model performance
with the R2 calculated between the observed and simu-
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Figure 2. Illustration of conceptualization of the BFI-based C–Q models (Eq. 2) with the flow and EC data from two catchments. The
catchment median BFI (BFI_m) is used as the main predictor of C–Q slope. (a) Daily flow time series. (b) Daily BFI time series and the
corresponding median (BFI_m) and the 10th and 90th percentiles. (c) C–Q relationships for the two catchments, where the shift in C–Q
slope (β1, β2) away from the grand mean β0 is determined by BFI_m. Both time series for the daily flow (a) and BFI (b) are only shown for
1 year for visualization.

lated catchment C–Q slopes, which quantifies the pro-
portion of variance in C–Q slopes that is explained by
our model. As a benchmark, we also assessed the R2 of
a baseline model, which only allows for a single param-
eter for each baseflow metric (BFI_m and BFI_range)
across all climate zones. Comparison of our climate-
specific model with this benchmark model enabled us
to quantify the benefit of considering climate-specific
effects of baseflow contribution on the C–Q relation-
ships.

2. Modelled effects. We extracted the direction, magni-
tude and significance of the model parameter δBFI_climate
from the posterior distribution of the calibrated model,
to infer the impact of baseflow contribution for each cli-
mate zone.

3 Results and discussion

In this section, we first discuss the spatial variation in BFI_m
and BFI_range across the study catchments (Sect. 3.1). We
then provide some examples from specific catchments to
illustrate how baseflow contribution can affect C–Q rela-
tionships as a proof of concept (Sect. 3.2). Section 3.3
then presents the inferences made with the BFI-based C–Q
model, focusing on the modelled effects of catchment base-
flow contribution on C–Q slopes.

3.1 Baseflow contribution across catchments

The range of BFI_m, BFI_10th and BFI_90th for all catch-
ments included in this study is summarized in Fig. 3a. The
calculated median BFIs are consistent with previous studies
of BFI patterns in Australian catchments (Zhang et al., 2017)
and do not seem to correlate with catchment area (Fig. S3 in
the Supplement). Generally, temperate catchments have the
highest BFI_m, while similar BFI_m values are seen across
the other four climate zones. BFI_10th and BFI_90th have
distributions consistent with BFI_m in all climate zones. As
different catchments were analysed for each water quality
variable, the same BFI metrics were also generated for each
water quality variable, and their distributions are generally
consistent across different variables (Fig. S4 in the Supple-
ment).

In general, catchments with high median BFI are likely
to have a greater range of variation of daily BFI, as high-
lighted by the generally increasing BFI_range with higher
BFI_m (Fig. 3b), Spearman’s ρ = 0.33. The link between
BFI_m and BFI_range suggests that catchments with higher
BFI_m values are more likely driven by highly variable
flow pathways. Specifically, a catchment with a low BFI_m
tends to be associated with a small range of daily BFI (low
BFI_range); thus, the catchment is likely to always have con-
stantly low contributions of baseflow and higher contribu-
tions of quickflow, during both dry and wet conditions. In
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Figure 3. (a) Distribution of catchment median and the 10th and 90th percentiles of daily BFI (BFI_m, BFI_10th, BFI_90th) for each climate
zone along with the number of catchments analysed (x axis). (b) The 10th and 90th percentiles of daily BFI (BFI_10th and BFI_90th) and
BFI_range (BFI_90th – BFI_10th) vs. BFI_m. Both plots include all 157 catchments across the six water quality variables studied. The
corresponding plots for catchments analysed in individual water quality variables are in Figs. S4 and S5 in the Supplement.

contrast, a catchment with a high BFI_m generally has a
large range of daily BFIs (high BFI_range). This means that
the catchment is more likely to switch between groundwater
contributions in dry conditions (high daily BFI) and surface
water contributions during wet conditions (low daily BFI).
However, we also note that a small proportion of catchments
(nine catchments) with the highest BFI_m (> 0.6) actually
have a smaller BFI_range compared to other catchments
with mid-range BFI_m values (0.4–0.6). This is a result of
BFI_10th and BFI_90th both increasing with BFI_m with
the latter plateaus at high BFI_m. This non-linearity suggests
that the full distribution of catchment baseflow contributions
might not be sufficiently represented by either the BFI_m or
BFI_range alone, providing further justification for the need
to explicitly consider both the overall condition and the varia-
tion in catchment baseflow contributions when studying their
effects on C–Q relationships.

3.2 Impact of baseflow contribution on C–Q slope:
proof of concept

Before presenting the modelled effects of catchment base-
flow contribution on C–Q relationships, we show some
examples of individual catchments to illustrate how C–
Q relationships vary across catchments with BFI_m and
BFI_range. We focus on the C–Q relationships of TSS
for four catchments including two arid catchments (ARIDa,
ARIDb) and two tropical catchments (TROPa, TROPb)
(Fig. 4). For each climate zone, we include one catchment
with low BFI_m (ARIDa, TROPa) and another one with
high BFI_m (ARIDb, TROPb), relative to the corresponding
range of BFI_m for TSS (Fig. S4).

Due to the particulate nature of TSS, we would expect
the C–Q relationship to show a strong mobilization be-
haviour that is enhanced during storm events (Musolff et al.,
2015). However, our results show this is not always the case
(Fig. 4). For the arid catchments, the low-BFI catchment

is largely dominated by quickflow (ARIDa, BFI_m= 0.03,
BFI_range= 0.24, most daily BFIs are around 0.1), which
has a negative C–Q slope. In contrast, the high-BFI catch-
ment shows a non-linearC–Q relationship (in log–log space)
spreading across a much wider range of daily BFIs (ARIDb,
BFI_m= 0.21, BFI_range= 0.4). The overall C–Q slope for
ARIDb is positive, which, however, consists of a negative
slope for lower flows, followed by a positive slope when
the flow passes a certain threshold (around log10(Q)=−2).
This is similar to the differences in C–Q slopes across
low/high flows as seen in previous studies (e.g. Moatar et al.,
2017) and suggests that the mobilization behaviour for TSS
occurs only during high-flow events (Thompson et al., 2011).
A possible explanation for the negative C–Q slope for TSS
during low flows is the dominance of biogeochemical pro-
cesses rather than hydrological processes (Moatar et al.,
2017).

Both tropical catchments (TROPa and TROPb) exhibit
positive C–Q slopes that are relatively linear (in log–log
space), where seasonal patterns in TSS are in phase with
those of streamflow. Similar to the patterns seen in the
two arid catchments, the catchment with higher BFI_m
(TROPb) is associated with a wider range of daily BFI val-
ues (BFI_m= 0.22, BFI_range= 0.48). This highlights con-
sistently strong mobilization behaviours, with a more posi-
tive C–Q slope for the catchment that has higher BFI_m and
BFI_range. Overall, this preliminary analysis on a small sub-
set of catchments suggests that baseflow contribution may in-
deed drive differences in C–Q relationships between catch-
ments and that these effects may vary across climate zones.
However, it is difficult to conclude on the individual impact
of BFI_m and BFI_range on the C–Q slopes, from these
individual examples. The separate impacts of the two met-
rics are evaluated over a wide range of catchment conditions
across the Australian continent with the model outputs from
our BHM (Sect. 3.3).
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Figure 4. C–Q relationships between TSS and flow for four individual catchments (in columns), including two arid catchments (ARIDa,
ARIDb) and two tropical catchments (TROPa, TROPb). Within each climate, two catchments with a low and high value of BFI_m are
included. The BFI_m values along with the corresponding BFI_range values for individual catchments are shown in the column titles. The
top and middle rows for each catchment show a 3-year time series within the records of TSS concentrations and the continuous records of
flow, with dots showing the time steps of water quality samples. The bottom row shows the C–Q relationship with all matching TSS and
flow data at each catchment. All data points are coloured according to the daily BFI, and all C–Q values are plotted on a log-10 scale. The
dashed red lines represent the observed C–Q relationship.

3.3 Modelled effects of baseflow contribution on C–Q

slopes

Using catchment-level metrics of baseflow contribution
alone (either BFI_m or BFI_range) can explain up to 22 % of
the variation in catchment C–Q slopes. Although these re-
sults represent limited model predictive capacity, the model
does cover a large range of catchment conditions such as
contrasting land uses and hydro-climate conditions. There-
fore, the amount of variation that can be explained by a sin-
gle BFI metric highlights baseflow contribution as an impor-
tant factor that influences catchment C–Q relationships. Fur-
ther, it is also worth highlighting that incorporating climate-
specific impacts of baseflow contribution is highly beneficial
in explaining these variations. For all six water quality pa-
rameters, the baseline model – which uses a lumped effect
of catchment baseflow contribution across different climate
zones – can barely explain any variation in the C–Q slopes
(with all R2 < 0.08, i.e. < 8 % of the variation explained).
In contrast, the climate-specific models generally offer up to
20 % increase in the variance explained for C–Q slopes, ex-
cept for EC and SRP, for which performance is equally low
regardless of whether the effects of baseflow contribution are
separated for individual climates. The low performances for

EC and SRP are likely attributed to the smaller magnitudes of
C–Q slopes as highlighted in the lower medianC–Q slope in
Table 1, making it statistically more difficult to explain varia-
tions across catchments for these two water quality variables.
These results further emphasize that, in general, the impacts
of catchment baseflow contribution on C–Q slopes are better
defined within individual climate zones, which confirms the
validity of our BFI-based C–Q models (Eq. 3).

Our climate-specific, BFI-based C–Q models synthesized
the patterns observed in individual catchments (as illustrated
in Sect. 3.2) across the Australian continent. The models sug-
gest that both BFI_m and BFI_range have a significant influ-
ence on the C–Q slope for most climate zones and water
quality parameters and that these influences differ between
climate zones for each parameter. Figure 5 presents the me-
dian and the 95 % credible intervals of these modelled effects
for each water quality variable. The 95 % credible interval is
the range between the 2.5th and 97.5th percentiles of the pos-
terior distribution of the parameter values, which was derived
from the Bayesian posterior estimates of δBFI_climate (Eq. 3)
to quantify the uncertainty in the modelled effects (Gelman
et al., 2013). The effects of BFI_m and BFI_range on the C–
Q slopes are almost always significant, with the 95 % cred-
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Table 1. Performance of the BFI-based C–Q models – the columns show four alternative model structures with BFI_m or BFI_range as the
key predictor and with the impacts of baseflow contribution considered as lumped or specific to individual climate zones. The rows show
results for individual water quality parameters. All model performances are summarized by R2, which quantifies the percentage of variance
in C–Q slopes explained by the BFI-based models.

WQ parameter Median C–Q Current (climate-specific Baseline (lumped impact across
slope impacts) climate zones)

BFI_m BFI_range BFI_m BFI_range

TSS 0.15 0.16 0.11 0 0.04
TP 0.09 0.14 0.17 0 0.08
SRP 0.06 0.02 0 0.03 0.05
TN 0.09 0.18 0.12 0.02 0.03
NOx 0.36 0.22 0.18 0.03 0
EC −0.07 0 0.01 0 0.01

ible intervals not crossing over 0 for most combinations of
water quality variables and climate zones. An exception is
for SRP, for which BFI_range always has a non-significant
effect on the C–Q slopes.

To put the impacts of baseflow contribution shown in
Fig. 5 into context, we present the modelled catchment C–Q
slopes against the corresponding BFI_m and BFI_range val-
ues in Fig. 6a and b, respectively. Sediment and nutrients are
largely dominated by mobilization, as evidenced by the large
proportion of positive C–Q slopes for TSS, TP, SRP, TN
and NOx . In contrast, salts (EC) have largely negative C–Q
slopes and are thus dominated by dilution. Regarding the ef-
fects of catchment baseflow contribution, we first note a com-
mon overall pattern for both BFI_m and BFI_range: for each
water quality variable, the fitted relationships between C–
Q slopes and each BFI metric (either BFI_m or BFI_range)
have a consistent “diverging” pattern between climate zones.
This is a result of our model structure, in which, for each wa-
ter quality variable, all catchment C–Q slopes share a com-
mon grand mean (Sect. 2.2) – representing a stable export
pattern across Australian climate zones that is specific to the
water quality variable (Lintern et al., 2021). The deviation of
slopes within each climate zone from the grand mean is de-
pendent on catchment BFI_m or BFI_range (Eq. 2). There-
fore, for catchments with low BFI_m (or low BFI_range),
the differences in C–Q slopes between climate zones are
smaller and are all close to the grand mean. Conversely, the
C–Q slopes of catchments with high BFI_m (BFI_range) are
affected more strongly by the differences between climate
zones. Since these diverging patterns are a result of the model
structure, we do not relate these patterns further to any phys-
ical interpretation on the impacts of BFI metrics on C–Q
slopes.

Figure 6 highlights the overall impacts of baseflow con-
tribution on the C–Q slopes of individual water quality vari-
ables. For TSS, TP and NOx , we generally see stronger mobi-
lization in catchments with higher values in both BFI_m and
BFI_range. For TN, the mobilization is stronger with higher

BFI_m, while BFI_range generally has slightly negative ef-
fects. The detailed model results for each water quality pa-
rameter and potential interpretation are discussed in the fol-
lowing paragraphs; we do not further interpret the modelled
results for SRP and EC due to limited ability to explain vari-
ation in their C–Q slopes (Table 1).

TSS and TP both show consistently strong positive effects
of the baseflow contribution on theC–Q relationships, which
both have increasing positiveC–Q slopes with a higher value
in either BFI_m or BFI_range, for most climate types. For
TP, both BFI_m and BFI_range have significant positive im-
pacts on the C–Q slopes for catchments across all climate
zones, while for TSS, BFI_range always has a significant
positive impact on the C–Q slopes and BFI_m has consis-
tent impacts for arid, subtropical and tropical catchments.
These positive effects of both BFI_m and BFI_range on the
largely positive C–Q slopes of TSS highlight that particu-
late transport may be enhanced by higher overall baseflow
contributions, as well as by greater variability in baseflow
conditions. TP is largely particulate-bound, as evidenced by
SRP : TP ratios lower than 0.4 for most catchments across
all climate zones (Fig. S8 in the Supplement). Therefore, the
transport of TP is likely also enhanced by variations in base-
flow conditions in the same manner as for TSS. Note that the
overall positive effect of BFI_m in enhancing mobilization is
generally significant despite catchments with higher BFI_m
generally having lower median concentrations of TSS and
TP (Fig. S6 in the Supplement), suggesting relatively limited
sources in catchments with high BFI_m.

The enhanced mobilization of particulates (TSS and TP)
with higher BFI_m is consistent with previous studies in Eu-
ropean catchments, which also reported positive effects of
BFI on the C–Q slopes of TSS (Moatar et al., 2017; Mu-
solff et al., 2015). However, no physical interpretation of
this result was discussed previously. Combining our mod-
elled results of BFI_m together with those of BFI_range,
we are able to draw a plausible explanation that links par-
ticulate mobilization with the two highly correlated base-
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Figure 5. Modelled effects of BFI_m and BFI_range on catchment C–Q slopes for each climate zone (δBFI_climate) for each water quality
parameter. The bars show the 95 % credible intervals (the range between 2.5th to 97.5th percentiles of Bayesian posterior distribution) of the
modelled effects, and the dots indicate the corresponding median levels. The colours indicate whether an effect is significantly positive (red),
significantly negative (blue) or non-significant (grey); a positive effect means that the C–Q slope increases with a higher catchment BFI_m
or BFI_range, and vice versa. Dashed black lines show the zero effect, i.e. no effect at all. The plot includes results from models with each
of BFI_m and BFI_range as the key predictor, which are differentiated by marker shapes.

flow metrics (Fig. 3b). Specifically, catchments with lower
BFI_m generally have narrower ranges of variation in in-
stantaneous BFI (low BFI_range), which thus tend to always
be dominated by surface flow, regardless of dry or wet con-
ditions (Catchment A, Fig. 7). This can lead to a limited
range of water sources with small variation of flow path-
ways that transport chemical species to rivers, resulting in
a relatively stable export pattern across low and high flows in
these catchments. In contrast, catchments with higher BFI_m
generally have higher variability in instantaneous BFI. This
suggests higher variations in flow pathways, including sur-
face flow dominance during wet periods and subsurface flow
dominance during dry periods (Catchment B, Fig. 7). Con-
sequently, we contend that catchments with high BFI_m and
BFI_range can have a higher diversity of flow pathways and
water sources, potentially leading to larger chemical gradi-
ents between groundwater-driven concentrations at low flow
and surface-flow-driven concentrations at high flow.

For NOx , the modelled effects are also largely consis-
tent between models with BFI_m and BFI_range as the key
predictor. The C–Q slopes increase (become more positive)
with an increase in either BFI_m or BFI_range, for catch-
ments within arid, Mediterranean, temperate and subtropi-
cal climates, while they decrease for the tropics. This sug-
gests enhanced mobilization of NOx in most catchments

when baseflow contributions and their temporal variations
are higher. We note that tropical catchments generally have
the lowest positive C–Q slopes or even slightly negative
slopes, suggesting weak dilution export patterns. Therefore,
higher values in either BFI_m or BFI_range may actually en-
hance the dilution effects in tropical catchments, as opposed
to mobilization in other climate zones.

Soluble N and P concentrations in shallow groundwa-
ter are generally low in Australia (Cartwright, 2020). This
contrasts with agricultural catchments in Europe and North
America, where high nutrient levels are often observed in
groundwater due to the legacy of long-term agricultural
practices (Van Meter et al., 2017; Stackpoole et al., 2019;
Ehrhardt et al., 2019). Thus, it is also plausible that the en-
hanced mobilization pattern seen in high BFI_m catchments
is rather the effect of a high BFI_range. Catchments with a
greater variability in baseflow contribution (Catchment B,
Fig. 7) are likely to have greater gradients of concentra-
tions for soluble N between low groundwater-fed concentra-
tions at low flow and high concentrations from surface runoff
and/or interflow at high flow (e.g. via leaching), resulting in a
stronger mobilization pattern, as illustrated by a higher C–Q
slope. Further, a typical temporal pattern of nitrate leaching
in Australian catchments is the accumulation of N in soils
during periods of low soil water drainage, followed by strong
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Figure 6. (a) Catchment C–Q slope vs. BFI_m and (b) catchment C–Q slope vs. BFI_range, coloured by climate zones. The lines represent
the modelled C–Q slope–BFI_m or C–Q slope–BFI_range regression lines for individual climate zones. The bands represent the 95 %
credible interval (the range between 2.5th to 97.5th percentiles of Bayesian posterior distribution) of the modelled C–Q slopes. The dots
represent the “true” C–Q slopes estimated with C–Q observations at individual catchments. The dashed black lines mark a zero C–Q slope
which differentiates mobilization (C–Q slope> 0) from dilution (C–Q slope< 0).
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Figure 7. Conceptual diagram of the expected hydrological conditions in catchments with low and high median and variability in baseflow
contribution (BFI_m and BFI_range), as Catchments A and B, respectively. The contrasting hydrological conditions can help explain our
modelled results of the impacts of baseflow contributions on C–Q slopes. Note that the C–Q intercepts in the plots are not indicative since
we do not investigate the variation in C–Q intercepts in this study.

export during high drainage (Drewry et al., 2006), which is
also more likely to occur in catchments with greater variation
in baseflow contributions.

BFI_m and BFI_range show opposite impacts on the C–
Q slopes of TN for all climate zones other than subtropical.
A large proportion of TN in Australia is present in particu-
late forms (Fig. S9 in the Supplement), with most catchments
having NOx : TN ratios lower than 0.25, which contrasts with
many other catchments in the United States and Europe (Ator
et al., 2011; Durand et al., 2011). The particulate-dominated
TN and the responses of C–Q slopes to BFI_m highlight that
particulate N is largely mobilized across all climate zones,
which are enhanced with higher contributions of baseflow.
A stronger mobilization is seen for high BFI_m across all
climate zones, while a weaker mobilization is observed for
high BFI_range across all climates other than the subtropical
catchments.

For the largely particulate-bound TN, one would expect
the effects of BFI_m and BFI_range to be similar to TSS.
This brings a question for the interpretation of the weaker
mobilization for a higher BFI_range. This unexpected result
might suggest that the export patterns for particulate N are
different to those for TSS and TP at various baseflow condi-
tions. Therefore, further investigation is required on the im-
pact of the variability in baseflow contribution on the export
patterns of individual N constituents such as particulate N.

Besides the above-mentioned processes, another poten-
tial explanation for the modelled effects of BFI_m on C–
Q relationships is related to flow seasonality, which needs

to be further explored. High baseflow contribution is gener-
ally found in more perennial catchments in Australia (Ken-
nard et al., 2010), which might be associated with more
clearly defined seasonal patterns in transporting water qual-
ity variables. These conditions are likely leading to well-
defined C–Q relationships (Minaudo et al., 2019) and could
result in steeper slopes compared to other catchments. In con-
trast, catchments with lower baseflow contribution are more
likely driven by intermittent flow while lacking clear sea-
sonal patterns, which leads to more scattered C–Q relation-
ships. In this case, the absolute values of C–Q slopes tend
to be close to 0, and these catchments often fall in the cate-
gory of chemostatic with unclear export regimes (e.g. God-
sey et al., 2009). However, this hypothesis should be fur-
ther tested beyond the current study, ideally with a subset
of study catchments where high-frequency observations have
been collected. Such future studies should also consider more
broadly the temporal variations in flow regime and baseflow
condition and their influences on C–Q relationships. For ex-
ample, seasonality can play a big role in shaping the C–
Q relationships for nutrients, as these relationships change
over time during the build-up of pollutant sources and dur-
ing the flushing of readily available sources at the onset of
high-flow periods (Bende-Michl et al., 2013). In addition, an-
thropogenic disturbances and/or management actions in the
catchment can cause changes in C–Q relationships over time
(Zhang, 2018). Flow flashiness is also shown to influence
the C–Q relationships, which differ across particulates and
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solutes and across natural and highly regulated catchments
(Moatar et al., 2020).

In summary, our results highlight the potential to improve
understanding of transport processes via the relationships be-
tween water quality and baseflow contributions. Our model
highlighted that the impacts of both BFI_m and BFI_range
on catchment C–Q slopes are highly similar, which are both
likely linked to the variability of baseflow contributions and
thus the range of surface and subsurface sources and flow
pathways. Therefore, to better understand the spatial varia-
tion of C–Q slopes, future research should seek alternative
metrics to better capture the variability of baseflow condi-
tions and the temporal dynamics of flow pathways within in-
dividual catchments.

4 Conclusions

In this study, a Bayesian hierarchical model was developed to
understand the impacts of catchment baseflow contribution
on C–Q slopes for six water quality parameters across Aus-
tralia. Our model suggests significant influences of catch-
ment baseflow contributions on C–Q slopes across most wa-
ter quality variables and climate zones. Across the nation, the
median and range of BFIs are also positively correlated for
most studied catchments, while the C–Q slopes are largely
positive for sediments (TSS) and both particulate and soluble
N and P (NOx , TN and TP). For TSS, NOx and TP we gen-
erally see stronger mobilization in catchments with higher
values in either the median or the range of catchment BFIs.
The enhanced mobilization in catchments with higher me-
dian BFI (and/or BFI range) is likely a result of more variable
flow pathways over time, which introduces higher gradients
of concentration between low and high flows. These low and
high flows are likely dominated by different groundwater and
surface water sources, each mobilizing different pools of so-
lutes and particulates. This result highlights the crucial role
of flow pathways in determining catchment exports of wa-
ter quality constituents and the need for further studies to
identify suitable hydrological metrics in differentiating flow
pathways to improve the prediction and understanding of C–
Q relationships. The results also suggest a priority for man-
aging and monitoring stream P and N, which should focus
on catchments with the greater fluctuations in baseflow con-
tributions. To this end, it would be worth establishing ex-
plicit links between C–Q relationships and water age with
high-frequency samples collected at select catchments (e.g.
Cartwright, 2020).

This study used catchment-level metrics of baseflow con-
tribution as the only predictor of C–Q slopes. The baseflow
contribution alone can explain up to 22 % variance in the C–
Q slopes across the Australian continent. This highlights a
substantial role in baseflow contribution in shaping the C–Q
relationships, while also suggesting the need of further work
to synthesize the impacts of baseflow contribution together

with other spatial drivers (e.g. climate, land use, land cover
and geology) to include their interactions and establishing
their relative importance on influencing C–Q relationships.
Further, this study used a linear model structure to synthesize
large-scale patterns of the impacts of baseflow contribution
on the C–Q relationships across different climate zones. Al-
though this model structure is limited and likely to be influ-
enced by outliers, we believe it is suitable for the study pur-
pose, as we are able to demonstrate the ability of the model
to identify significant effects of catchment baseflow contri-
bution on C–Q slopes, with statistically significant mod-
elled effects for most climates and water quality parameters
(Figs. 5 and 6). Further studies can build on the learning from
the current study to explore alternative model structures, to
improve our ability to predict C–Q slopes within individual
climate zones.

This study also highlights the effectiveness of Bayesian
hierarchical models in interpreting water quality data across
large spatial scales. Such a model is ideal to analyse water
quality data over a large number of catchments, with high
heterogeneity in temporal coverage and sampling frequency.
This is particularly relevant for Australia, as water quality
monitoring is often undertaken under different local/regional
programmes and thus limited to certain time frames and fo-
cusing on specific management interests.
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