Articles | Volume 25, issue 8
https://doi.org/10.5194/hess-25-4473-2021
https://doi.org/10.5194/hess-25-4473-2021
Research article
 | 
19 Aug 2021
Research article |  | 19 Aug 2021

Spatiotemporal changes in flow hydraulic characteristics and soil loss during gully headcut erosion under controlled conditions

Mingming Guo, Zhuoxin Chen, Wenlong Wang, Tianchao Wang, Qianhua Shi, Hongliang Kang, Man Zhao, and Lanqian Feng

Related subject area

Subject: Hillslope hydrology | Techniques and Approaches: Modelling approaches
Investigation of the functional relationship between antecedent rainfall and the probability of debris flow occurrence in Jiangjia Gully, China
Shaojie Zhang, Xiaohu Lei, Hongjuan Yang, Kaiheng Hu, Juan Ma, Dunlong Liu, and Fanqiang Wei
Hydrol. Earth Syst. Sci., 28, 2343–2355, https://doi.org/10.5194/hess-28-2343-2024,https://doi.org/10.5194/hess-28-2343-2024, 2024
Short summary
Rapid spatio-temporal flood modelling via hydraulics-based graph neural networks
Roberto Bentivoglio, Elvin Isufi, Sebastiaan Nicolas Jonkman, and Riccardo Taormina
Hydrol. Earth Syst. Sci., 27, 4227–4246, https://doi.org/10.5194/hess-27-4227-2023,https://doi.org/10.5194/hess-27-4227-2023, 2023
Short summary
Understanding hydrologic controls of sloping soil response to precipitation through machine learning analysis applied to synthetic data
Daniel Camilo Roman Quintero, Pasquale Marino, Giovanni Francesco Santonastaso, and Roberto Greco
Hydrol. Earth Syst. Sci., 27, 4151–4172, https://doi.org/10.5194/hess-27-4151-2023,https://doi.org/10.5194/hess-27-4151-2023, 2023
Short summary
Technical Note: Monitoring discharge of mountain streams by retrieving image features with deep learning
Chenqi Fang, Genyu Yuan, Ziying Zheng, Qirui Zhong, and Kai Duan
EGUsphere, https://doi.org/10.5194/egusphere-2023-659,https://doi.org/10.5194/egusphere-2023-659, 2023
Short summary
Elucidating the role of soil hydraulic properties on aspect-dependent landslide initiation
Yanglin Guo and Chao Ma
Hydrol. Earth Syst. Sci., 27, 1667–1682, https://doi.org/10.5194/hess-27-1667-2023,https://doi.org/10.5194/hess-27-1667-2023, 2023
Short summary

Cited articles

Addisie, M. B., Ayele, G. K., Gessess, A. A., Tilahun, S. A., Zegeye, A. D., Moges, M. M., Schmitter, P., Langendoen, E. J., and Steenhuis, T. S.: Gully head retreat in the sub-humid Ethiopian Highlands: The Ene-Chilala catchment, Land Degrad. Dev., 28, 1579–1588, https://doi.org/10.1002/ldr.2688, 2017. 
Ali, M., Seeger, M., Sterk, G., and Moore, D.: A unit stream power based sediment transport function for overland flow, Catena, 101, 197–204, https://doi.org/10.1016/j.catena.2012.09.006, 2013. 
Alonso, C. V., Bennett, S. J., and Stein, O. R.: Predicting head cut erosion and migration in concentrated flows typical of upland areas, Water Resour. Res., 38, 39-1–39-15, https://doi.org/10.1029/2001WR001173, 2002. 
Amare, S., Keesstra, S., van der Ploeg, M., Langendoen, E., Steenhuis, T., and Tilahun, S.: Causes and controlling factors of Valley bottom Gullies, Land, 8, 141, https://doi.org/10.3390/land8090141, 2019. 
Amare, S., Langendoen, E., Keesstra, S., Ploeg, M. V. D., Gelagay, H., Lemma, H., and van der Zee, S. E.: Susceptibility to Gully Erosion: Applying Random Forest (RF) and Frequency Ratio (FR) Approaches to a Small Catchment in Ethiopia, Water, 13, 216, https://doi.org/10.3390/w13020216, 2021. 
Download
Short summary
Gully headcut erosion is always a difficult issue in soil erosion, which hinders the revelation of gully erosion mechanisms and the establishment of a gully erosion model. This study clarified the spatiotemporal changes in flow properties, energy consumption, and soil loss, confirming that gully head consumed the most of flow energy (78 %) and can contribute 89 % of total soil loss. Critical energy consumption initiating soil erosion of the upstream area, gully head, and gully bed is confirmed.