Articles | Volume 25, issue 12
Hydrol. Earth Syst. Sci., 25, 6359–6379, 2021
https://doi.org/10.5194/hess-25-6359-2021
Hydrol. Earth Syst. Sci., 25, 6359–6379, 2021
https://doi.org/10.5194/hess-25-6359-2021
Research article
16 Dec 2021
Research article | 16 Dec 2021

Calibrating 1D hydrodynamic river models in the absence of cross-section geometry using satellite observations of water surface elevation and river width

Liguang Jiang et al.

Related authors

River hydraulic modelling with ICEsat-2 land and water surface elevation
Monica Coppo Frias, Suxia Liu, Xingguo Mo, Karina Nielsen, Heidi Randall, Liguang Jiang, Jun Ma, and Peter Bauer-Gottwein
EGUsphere, https://doi.org/10.5194/egusphere-2022-377,https://doi.org/10.5194/egusphere-2022-377, 2022
Short summary
High-resolution water level and storage variation datasets for 338 reservoirs in China during 2010–2020
Youjiang Shen, Dedi Liu, Liguang Jiang, Karina Nielsen, Jiabo Yin, Jun Liu, and Peter Bauer-Gottwein
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-470,https://doi.org/10.5194/essd-2021-470, 2022
Preprint under review for ESSD
Short summary
Sentinel-3 radar altimetry for river monitoring – a catchment-scale evaluation of satellite water surface elevation from Sentinel-3A and Sentinel-3B
Cecile M. M. Kittel, Liguang Jiang, Christian Tøttrup, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 25, 333–357, https://doi.org/10.5194/hess-25-333-2021,https://doi.org/10.5194/hess-25-333-2021, 2021
Short summary

Related subject area

Subject: Rivers and Lakes | Techniques and Approaches: Modelling approaches
Seasonal forecasting of lake water quality and algal bloom risk using a continuous Gaussian Bayesian network
Leah A. Jackson-Blake, François Clayer, Sigrid Haande, James E. Sample, and S. Jannicke Moe
Hydrol. Earth Syst. Sci., 26, 3103–3124, https://doi.org/10.5194/hess-26-3103-2022,https://doi.org/10.5194/hess-26-3103-2022, 2022
Short summary
Spatially referenced Bayesian state-space model of total phosphorus in western Lake Erie
Timothy J. Maguire, Craig A. Stow, and Casey M. Godwin
Hydrol. Earth Syst. Sci., 26, 1993–2017, https://doi.org/10.5194/hess-26-1993-2022,https://doi.org/10.5194/hess-26-1993-2022, 2022
Short summary
Future water temperature of rivers in Switzerland under climate change investigated with physics-based models
Adrien Michel, Bettina Schaefli, Nander Wever, Harry Zekollari, Michael Lehning, and Hendrik Huwald
Hydrol. Earth Syst. Sci., 26, 1063–1087, https://doi.org/10.5194/hess-26-1063-2022,https://doi.org/10.5194/hess-26-1063-2022, 2022
Short summary
Physical controls and a priori estimation of raising land surface elevation across the southwestern Bangladesh delta using tidal river management
Md Feroz Islam, Paul P. Schot, Stefan C. Dekker, Jasper Griffioen, and Hans Middelkoop
Hydrol. Earth Syst. Sci., 26, 903–921, https://doi.org/10.5194/hess-26-903-2022,https://doi.org/10.5194/hess-26-903-2022, 2022
Short summary
Evaluation and interpretation of convolutional long short-term memory networks for regional hydrological modelling
Sam Anderson and Valentina Radić
Hydrol. Earth Syst. Sci., 26, 795–825, https://doi.org/10.5194/hess-26-795-2022,https://doi.org/10.5194/hess-26-795-2022, 2022
Short summary

Cited articles

AIPo: http://geoportale.agenziapo.it/web/index.php/it/?option=com_aipografd3, last access: 15 December 2021. 
Andreadis, K. M. and Schumann, G. J. P.: Estimating the impact of satellite observations on the predictability of large-scale hydraulic models, Adv. Water Resour., 73, 44–54, https://doi.org/10.1016/j.advwatres.2014.06.006, 2014. 
Annis, A., Nardi, F., Volpi, E., and Fiori, A.: Quantifying the relative impact of hydrological and hydraulic modelling parameterizations on uncertainty of inundation maps, Hydrolog. Sci. J., 65, 507–523, https://doi.org/10.1080/02626667.2019.1709640, 2020. 
Aster, R. C., Borchers, B., and Thurber, C. H.: Parameter estimation and inverse problems, Elsevier, Amsterdam, the Netherlands, 2018. 
AVISO+: FTP, available at: https://www.aviso.altimetry.fr/en/data/data-access/ftp.html, last access: 15 December 2021. 
Download
Short summary
River roughness and geometry are essential to hydraulic river models. However, measurements of these quantities are not available in most rivers globally. Nevertheless, simultaneous calibration of channel geometric parameters and roughness is difficult as they compensate for each other. This study introduces an alternative approach of parameterization and calibration that reduces parameter correlations by combining cross-section geometry and roughness into a conveyance parameter.