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Abstract. Hydrodynamic modeling has been increasingly
used to simulate water surface elevation which is important
for flood prediction and risk assessment. Scarcity and inac-
cessibility of in situ bathymetric information have hindered
hydrodynamic model development at continental-to-global
scales. Therefore, river cross-section geometry is commonly
approximated by highly simplified generic shapes. Hydrody-
namic river models require both bed geometry and roughness
as input parameters. Simultaneous calibration of shape pa-
rameters and roughness is difficult, because often there are
trade-offs between them. Instead of parameterizing cross-
section geometry and hydraulic roughness separately, this
study introduces a parameterization of 1D hydrodynamic
models by combining cross-section geometry and roughness
into one conveyance parameter. Flow area and conveyance
are expressed as power laws of flow depth, and they are found
to be linearly related in log–log space at reach scale. Data
from a wide range of river systems show that the linearity
approximation is globally applicable. Because the two are
expressed as power laws of flow depth, no further assump-
tions about channel geometry are needed. Therefore, the hy-
draulic inversion approach allows for calibrating flow area
and conveyance curves in the absence of direct observations
of bathymetry and hydraulic roughness. The feasibility and
performance of the hydraulic inversion workflow are illus-
trated using satellite observations of river width and water
surface elevation in the Songhua river, China. Results show
that this approach is able to reproduce water level dynamics

with root-mean-square error values of 0.44 and 0.50 m at two
gauging stations, which is comparable to that achieved using
a standard calibration approach. In summary, this study puts
forward an alternative method to parameterize and calibrate
river models using satellite observations of river width and
water surface elevation.

1 Introduction

Hydrodynamic modeling of rivers is important for quanti-
tative assessment of river flow and water level dynamics
and, critically, for risk assessment and flood prediction. It is
widely used for many applications, such as estimates of hy-
draulic parameters (e.g., water surface elevation – WSE, lon-
gitudinal profile, velocity), flood forecasting, inundation es-
timation, risk assessment, river maintenance, etc. (Andreadis
and Schumann, 2014; Bates et al., 2014; Bierkens, 2015;
Blöschl et al., 2015; Jiang et al., 2020). Nowadays, in the
era of big data, earth observation data sets, cloud computing,
and complex modeling platforms are available for better sim-
ulations of WSE at multiple scales (Fleischmann et al., 2019;
Gleason and Durand, 2020; Ward et al., 2015).

Traditional hydrodynamic modeling approaches require a
detailed river channel bathymetry, which is usually repre-
sented by a set of cross-section shapes, distributed along
the river reach of interest. There are, however, only a lim-
ited number of rivers for which the surveyed geometry is
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available. The challenge that arises in many studies is how
to approximate the channel geometry. This is a common
problem which the scientific community faces. A common
approach is to parameterize channel geometry as a simple
shape, e.g., a rectangle or triangle (Garambois et al., 2017;
Jiang et al., 2019; Neal et al., 2012; Schneider et al., 2017).
Instead of rectangular or triangular shapes, Dingman (2007)
and Neal et al. (2015) used a power function (bankfull width
and depth are required) to represent channel shape variabil-
ity between the limiting cases of rectangular and triangular
shape. However, Neal et al. (2015) used a cross-section ge-
ometry which did not vary along the channel. Similar pa-
rameterizations of cross-section shapes were used in Mejia
and Reed (2011), and the effect of assumed shapes on sim-
ulated flows was investigated. Some studies estimated river
bathymetry using global DEMs combined with an assumed
simplified shape (e.g., rectangle) of the submerged portion
of the river. Domeneghetti (2016) used DEM data to infer
the river bathymetry based on width–elevation relationships
of high flow and low flow. Similarly, a few studies infer
bathymetry from water surface height and width by fitting
the relationship between the two. Obviously, the success of
this approach depends on the channel exposure (Mersel et
al., 2013). Moreover, combinations of remote sensing data
and empirical statistical relationships or data assimilation ap-
proaches have also been used to infer effective bathymetry
(Brisset et al., 2018; Dey et al., 2019; Durand et al., 2008;
Fonstad and Marcus, 2005; Grimaldi et al., 2018; Larnier et
al., 2021; Legleiter, 2015; Moramarco et al., 2019; Schap-
erow et al., 2019). For instance, Durand et al. (2008) es-
timated bathymetric depth and slope by assimilating syn-
thetic WSE data from the Surface Water and Ocean Topogra-
phy (SWOT) mission into the LISFLOOD-FP hydrodynamic
model. Larnier et al. (2021) also applied data assimilation
to infer effective bathymetry from synthetic SWOT altime-
try measurements within an inverse framework. Here, we do
not comprehensively review bathymetry estimation using up-
coming SWOT mission data. Instead, we refer the reader to
Biancamaria et al. (2016) and Gleason and Durand (2020)
for a broader overview.

In addition to the channel bathymetry, channel roughness
is another factor that is important for simulating flow dy-
namics with sufficient accuracy (Bates et al., 2014; Neal et
al., 2015). Usually, a uniform value is adopted to represent
channel/floodplain roughness although large heterogeneity
of river roughness exists in most cases (Annis et al., 2020;
Jiang et al., 2020; Pappenberger et al., 2007; Schumann et
al., 2007). When calibrating channel geometry parameters
along with roughness parameters, strong parameter corre-
lation appears between cross-section shape (wetted perime-
ter) and hydraulic roughness (Jiang et al., 2019). That is, the
roughness parameter will be “effective”, not only represent-
ing the friction but also compensating for inaccurate geome-
try, which affects the hydraulic resistance through the wetted
perimeter. Therefore, there is a trade-off between roughness

and geometry parameters, which has been widely reported
(see Garambois and Monnier, 2015, and references therein).

In order to reduce parameter correlation in hydraulic in-
verse problems, we put forward a method to parameterize
and calibrate 1D river models in a different way. Instead of
roughness and geometry, flow area and conveyance curves as
functions of flow depth are estimated in an inverse modeling
workflow. In this way, only the dependence of area and con-
veyance on flow depth is estimated, regardless of the detailed
channel shape and roughness. This paper illustrates this ap-
proach for the calibration of a 1D MIKE HYDRO River
model (DHI, 2017) to simulate WSE dynamics, using satel-
lite observations of WSE and river width. The novelty is to
use power-law relationships between flow-area/conveyance
and flow depth in a hydraulic inversion without detailed
cross-section data or assumption of any specific cross-section
shape. Therefore, this approach is fundamentally different
from previous studies, and it provides an alternative way for
hydrodynamic model calibration.

2 Methods

2.1 Theoretical background

Flow in open channels can be described by the continu-
ity equation and momentum equation, known as the Saint-
Venant equations (Chow, 1959):

∂A(d)

∂t
+
∂Q

∂x
= 0, (1)
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+
∂
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(
Q2

A(d)

)
+ gA(d)

∂d

∂x
− gA(d)(S0− Sf(d))= 0, (2)

where A is the cross-section area;Q is the discharge; d is the
flow depth; S0 is the slope of the channel bottom; Sf is the
friction slope; g is the gravity acceleration; t is time and x is
chainage, i.e., the distance along the channel.

Equations (1) and (2) comprise the 1D dynamic wave
model. In the absence of cross-section geometry, there are
five unknowns in this model, i.e., two variables (Q and d) and
three unknown values (A, S0, and Sf), which are functions of
further parameters as specified below. To solve for Q and d ,
information about channel geometry and friction slope is re-
quired. Flow area A and channel slope S0 can be obtained
once the bathymetry is known. The friction slope Sf can be
approximated using the Manning formula or the Chézy for-
mula (Chow, 1959).

Here, we express friction slope as a function of con-
veyance (K) and discharge (Q) using Manning’s equation:

Q=KS
1
2
f , (3)

K =
1
n
AR

2
3 , (4)

Hydrol. Earth Syst. Sci., 25, 6359–6379, 2021 https://doi.org/10.5194/hess-25-6359-2021



L. Jiang et al.: Calibrating 1D hydrodynamic river models in the absence of cross-section 6361

where n is the Manning roughness coefficient, and R is the
hydraulic radius. The conveyance is a measure of water car-
rying capacity of a cross-section (Chow, 1959).

Substituting for Sf, the momentum equation is written as

∂Q

∂t

∂

∂x

(
Q2

A(d)

)
︸ ︷︷ ︸
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+ gA(d)
∂d

∂x
− gA(d)

(
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Q2

K2(d)

)
= 0︸ ︷︷ ︸

Kinematic wave︸ ︷︷ ︸
Diffusive wave︸ ︷︷ ︸

Dynamic wave

. (5)

This version of the momentum equation (Eq. 5) indicates
that, in steady state (for both kinematic wave and diffusive
wave), the calibration is much more sensitive to K(d) than
to A(d), and A(d) appears only when the flow accelerates or
decelerates.

2.2 Parameterization of flow area and conveyance
curves

Equations (1) and (5) are two equations with still five un-
knowns, i.e., two variables (Q and d), and three unknown
values (A, S0, and K). However, K and A are related to flow
depth, d. If K and A can be expressed as functions of d,
Q and d can be solved for, given the slope S0 but without
the need for detailed information on cross-section shape and
roughness. The hydraulic geometry relations are widely used
to relate the water surface width, average depth, and average
velocity to discharge since it was introduced by Leopold and
Maddock in 1953 (Bjerklie et al., 2005; Dingman, 2007; Fer-
guson, 1986; Gleason, 2015; Leopold and Maddock, 1953).
Dingman (2007) has derived explicit equations for the ex-
ponent and coefficients in the power-law function, explain-
ing the variation of hydraulic geometry in different rivers.
In some way analogous to the at-a-station power law of hy-
draulic geometry, power laws that relate flow areaA and con-
veyance K to flow depth d of a cross-section can be written,
respectively, as (Chow, 1959; Garbrecht, 1990)

A(d)= adβ , (6)

K(d)= cdδ, (7)
d =H −Z0, (8)

where a, β, c, and δ are empirical coefficients; H and Z0 are
WSE and channel datum, i.e., water surface elevation for
zero flow.

Transforming Eqs. (6) and (7) into log–log space, we can
write the following linear relationships:

logA(x, t)= α(x)+β(x) logd(x, t), (9)
logK(x, t)= γ (x)+ δ(x) logd(x, t), (10)

where α = log(a) and γ = log(c). This relationship is inves-
tigated for several rivers to show its validity for real-world
rivers. Between the rivers, the width ranges over 3 orders of

magnitude. Note that these six rivers are used simply due to
the availability of cross-section data (see a map of rivers and
cross-sections in Fig. A1 in Appendix A). Strong positive
linear relationships are revealed by plotting the logarithmic
A–d and K–d pairs for any given cross-section below bank-
full depth (Fig. 1). A discontinuity may occur if a significant
flood plain exists as in the case of the Yellow River (Fig. 1d).
Chow (1959) and Garbrecht (1990) suggested using sepa-
rate functions to approximate the hydraulic properties below
and above bankfull depth. In this initial study, one single
power law is used. Note that the conveyance changes with
the Manning’s coefficient, but the linear relationship holds
(Fig. A2). To calculate conveyance, spatially varying, ran-
domly distributed Manning’s coefficient values ranging be-
tween 0.015 and 0.05 are used to mimic real-world rivers
instead of unrealistic uniform values along the whole reach.
A uniform Manning’s coefficient results in a much stronger
linear relationship (Figs. A2 and A3).

However, there are four more parameters (i.e., α, β, γ , δ)
for each cross section to be estimated. Due to the linear na-
ture of logarithmic pairs of (A–d) and (K–d), a linear rela-
tionship can be derived between theA–d andK–d curves for
each individual cross-section. The mathematical derivations
are given in Appendix A (Eqs. A1–A4). Unfortunately, the
linear relationships are varying with cross-sections; there-
fore, many coefficients (intercepts and slopes of the linear
function as shown in Eqs. A2 and A4) have to be determined.
By fitting a linear function to the cross-section parameter
pairs (α–δ and β–γ ) derived from observed data at the reach
scale as shown in Fig. 2, the flow area and conveyance curves
for all cross-sections can be connected by

α = p1+p2γ, (11)
β = p3+p4δ. (12)

It should be noted that the linear relationships (i.e., Eqs. 9
and 10) are only valid at river reach scale instead of individ-
ual cross-sections. In this way, we can simplify the hydraulic
inverse problem by tying the parameters together, i.e., halv-
ing the number of fitting parameters. Interestingly, p1, p2,
p3, and p4 are nearly constant and independent of rivers
although marginal deviations exist (Fig. A4). As shown in
Fig. 2, when pooling cross-sections of all rivers together, a
clear linear trend shows up for both α–γ and β–δ. This indi-
cates that parameters p2 and p4 should vary in a very narrow
range around 1.0 for all rivers; parameters p1 and p3 should
be allowed to slightly vary around −1.4 and −0.7 to adapt
to individual rivers. Thus, there are two spatially varying pa-
rameters (i.e., γ , δ) and four uniform parameters (i.e., p1–
p4) in addition to the bed datum Z0, from which the bed
slope S0 is calculated, which have to be constrained in or-
der to solve Q and d . Therefore, a new parameterization of a
river model can be written as
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Figure 1. Plots of flow area and conveyance against flow depth in log–log space. In each plot, dots of the same color are from one certain
cross-section. Linear relationships between logarithmic-area/conveyance and depth are estimated for each cross-section, i.e., in an “at-a-
station” manner. The median value of slopes of linear regression is given in each plot. In total, there are 60, 70, 335, 98, 51, and 165 cross-
sections spaced at 2.5 km, 6 m, 1 km, 8 km, 150 m, and 300 m, respectively, for (a) Changjiang, (b) Songhua, (c) Po, (d) Yellow, (e) Åmose,
and (f) Vejle rivers. Please refer to Fig. A1 for a detailed map. Note that Manning’s coefficient used for calculation of conveyance for each
cross-section is randomly generated between 0.015 and 0.05.

log10(K(x, t))= γ (x)+ δ(x)log10(d(x, t)), (13)

log10(A(x, t))=(p1+p2γ (x))+ (p3+p4δ(x))

log10(d(x, t)), (14)

with p1, p2, p3, and p4 close to −1.4, −0.7, 1.0, and 1.0,
respectively.

2.3 Parameter calibration

Hydraulic parameter calibration is essentially an inverse
problem that is often solved using the least squares approach.
Considering the large number of parameters (p1, p2, p3,
and p4, and spatially varying Z0, γ , and δ), regularization
is used to stabilize the ill-posed problem (Pereverzyev et al.,

2006; Schmidt, 2005). In this work, the Tikhonov-type regu-
larization is applied, and the objective function is formulated
following Aster et al. (2018):

∅(X)= λmisfit+ (1− λ)reg; (15)

misfit=w
∑ 1

Nh

(
hs−ho

σh

)2

+ (1−w)
∑ 1

Nb

(
bs− bo

σb

)2

, (16)
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Figure 2. Linear relationship between α/β and γ /δ. Each dot repre-
sents one cross-section of a certain river. Dots of the same color are
from the same river. Manning’s coefficient for each cross-section
is randomly generated between 0.015 and 0.05. Note that the best-
fit line for each river is slightly different. The relationship using a
uniform Manning’s coefficient of 0.03 is also given in Fig. A3. In-
dividual fitting lines are shown in Fig. A4.

reg= λγ
∑ 1

N

(
Lγ
σγ

)2

+ λδ
∑ 1

N

(
Lδ
σδ

)2

+ λp1

∑(
p1+ 1.4
σp1

)2

+ λp2

∑(
p2− 1
σp2

)2

+ λp3
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p3+ 0.7
σp3

)2

+ λp4
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)2

+
(
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)
∑ 1

N

(
Lz
σz

)2

, (17)

whereX is vector containing the parameters γ , δ, p1, p2, p3,
p4, and z; λ is a weighting factor balancing the regularization
and data fitting error; w is a weighting factor balancing the
fitness of water level and width; hs, ho, Nh, and σh are simu-
lated water level, observed water level, number of water lev-
els, and the uncertainty of observed water level; bs, bo, Nb,
and σb are simulated width (calculated as the derivative of
flow area with respect to depth in the model), observed width,
number of widths, and the uncertainty of observed width; λγ ,
λδ , λp1 , λp2 , λp3 , and λp4 are regularization parameters; σγ ,
σδ , σp1 , σp2 , σp3 , σp4 , and σz are the a priori standard devi-
ations indicating how uncertain the parameters are a priori;
N is the number of cross-sections; and L is the first-order
regularization roughening matrix, which is a finite-difference
approximation to the first derivative of the model:

L=


1 −1

1 −1
. . .

. . .

1 −1
1 −1

 .

In this case study, the weighting factor λ is set as 0.8 based
on a trial-and-error method. The weighting factor w is set
to 0.5; i.e., water level and river width observations are
equally important. The uncertainties of water level and width
are 0.5 and 99 m according to Jiang et al. (2017) and Yang
et al. (2020), respectively. The a priori standard deviations
of σγ and σδ are 0.7 and 0.4, respectively, which are sim-
ilar for relatively large rivers (see γ and δ distributions in
Fig. S2). The a priori standard deviations of p1, p2, p3,
and p4 are chosen as 0.02, 0.01, 0.02, and 0.01, respec-
tively, given that those parameters vary slightly (see Figs. A3
and A4). The datum Z0 is the sum of parameter z and a con-
stant value which is estimated from the average water level
subtracting the depth of 5 m. The a priori standard deviation
of z is 0.5 m. The regularization parameters, i.e., λγ , λδ , λp1 ,
λp2 , λp3 , and λp4 , are empirically set as 0.1, 0.1, 0.15, 0.15,
0.15, and 0.15, respectively, to achieve appropriate smooth-
ness.

We iteratively optimize the objective function (Eq. 15)
with the Levenberg–Marquardt (LM) algorithm (Marquardt,
1963) combined with Broyden’s rank-one update to approx-
imate the Jacobian (Broyden, 1965; Madsen et al., 2004).
We use an implementation of the method provided by the
Immoptibox toolbox (Nielsen and Völcker, 2010). Given that
LM finds a local minimum and cannot guarantee the global
minimum, an ensemble of 10 calibrations is carried out with
different initial guesses to avoid convergence to a local min-
imum. For each calibration, the number of model runs is
around 200. The time consumed for this optimization is a few
hours (1–4 h). The calibrations were conducted on a Win-
dows Server 2016 (Intel® Xeon® Gold 6154 CPU at 3 GHz,
2993 MHz) using four cores.

The calibration is implemented in MATLAB. C# scripts
are used to modify and dump MIKE Hydro River parameters
and simulation results. The power-law relationships are an
integral part of the MIKE Hydro River model. Specifically,
for each iteration of the optimization, the updated parame-
ters by LM algorithm and the calculated flow area and con-
veyance relationships are passed to a C# script that updates
the setup of the MIKE Hydro River model. Then the model
is executed, and the results are passed on to MATLAB. Es-
sentially, by optimizing Eq. (15) using satellite-derived ob-
servations of WSE and river width, we calibrate the two
curves, i.e., the relationships between flow-area/conveyance
and depth as described by Eqs. (13) and (14) for each cross-
section along the reach.

3 Case study

To test whether this approach is able to reproduce realistic
flow area and conveyance curves as well as WSE using re-
mote sensing data, we use the Songhua river as a test site.
Below are the descriptions of the test site, data sets, model
setup, and calibration procedures.

https://doi.org/10.5194/hess-25-6359-2021 Hydrol. Earth Syst. Sci., 25, 6359–6379, 2021
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3.1 Study site

Songhua river is the longest tributary of the Amur (or Hei-
long Jiang) and one of the largest rivers in the world. It allows
for testing the approach using satellite data sets, such as al-
timetry and imagery, which will be available simultaneously
from the future SWOT mission (Biancamaria et al., 2016).

The river has two sources, i.e., the Nenjiang and Second
Songhua rivers, originating from the Greater Khingan Range
in the north and the Paektu Mountain in the south, respec-
tively, and drains an area of 556 800 km2. At Sanchahe, two
tributaries merge to form the Songhua river. It runs 840 km
northeastward before draining into the Amur river (Songliao
River Conservancy Commission, 2004, 2015). In this study,
we focus on the middle reach of the Songhua river, between
Harbin and Jiamusi (Fig. 3). The reasons why we selected
this reach are twofold: firstly, it is wide enough (700 m on
average) to have high-quality altimetry data as shown in a
previous study (Jiang et al., 2017), and secondly, we have
access to in situ data of several hydrometric stations across
this region. This reach covers an area of 138 500 km2 and
stretches 433 km long. The elevation difference of this reach
is about 45 m, resulting in an average slope of 0.1 m km−1.
The first 222 km part flows through hilly terrain with a gentle
slope of 0.05 m km−1, while the downstream reach is nar-
rower and deeper. The mean discharge at the downstream
end is about 1175 m3 s−1. The river is frozen in winter and
reaches its maximum flow in summer.

3.2 Data sets and model setup

A 1D river model is built using the MIKE HYDRO River
software (DHI, 2017). The first step is to define the river
network, cross-sections, and boundary conditions. The river
network is set up using the center line of the reach, while
23 cross-sections are equally distributed along the 433 km
reach as in Jiang et al. (2019). The daily discharge at Harbin
hydrometric station is used as the upstream boundary, while a
uniform flow depth rating curve is set as downstream bound-
ary. Inflows of three tributaries are from gauging records,
while remaining tributary inflows are simulations from a hy-
drological model (Jiang et al., 2019). The only available
in situ surveyed cross-sections are from the late 1990s. These
“real” area curves are only used to validate the calibration re-
sults.

WSE and river width derived from CryoSat-2 altimetry
and Landsat imagery are used as observations in the cali-
bration. CryoSat-2 altimetry is distinctive due to several fea-
tures, most importantly the orbit configuration. Specifically,
CryoSat-2 with its drifting ground track pattern results in
an entirely different sampling pattern. The small inter-track
spacing of 7.5 km enables dense sampling of rivers and thus
provides longitudinal water level profiles. Although these
profiles are not snapshots of river level at a given time, they
are still useful for resolving local hydraulic characteristics

Figure 3. Overview of the study area. The studied reach is 433 km
long between Harbin and Jiamusi. There are five major tributaries
recharging the main river. There are 23 cross-sections evenly dis-
tributed along this reach as shown in the lower map.

(Jiang et al., 2019; Schneider et al., 2018). CryoSat-2 obser-
vations are the same as those used in Jiang et al. (2019), cov-
ering the period 2010–2014. Widths are extracted using the
RivWidthCloud algorithm in Google Earth Engine (Yang et
al., 2020). We used Landsat 5 and Landsat 8 images, and we
selected images avoiding cloud cover and obtained an even
distribution in time. Specifically, if the river is cloud-free in
a given image, it is selected regardless of the cloudiness of
other parts. Images collected from December to early April
are excluded. In total, 37 Landsat 5 images and 15 Landsat 8
images are used and provided 10 022 individual width obser-
vations. The temporal and spatial distribution of WSE and
width observations is shown in Fig. B1.

For the purpose of validation, gauging records of water
level and discharge at Tonghe and Yilan (Fig. 3) are col-
lected. Moreover, WSE data sets derived from Jason-2 at
two virtual stations (Fig. 3) are also included for extensive
validation. Because the river is completely frozen, altimetry
does not provide realistic WSE observations during the win-
ter. Therefore, we only consider the ice-free period (April
to October) in this study. To compare results with the previ-
ously published calibration approach (e.g., simultaneous cal-
ibration of roughness and cross-section shape parameters),
we also extract model simulations from our previous work
(Jiang et al., 2019). Specifically, water level simulations from
model calibration S1 (refer to Jiang et al., 2019) are used for
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a fair comparison given that both calibrations use the same
amount of CryoSat-2 WSE data.

3.3 Calibration scenarios

To test the capability of different data sets to constrain model
parameters, three basic scenarios are used based on the type
of data sets. That is, calibration #1 uses altimetry-derived
WSE only, calibration #2 uses imagery-derived width only,
and calibration #3 uses both WSE and width. Given that
width observations are of very high spatial resolution (30 m
interval), three scenarios of width observations are also de-
signed (Table 1). Specifically, width is sampled at coarse
spatial resolution by randomly selecting one observation for
each 2 or 5 km reach regardless of the timing. Given that
only 261 observations of WSE are available, no further ex-
ploration of the effect of WSE data is performed. Therefore,
in total, we test seven scenarios of observations to calibrate
the model (Table 1).

4 Results

Results prove that it is possible to calibrate spatially varying
area–depth curves solely using satellite data sets. Figure 4
depicts the calibrated area–depth curves at 23 cross-sections
under the three scenarios. Two metrics are used to evaluate
the performance alongside the plots. RMSE describes the er-
ror of the calibrated logArea vs. logDepth relationship, and
coverage is defined by the percentage of real data that fall
within the confidence interval. Compared to the curves de-
rived from surveyed cross-sections, the calibrated ones are
reasonably close at most locations. Most of the largest errors
occur at cross-sections 4–6, where the Dadingzishan reser-
voir (chainage 20–90 km) is located and not modeled. In-
terestingly, both WSE alone and river width alone are able
to constrain the model to a certain degree (Fig. 4). How-
ever, calibration #1 (WSE only) has slightly larger spread
especially for small depths. The average RMSE and cover-
age are 0.42 and 16 %. Calibration #2 (width only) tends to
overestimate flow area, which is significant for downstream
cross-sections. The corresponding average RMSE and cover-
age are 0.34 and 8 %. Calibration #3 (both WSE and width)
shows the best match (smaller RMSE and larger coverage)
with the observed cross-sections (Fig. 4). Moreover, very
dense observations of width (#2 and #3) do not improve the
calibration results compared to less dense ones (#2a and #2b,
#3a and #3b), although calibrations #2 and #3 result in nar-
rower confidence intervals (Figs. B2 and B3).

Figure 5 shows the performance of each calibration sce-
nario in terms of accuracy of simulated water level. Sim-
ilarly, models calibrated with either WSE (calibration #1)
or width (calibration #2) can reproduce WSE with simi-
lar RMSE at two gauging stations. However, calibration #2
shows larger RMSEs and wider ranges than calibration #1,

especially at the Yilan station. In contrast, calibration #3
is more stable, resulting in smaller RMSEs and narrower
ranges. This is in line with the well-calibrated area–depth
curves at cross-sections (XS12, XS13, XS17, XS18) nearby
the two gauging stations (refer to Fig. 3 for the locations).
Regarding the scenarios using width observations, the RMSE
values of calibrations #2a and #2b are very spread out (i.e., a
wide range), indicating that models are not well-constrained.
This is evidenced by the poorly calibrated area–depth curves
(e.g., wider color bands of XS17 and XS18) shown in
Fig. B2.

The calibrated model can reproduce the WSE reason-
ably well when compared with independent data sets. Fig-
ure 6 shows simulated WSE using calibrated curves shown
in Fig. 4. Overall, the accuracy of simulation is acceptable.
The RMSE is about 50 and 44 cm at Tonghe and Yilan
stations, respectively. The accuracy is comparable to what
was achieved using a different approach, which simultane-
ously calibrates cross-section shape parameters and rough-
ness (Jiang et al., 2019). A careful comparison indicates
that the simulations are slightly better than those reported
in Jiang et al. (2019) for low WSE (Fig. 6). Compared to
Yilan, Tonghe shows slightly higher RMSE (Fig. 6) due to
the underestimation of the extremely high WSE in 2013, al-
though the simulated discharge matches in situ observations
well (Fig. C1). This can be well explained by the calibrated
curves. The curves at two neighboring cross-sections (XS12
and XS13) show deviations from the curves derived from sur-
veyed cross-sections beyond bankfull depth (upward curves
as shown in Fig. 4). Evaluation at the two virtual stations also
shows good agreements. However, the model simulation is
better than Jason-2 observations except during the 2013 flood
when compared to the hydrograph of an adjacent gauging
station, i.e., Tonghe station (Fig. 6).

5 Discussion

5.1 The value of altimetry and imagery in model
calibration

Satellite altimetry data and imagery data have been increas-
ingly used to calibrate hydrologic and hydrodynamic river
models (Domeneghetti et al., 2014; Jiang et al., 2019; Liu
et al., 2015; Michailovsky et al., 2012; Milzow et al., 2011;
Sun et al., 2010). However, joint use of imagery and al-
timetry for hydrodynamic modeling is not common prac-
tice. For our case study, models calibrated with either river
width only or WSE only show similar performance in terms
of RMSE of WSE at two gauging stations (Fig. 5). However,
both cases have problems to fully constrain parameters and
suffer from model ambiguity, which means parameters can-
not be well determined. A direct consequence is that model
simulations of either the WSE or river width are not physi-
cally meaningful (Fig. C2). This is because both cases can
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Figure 4. Calibrated area–depth curves at 23 cross-sections (number is given in each plot). Three scenarios are shown, i.e., calibration with
water surface elevation data only (calibration #1), river width only (calibration #2), and both water surface elevation and width (calibra-
tion #3), respectively. Please refer to Table 1 for more information. The color band represents the mean± standard deviation based on an
ensemble of 10 calibrations. RMSE and coverage (percentage of real data falling into the calibrated interval) of calibrated curves against real
data are reported on the left and right sides of each plot, respectively. Font color is consistent with the curve color.

Table 1. Details of the calibration scenarios with different data sets.

Scenario Description No. of No. of
WSE width

Calibration #1 Calibration with WSE observations only 261 0
Calibration #2a Calibration with one width per 5 km 0 88
Calibration #2b Calibration with one width per 2 km 0 219
Calibration #2 Calibration with width observations only 0 10 022
Calibration #3a Calibration with WSE and one width per 5 km 261 88
Calibration #3b Calibration with WSE and one width per 2 km 261 219
Calibration #3 Calibration with WSE and width observations 261 10 022

achieve a reasonable area–depth relationship by making a
trade-off between datum and WSE or river width. For exam-
ple, calibration #1 (WSE only) shows reasonable simulation
of WSE (Fig. 5), but the simulation of width is not meaning-
ful (Figs. 5 and C2). Therefore, both WSE and river width
are needed to better constrain model parameters.

Nevertheless, river width and WSE may play different
roles in constraining parameters for different rivers depend-
ing on the channel shape. If a channel is embanked, for in-
stance, model parameters may not be sensitive to the small
changes of river width. This issue certainly needs further in-

vestigation. Obviously, observations of river width are easier
to obtain and have higher frequency and larger coverage than
altimetry-derived WSE (usually the frequency is lower than
10 d). That is, this approach can be applied in many rivers
where both altimetry data and imagery are available given
reliable discharge at the upstream boundary. This raises a
question: can area and conveyance curves be estimated using
short-repeat altimetry missions, such as Jason or Sentinel-
3? Our previous study (Jiang et al., 2019) shows that spa-
tial sampling density is more important than temporal fre-
quency in the context of hydraulic inversion and that the Ja-
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Figure 5. Boxplots of evaluations of simulated water level against
in situ gauging records at two gauging stations. Calibration scenar-
ios indicated on the x axis are referred to Table 1. Note that the
y axis is in log scale. Note that the statistics for each scenario are
computed from the 10 calibration runs with different starting points.

son series alone are not able to constrain the spatially dis-
tributed parameters. The trade-off between spatial and tem-
poral sampling density in inland radar altimetry merits fur-
ther investigation. Moreover, rapid advances in drone tech-
nology also provide WSE and width for small rivers (Ban-
dini et al., 2020). Therefore, this approach is also applica-
ble to rivers where satellite altimetry data are not available.
Moreover, further comprehensive investigation of the impact
of width observations (i.e., image spatial resolution and tem-
poral distribution, accuracy, etc.) is needed to draw solid con-
clusions. Ongoing research will employ simultaneous obser-
vations of river width and WSE from SWOT for river hydro-
dynamic modeling.

5.2 Implications for hydrodynamic modeling in
ungauged catchments

Lack of river channel bathymetry data restricts application
of hydrodynamic modeling to data-scarce river basins. Most
continental- or global-scale hydrologic models are coupled
with simple routing schemes for simulating surface water
transport in the major rivers of the world (Yamazaki et al.,
2011). However, at basin scale, without explicit represen-
tation of channel geometry, resolving water level dynam-
ics is impossible. Coupling hydrologic models with hydro-
dynamic river models would better describe the flow dy-
namics (water depth, water level, discharge, etc.). The new
parameterization proposed in this paper can also be used
with simulated discharge (from a hydrologic model) instead
of observed discharge. In this way, water levels along the
river channel could be resolved. We performed a prelimi-
nary investigation into the effect of simulated discharge er-
rors on inverted area and conveyance curves. Specifically,
for the upstream boundary, modeled discharge from a re-
gional rainfall-runoff model is used instead of in situ dis-
charge (Fig. C3). With this setup, the calibrated 1D hydrody-

namic model can reproduce WSE reasonably well (∼ 0.9 m,
see Fig. C3). The accuracy is comparable to previous studies,
such as Domeneghetti et al. (2014), although surveyed cross-
sections were used in those studies. This finding demon-
strates that this approach has great potential to be applied in
ungauged river basins. This is in line with the statement by
Liu et al. (2015) that in situ discharge data may not be neces-
sary for successful hydrologic model calibration. However,
more research is needed to incorporate the proposed parame-
terization into fully coupled hydrologic-hydrodynamic mod-
els for ungauged basins.

5.3 Known issues and limitations

The power laws of flow-area/conveyance and flow depth and
the corresponding linearity approximation are confirmed in
six rivers. One may argue that the relationship may not be
globally applicable due to the limited number of rivers to
validate the relationships. We cannot rebut this argument
without collecting a large sample of surveyed cross-sections,
which is difficult because of data access problems. However,
the rivers we used are of diverse sizes (width ranging from a
few meters to kilometers) and flow characteristics, and they
are from different climate zones (Arctic, Mediterranean, and
Asian temperate climates). Therefore, we believe that the re-
lationship holds globally, and we call for extensive validation
using other rivers. Regarding the linear relationship between
the flow area and conveyance curves for each cross-section,
it is understandable intuitively given that both flow area and
conveyance are linearly related to the same variable, i.e., flow
depth. At river reach scale, the strong linear relationships be-
tween α and γ , β, and δ are empirical.

As we mentioned, this study only focuses on the main
channel and does not account for overbank flow. In the pres-
ence of significant floodplains, the linearity of the curve may
fail at bankfull depth as seen in Figs. 1 and 4. Consequently,
as seen in Fig. 6, the model overestimates extreme flood peak
(year 2013). Similarly, one curve may not be able to de-
scribe anastomosing rivers that consist of compound chan-
nels. To solve this problem, a second curve is needed to de-
scribe the overbank flow as suggested by Garbrecht (1990).
On the other hand, instead of calibrating the second curve,
real data (such as high-resolution DEMs or ICESat-2) of the
non-inundated portion can be used to parameterize the curves
instead or apply 1D–2D modeling in the case of significant
floodplains. Moreover, this approach assumes that the estab-
lished curves are time invariable, which is not applicable to
rivers with significant bedform changes.

In summary, this approach opens up a range of possibilities
to simulate and predict flow dynamics in data scarce regions.
In addition to simulating WSE as illustrated in previous sec-
tions, discharge retrieval is also possible once the slope is
known based on established conveyance curves. The future
SWOT mission will deliver WSE and slope simultaneously,
which can support discharge retrieval using this approach.
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Figure 6. Validation of simulated water level (non-frozen periods) at four stations. Panels (a) and (c) are water levels at two virtual stations,
i.e., data derived from Jason-2 altimetry. Panels (b) and (d) are from two stream gauging stations. Simulation from previous model calibrated
using different strategy (i.e., simultaneous calibration of roughness and cross-section shape parameters; simulation S1 in Jiang et al., 2019)
is also shown for comparison. Note that, in each plot, results of the median and individual simulations of an ensemble of 30 calibrations (#1,
#2, and #3) are shown.

6 Conclusions

Directly calibrating roughness and cross-section geometry
of river models is still challenging. In this paper, we pro-
pose an alternative approach to calibrate 1D hydrodynamic
river models using altimetry and imagery observations. The
workflow is based on the power-law relationships between
flow-area/conveyance and flow depth, which go back to
Chow (1959). In this study, we discovered that the two curves
are very well correlated and applicable for a wide range of
rivers. The novelty of this study is that the flow area and con-
veyance can be inverted directly using spatially distributed
observations of WSE and river width given the boundary
conditions. In this way, the roughness and channel geometry
do not have to be explicitly known to determine the WSE.

Our case study demonstrates that the curves can be esti-
mated solely using remote sensing data, and the calibrated

hydrodynamic model can reproduce the WSE with high pre-
cision (ca. 40–50 cm). Our method performs comparably to
existing ones which use conventional parameterization and
calibration approaches. Further exploration indicates that our
approach can be integrated into a hydrologic-hydrodynamic
models for studying ungauged river basins.

Overall, this study provides an alternative method for hy-
drodynamic modeling, especially in regions without in situ
river cross-section data. Current satellite imagery (Landsat,
Sentinel, Gaofen, etc.) and altimetry (CryoSat-2, AltiKa-DF)
can support this approach for relatively large rivers. This ap-
proach of parameterization and calibration may prove espe-
cially useful for poorly gauged rivers when high-resolution
data sets are available from the upcoming SWOT mission.
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Appendix A: Supplementary information on the
relationships between flow-area/conveyance and depth

Take the linear relationships of (A–d) and (K–d),
i.e., Eqs. (9) and (10), as the start. By substituting logd in
Eq. (9), we get

logA= α+
β

δ
(logK − γ ). (A1)

By rearranging Eq. (A1), we have

α = logA−
β

δ
logK +

β

δ
γ. (A2)

Further, we can write it as α =m+ nγ with m= logA−
β
δ

logK and n= β
δ

.
Therefore, α is linearly related to γ although the inter-

cept (m) and slope (n) are not constant. That is, Eq. (A2)
is valid at each individual cross-section.

Similarly, if we divide Eq. (6) by Eq. (7), we can obtain

A

K
=
a

c
dβ−δ. (A3)

When taking the logarithm and rearranging the equation, we
have

β =
logA− logK + γ −α

logd
+ δ. (A4)

Thus, β can also be expressed as a linear function of δ but
with varying intercept.

One should not confuse Eqs. (A2) and (A4) with Eqs. (11)
and (12). The first two equations are derived at individual
cross-section, while the last two equations are derived by fit-
ting linear functions to cross-section parameters at the reach
scale.
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Figure A1. Location and river setting of six rivers. Short grey lines indicate cross-sections used to explore the hydraulic relationships.
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Figure A2. Relationship between logarithmic depth and logarithmic area and logarithmic conveyance. Similar to Fig. 1 but a uniform
Manning’s coefficient of 0.03 was used to calculate conveyance. This results in a stronger linear relationship. However, a uniform Manning’s
coefficient is not very realistic in natural rivers.
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Figure A3. Linear relationships between γ –α and δ–β using data of all six rivers. Similar to Fig. 2, but a uniform Manning’s coefficient
of 0.03 was used.

Figure A4. Linear relationships between γ –α and δ–β for six rivers. Randomly generated Manning’s coefficient in the range of 0.015–
0.05 for each cross-section was used to calculate conveyance. The number of cross-sections, coefficient of determination, and regression
coefficients are labeled in each plot.
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Appendix B: Supplementary information on the data
sets and calibrated curves

Figure B1. Temporal and spatial distribution of water levels and widths, which are used to calibrate the model. Given that the river is frozen
in cold season, only data in warm seasons are used. Landsat 5/8 images with low cloud cover (visual checked in Google Earth Engine) are
selected to generate river width.

Figure B2. Calibrated curves using three scenarios of width observations only, i.e., one width observation per 5 km reach (calibra-
tion #2a), one width observation per 2 km reach (calibration #2b), and all available widths (calibration #2). The color band represents the
mean± standard deviation based on an ensemble of 10 calibrations. The number of cross-section is given in each plot. RMSE and coverage
of calibrated curves against real data are reported on the left and right sides of each plot, respectively. Font color is consistent with the curve
color. The average RMSE and coverage values are 0.28, 0.30, and 0.34 and 45 %, 36 %, and 8 % for calibration #2a, #2b, and #2, respectively.
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Figure B3. Calibrated curves using three scenarios of width observations and water level, i.e., one width observation per 5 km reach and
water levels (calibration #3a), one width observation per 2 km reach and water levels (calibration #3b), and all available widths and water
levels (calibration #3). The color band represents the mean± standard deviation based on an ensemble of 10 calibrations. The number of
cross-section is given in each plot. RMSE and coverage (percentage of real data falling into the calibrated interval) of calibrated curves
against real data are reported on the left and right sides of each plot, respectively. Font color is consistent with the curve color. The average
RMSE and coverage values are 0.28, 0.29, and 0.34 and 41 %, 42 %, and 24 % for calibration #3a, #3b, and #3, respectively.
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Appendix C: Supplementary information on the
simulation results

Figure C1. Validation of simulated discharge at two gauging stations. Note, in each plot, results of the median and individual simulations of
an ensemble of 30 calibrations (i.e., calibrations #1, #2, and #3) are shown.

Figure C2. Comparison of model simulated water level, width, and datum using different calibration data sets. (a) Calibration #1; (b) cali-
bration #2a; (c) calibration #2b; (d) calibration #2; (e) calibration #3a; (f) calibration #3b, and (g) calibration #3. Note that y axes are in log
scale. Color bands indicate the boundary (i.e., maximum and minimum) of simulations. Along with model simulations, satellite observations
of WSE and width are plotted.
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Figure C3. Similar to Fig. 6 but upstream boundary is rainfall-runoff model simulation instead of in situ discharge, which are shown in
panel (e). Note that NAM model was not calibrated at this location.

Code and data availability. River widths were processed on the
Google Earth Engine platform. CryoSat-2 were from the
study of Jiang et al. (2019). Jason-2 data were downloaded
from AVISO+ (https://www.aviso.altimetry.fr/en/data/data-access/
ftp.html; AVISO+, 2021). Cross-section data of the Changjiang,
Songhua, and Yellow rivers were excerptedfrom the Hydro-
logical Yearbook 2007–2014 issued by the Ministry of Wa-
ter Resources, China. Cross-section data of the Po river are
publicly available from the Interregional agency for the river
Po (http://geoportale.agenziapo.it/web/index.php/it/?option=com_
aipografd3; AIPo, 2021). Data of the Danish rivers (Åmose, Ve-
jle) were kindly provided by WSP (http://www.hydrometri.dk/hyd/;
HYDROMETRI.DK, 2021). The main MATLAB scripts are pub-
licly available on Zenodo (https://doi.org/10.5281/zenodo.5782990;
Jiang et al., 2021).
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