Articles | Volume 25, issue 12
https://doi.org/10.5194/hess-25-6591-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-6591-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Effects of aquifer geometry on seawater intrusion in annulus segment island aquifers
Zhaoyang Luo
State Key Laboratory of Hydrology-Water Resources and Hydraulic
Engineering, Hohai University, Nanjing, China
Ecological Engineering Laboratory (ECOL), Environmental Engineering
Institute (IIE), Faculty of Architecture, Civil and Environmental
Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
State Key Laboratory of Hydrology-Water Resources and Hydraulic
Engineering, Hohai University, Nanjing, China
Jiangsu Key Laboratory of Coast Ocean Resources Development and
Environment Security, Hohai University, Nanjing, China
Chengji Shen
State Key Laboratory of Hydrology-Water Resources and Hydraulic
Engineering, Hohai University, Nanjing, China
Pei Xin
State Key Laboratory of Hydrology-Water Resources and Hydraulic
Engineering, Hohai University, Nanjing, China
Chunhui Lu
State Key Laboratory of Hydrology-Water Resources and Hydraulic
Engineering, Hohai University, Nanjing, China
Ling Li
School of Engineering, Westlake University, Hangzhou, China
David Andrew Barry
Ecological Engineering Laboratory (ECOL), Environmental Engineering
Institute (IIE), Faculty of Architecture, Civil and Environmental
Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Related authors
Jianning Ren, Zhaoyang Luo, Xiangzhong Luo, Stefano Galelli, Athanasios Paschalis, Valeriy Ivanov, Shanti Shwarup Mahto, and Simone Fatichi
EGUsphere, https://doi.org/10.5194/egusphere-2025-4570, https://doi.org/10.5194/egusphere-2025-4570, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Southeast Asia’s water and carbon fluxes remain poorly understood due to limited field observations and modelling. Using available data and computer models, we show the region is mostly energy-limited: evapotranspiration is controlled by relative humidity, while plant productivity is driven by solar radiation. In some particular areas, such as the Tibetan Plateau, savannas, and dry deciduous forests, water availability is the main limiting factor.
Jianning Ren, Zhaoyang Luo, Xiangzhong Luo, Stefano Galelli, Athanasios Paschalis, Valeriy Ivanov, Shanti Shwarup Mahto, and Simone Fatichi
EGUsphere, https://doi.org/10.5194/egusphere-2025-4570, https://doi.org/10.5194/egusphere-2025-4570, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Southeast Asia’s water and carbon fluxes remain poorly understood due to limited field observations and modelling. Using available data and computer models, we show the region is mostly energy-limited: evapotranspiration is controlled by relative humidity, while plant productivity is driven by solar radiation. In some particular areas, such as the Tibetan Plateau, savannas, and dry deciduous forests, water availability is the main limiting factor.
Qiaoyu Wang, Jie Yang, Ingo Heidbüchel, Teng Xu, and Chunhui Lu
EGUsphere, https://doi.org/10.5194/egusphere-2025-676, https://doi.org/10.5194/egusphere-2025-676, 2025
Short summary
Short summary
Extreme storms and droughts had profound impacts on water quality. We adapted a stochastic rainfall generator to examine how rainfall changes affect the transformation and transport of nitrogen (N) and its potential effects on water quality. We found that annual precipitation is an important factor impacting the transport of N. Wet/dry conditions of a year can significantly affect the transformation of N. Different dry-wet patterns during a year can change water quality in terms of nitrate.
Seyed Mahmood Hamze-Ziabari, Ulrich Lemmin, Frédéric Soulignac, Mehrshad Foroughan, and David Andrew Barry
Geosci. Model Dev., 15, 8785–8807, https://doi.org/10.5194/gmd-15-8785-2022, https://doi.org/10.5194/gmd-15-8785-2022, 2022
Short summary
Short summary
A procedure combining numerical simulations, remote sensing, and statistical analyses is developed to detect large-scale current systems in large lakes. By applying this novel procedure in Lake Geneva, strategies for detailed transect field studies of the gyres and eddies were developed. Unambiguous field evidence of 3D gyre/eddy structures in full agreement with predictions confirmed the robustness of the proposed procedure.
Jie Yang, Qiaoyu Wang, Ingo Heidbüchel, Chunhui Lu, Yueqing Xie, Andreas Musolff, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 26, 5051–5068, https://doi.org/10.5194/hess-26-5051-2022, https://doi.org/10.5194/hess-26-5051-2022, 2022
Short summary
Short summary
We assessed the effect of catchment topographic slopes on the nitrate export dynamics in terms of the nitrogen mass fluxes and concentration level using a coupled surface–subsurface model. We found that flatter landscapes tend to retain more nitrogen mass in the soil and export less nitrogen mass to the stream, explained by the reduced leaching and increased potential of degradation in flat landscapes. We emphasized that stream water quality is potentially less vulnerable in flatter landscapes.
Zhaoyang Luo, Jun Kong, Lili Yao, Chunhui Lu, Ling Li, and David Andrew Barry
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-634, https://doi.org/10.5194/hess-2021-634, 2022
Manuscript not accepted for further review
Short summary
Short summary
Watertable fluctuations and seawater intrusion are characteristic features of coastal unconfined aquifers. A modified expression is first proposed for the dynamic effective porosity due to watertable fluctuations. Then, the new expression is implemented in existing Boussinesq equations and a numerical model, allowing for examination of the effects of the dynamic effective porosity on watertable fluctuations and seawater intrusion in coastal unconfined aquifers, respectively.
Cited articles
Ayers, J. F. and Vacher, H. L.: Hydrogeology of an atoll island: A conceptual model from detailed study of a Micronesian example, Groundwater, 24, 185–198, https://doi.org/10.1111/j.1745-6584.1986.tb00994.x, 1986.
Bailey, R. T., Jenson, J. W., and Olsen, A. E.: Numerical modeling of atoll
island hydrogeology, Groundwater, 47, 184–196, https://doi.org/10.1111/j.1745-6584.2008.00520.x, 2009.
Bailey, R. T., Jenson, J. W., and Olsen, A. E.: Estimating the ground water
resources of atoll islands, Water, 2, 1–27, https://doi.org/10.3390/w2010001, 2010.
Bedekar, V. S., Memari, S. S., and Clement, T. P.: Investigation of transient freshwater storage in island aquifers, J. Contam. Hydrol., 221, 98–107, https://doi.org/10.1016/j.jconhyd.2019.02.004, 2019.
Chesnaux, R. and Allen, D. M.: Groundwater travel times for unconfined island aquifers bounded by freshwater or seawater, Hydrogeol. J., 16, 437–445, https://doi.org/10.1007/s10040-007-0241-6, 2008.
Dose, E. J., Stoeckl, L., Houben, G. J., Vacher, H. L., Vassolo, S., Dietrich, J., and Himmelsbach, T.: Experiments and modeling of freshwater lenses in layered aquifers: Steady state interface geometry, J. Hydrol., 509, 621–630, https://doi.org/10.1016/j.jhydrol.2013.10.010, 2014.
Drabbe, J. and Badon Ghijben, W.: Nota in verband met de voorgenomen put boring nabij Amsterdam, Tijdschrift van het Koninklijk Instituut van Ingenieurs, Gravenhage, the Netherlands, 8–22, 1889.
Duvat, V. K. E.: A global assessment of atoll island planform changes over the past decades, Wiley Interdisciplin. Rev. Clim. Change, 10, e557,
https://doi.org/10.1002/wcc.557, 2019.
Fan, Y. and Bras, R. L.: Analytical solutions to hillslope subsurface storm
flow and saturation overland flow, Water Resour. Res., 34, 921–927,
https://doi.org/10.1029/97WR03516, 1998.
Fetter, C. W.: Position of the saline water interface beneath oceanic islands, Water Resour. Res., 8, 1307–1315, https://doi.org/10.1029/WR008i005p01307, 1972.
Gingerich, S. B., Voss, C. I., and Johnson, A. G.: Seawater-flooding events
and impact on freshwater lenses of low-lying islands: Controlling factors,
basic management and mitigation, J. Hydrol., 551, 676–688,
https://doi.org/10.1016/j.jhydrol.2017.03.001, 2017.
Greskowiak, J., Röper, T., and Post, V. E.: Closed-form approximations for two-dimensional groundwater age patterns in a fresh water lens, Groundwater, 51, 629–634, https://doi.org/10.1111/j.1745-6584.2012.00996.x, 2013.
Hazenberg, P., Fang, Y., Broxton, P., Gochis, D., Niu, G. Y., Pelletier, J. D., Troch., P. A., and Zeng, X.: A hybrid-3D hillslope hydrological model for use in Earth system models, Water Resour. Res., 51, 8218–8239,
https://doi.org/10.1002/2014WR016842, 2015.
Hazenberg, P., Broxton, P., Gochis, D., Niu, G. Y., Pangle, L. A., Pelletier, J. D., Troch., P. A., and Zeng, X.: Testing the hybrid-3-D hillslope hydrological model in a controlled environment, Water Resour. Res., 52, 1089–1107, https://doi.org/10.1002/2015WR018106, 2016.
Herzberg, A.: Die wasserversorgung einiger Nordseebäder, J. Gasbeleucht. Wasserversorg., 44, 815–819, 45, 842–844, 1901.
Hilberts, A. G., Troch, P. A., Paniconi, C., and Boll, J.: Low-dimensional
modeling of hillslope subsurface flow: Relationship between rainfall, recharge, and unsaturated storage dynamics, Water Resour. Res., 43, W03445,
https://doi.org/10.1029/2006WR004964, 2007.
Hilberts, A. G. J., Troch, P. A., and Paniconi, C.: Storage-dependent drainable porosity for complex hillslopes, Water Resour. Res., 41, W06001,
https://doi.org/10.1029/2004WR003725, 2005.
Ketabchi, H., Mahmoodzadeh, D., Ataie-Ashtiani, B., Werner, A. D., and Simmons, C. T.: Sea-level rise impact on fresh groundwater lenses in two-layer small islands, Hydrol. Process., 28, 5938–5953, https://doi.org/10.1002/hyp.10059, 2014.
Kong, J., Shen, C., Luo, Z., Hua, G., and Zhao, H.: Improvement of the
hillslope-storage Boussinesq model by considering lateral flow in the unsaturated zone, Water Resour. Res., 52, 2965–2984, https://doi.org/10.1002/2015WR018054, 2016.
Lam, R. K.: Atoll permeability calculated from tidal diffusion, J. Geophys.
Res., 79, 3073–3081, https://doi.org/10.1029/JC079i021p03073, 1974.
Liu, J. and Tokunaga, T.: Future risks of tsunami-induced seawater intrusion into unconfined coastal aquifers: Insights from numerical simulations at Niijima Island, Japan, Water Resour. Res., 55, 10082–10104,
https://doi.org/10.1029/2019WR025386, 2019.
Liu, Y., Mao, X., Chen, J., and Barry, D. A.: Influence of a coarse interlayer on seawater intrusion and contaminant migration in coastal aquifers, Hydrol. Process., 28, 5162–5175, https://doi.org/10.1002/hyp.10002, 2014.
Lu, C., Xin, P., Kong, J., Li, L., and Luo, J.: Analytical solutions of seawater intrusion in sloping confined and unconfined coastal aquifers, Water Resour. Res., 52, 6989–7004, https://doi.org/10.1002/2016WR019101, 2016.
Lu, C., Cao, H., Ma, J., Shi, W., Rathore, S. S., Wu, J., and Luo, J.: A
proof-of-concept study of using a less permeable slice along the shoreline to increase fresh groundwater storage of oceanic islands: Analytical and experimental validation, Water Resour. Res., 55, 6450–6463,
https://doi.org/10.1029/2018WR024529, 2019.
Luo, Z., Shen, C., Kong, J., Hua, G., Gao, X., Zhao, Z., Zhao, H., and Li, L.: Effects of unsaturated flow on hillslope recession characteristics, Water Resour. Res., 54, 2037–2056, https://doi.org/10.1002/2017WR022257, 2018.
Mantoglou, A.: Pumping management of coastal aquifers using analytical models of saltwater intrusion, Water Resour. Res., 39, 1335, https://doi.org/10.1029/2002WR001891, 2003.
Memari, S. S., Bedekar, V. S., and Clement, T. P.: Laboratory and numerical
investigation of saltwater intrusion processes in a circular island aquifer,
Water Resour. Res., 56, e2019WR025325, https://doi.org/10.1029/2019WR025325, 2020.
Morgan, L. K. and Werner, A. D.: Seawater intrusion vulnerability indicators for freshwater lenses in strip islands, J. Hydrol., 508, 322–327,
https://doi.org/10.1016/j.jhydrol.2013.11.002, 2014.
Paniconi, C., Troch, P. A., Van Loon, E. E., and Hilberts, A. G.: Hillslope-storage Boussinesq model for subsurface flow and variable source
areas along complex hillslopes: 2. Intercomparison with a three-dimensional
Richards equation model, Water Resour. Res., 39, 1317, https://doi.org/10.1029/2002WR001730, 2003.
Pool, M. and Carrera, J.: A correction factor to account for mixing in Ghyben-Herzberg and critical pumping rate approximations of seawater intrusion in coastal aquifers, Water Resour. Res., 47, W05506,
https://doi.org/10.1029/2010WR010256, 2011.
Post, V. E.: Annotated translation of “Nota in verband met de voorgenomen
putboring nabij Amsterdam [Note concerning the intended well drilling near
Amsterdam]” by J. Drabbe and W. Badon Ghijben (1889), Hydrogeol. J., 26,
1771–1788, https://doi.org/10.1007/s10040-018-1797-z, 2018.
Post, V. E. A., Houben, G. J., Stoeckl, L., and Sültenfuß, J.: Behaviour of tritium and tritiogenic helium in freshwater lens groundwater
systems: Insights from Langeoog Island, Germany, Geofluids, 2019, 1494326, https://doi.org/10.1155/2019/1494326, 2019.
Röper, T., Greskowiak, J., Freund, H., and Massmann, G.: Freshwater lens
formation below juvenile dunes on a barrier island (Spiekeroog, Northwest
Germany), Estuar. Coast. Shelf Sci., 121–122, 40–50, https://doi.org/10.1016/j.ecss.2013.02.004, 2013.
Stoeckl, L., Houben, G. J., and Dose, E. J.: Experiments and modeling of flow processes in freshwater lenses in layered island aquifers: Analysis of age stratification, travel times and interface propagation, J. Hydrol., 529,
159–168, https://doi.org/10.1016/j.jhydrol.2015.07.019, 2015.
Storlazzi, C. D., Gingerich, S. B., van Dongeren, A., Cheriton, O. M., Swarzenski, P. W., Quataert, E., Voss, C. I., Field, D. W., Annamalai, H.,
Piniak, G. A., and McCall, R.: Most atolls will be uninhabitable by the
mid-21st century because of sea-level rise exacerbating wave-driven flooding, Sci. Adv., 4, eaap9741, https://doi.org/10.1126/sciadv.aap9741, 2018.
Stuyfzand, P. J.: Hydrochemistry and hydrology of the coastal dune area of
the Western Netherlands, PhD Thesis, Vrije University, Amsterdam,
ISBN 90-74741-01-0, available at: http://dare.ubvu.vu.nl/handle/1871/12716 (last access: 21 December 2021), 1993.
Stuyfzand, P. J.: Observations and analytical modeling of freshwater and
rainwater lenses in coastal dune systems, J. Coast. Conserv., 21, 577–593,
https://doi.org/10.1007/s11852-016-0456-6, 2017.
Thomas, A., Baptiste, A., Martyr-Koller, R., Pringle, P., and Rhiney, K.:
Climate change and small island developing states, Annu. Rev. Environ. Resour., 45, 1–27, https://doi.org/10.1146/annurev-environ-012320-083355, 2020.
Troch, P. A., Paniconi, C., and van Loon, E.: Hillslope-storage Boussinesq model for subsurface flow and variable source areas along complex hillslopes: 1. Formulation and characteristic response, Water Resour. Res., 39, 1316, https://doi.org/10.1029/2002WR001728, 2003.
Underwood, M. R., Peterson, F. L., and Voss, C. I.: Groundwater lens dynamics of atoll islands, Water Resour. Res., 28, 2889–2902, https://doi.org/10.1029/92WR01723, 1992.
Vacher, H. L.: Dupuit-Ghyben-Herzberg analysis of strip-island lenses, Geol.
Soc. Am. Bull., 100, 580–591, https://doi.org/10.1130/0016-7606(1988)100<0580:DGHAOS>2.3.CO;2, 1988.
Werner, A. D. and Simmons, C. T.: Impact of sea-level rise on sea water
intrusion in coastal aquifers, Groundwater, 47, 197–204,
https://doi.org/10.1111/j.1745-6584.2008.00535.x, 2009.
Werner, A. D., Bakker, M., Post, V. E., Vandenbohede, A., Lu, C., Ataie-Ashtiani, B., Simmons, C. T., and Barry, D. A.: Seawater intrusion
processes, investigation and management: Recent advances and future challenges, Adv. Water Resour., 51, 3–26, https://doi.org/10.1016/j.advwatres.2012.03.004, 2013.
Werner, A. D., Sharp, H. K., Galvis, S. C., Post, V. E., and Sinclair, P.:
Hydrogeology and management of freshwater lenses on atoll islands: Review of
current knowledge and research needs, J. Hydrol., 551, 819–844,
https://doi.org/10.1016/j.jhydrol.2017.02.047, 2017.
White, I. and Falkland, T.: Management of freshwater lenses on small Pacific islands, Hydrogeol. J., 18, 227–246, https://doi.org/10.1007/s10040-009-0525-0, 2010.
Zhang, Y., Li, L., Erler, D. V., Santos, I., and Lockington, D.: Effects of
alongshore morphology on groundwater flow and solute transport in a nearshore aquifer, Water Resour. Res., 52, 990–1008, https://doi.org/10.1002/2015WR017420, 2016.
Short summary
Analytical solutions are derived for steady-state seawater intrusion in annulus segment aquifers. These analytical solutions are validated by comparing their predictions with experimental data. We find seawater intrusion is the most extensive in divergent aquifers, and the opposite is the case for convergent aquifers. The analytical solutions facilitate engineers and hydrologists in evaluating seawater intrusion more efficiently in annulus segment aquifers with a complex geometry.
Analytical solutions are derived for steady-state seawater intrusion in annulus segment...