Articles | Volume 25, issue 8
https://doi.org/10.5194/hess-25-4473-2021
https://doi.org/10.5194/hess-25-4473-2021
Research article
 | 
19 Aug 2021
Research article |  | 19 Aug 2021

Spatiotemporal changes in flow hydraulic characteristics and soil loss during gully headcut erosion under controlled conditions

Mingming Guo, Zhuoxin Chen, Wenlong Wang, Tianchao Wang, Qianhua Shi, Hongliang Kang, Man Zhao, and Lanqian Feng

Related subject area

Subject: Hillslope hydrology | Techniques and Approaches: Modelling approaches
Recession discharge from compartmentalized bedrock hillslopes
Clément Roques, David E. Rupp, Jean-Raynald de Dreuzy, Laurent Longuevergne, Elizabeth R. Jachens, Gordon Grant, Luc Aquilina, and John S. Selker
Hydrol. Earth Syst. Sci., 26, 4391–4405, https://doi.org/10.5194/hess-26-4391-2022,https://doi.org/10.5194/hess-26-4391-2022, 2022
Short summary
Frozen soil hydrological modeling for a mountainous catchment northeast of the Qinghai–Tibet Plateau
Hongkai Gao, Chuntan Han, Rensheng Chen, Zijing Feng, Kang Wang, Fabrizio Fenicia, and Hubert Savenije
Hydrol. Earth Syst. Sci., 26, 4187–4208, https://doi.org/10.5194/hess-26-4187-2022,https://doi.org/10.5194/hess-26-4187-2022, 2022
Short summary
On the similarity of hillslope hydrologic function: a clustering approach based on groundwater changes
Fadji Z. Maina, Haruko M. Wainwright, Peter James Dennedy-Frank, and Erica R. Siirila-Woodburn
Hydrol. Earth Syst. Sci., 26, 3805–3823, https://doi.org/10.5194/hess-26-3805-2022,https://doi.org/10.5194/hess-26-3805-2022, 2022
Short summary
Estimation of rainfall erosivity based on WRF-derived raindrop size distributions
Qiang Dai, Jingxuan Zhu, Shuliang Zhang, Shaonan Zhu, Dawei Han, and Guonian Lv
Hydrol. Earth Syst. Sci., 24, 5407–5422, https://doi.org/10.5194/hess-24-5407-2020,https://doi.org/10.5194/hess-24-5407-2020, 2020
Short summary
Physically based model for gully simulation: application to the Brazilian semiarid region
Pedro Henrique Lima Alencar, José Carlos de Araújo, and Adunias dos Santos Teixeira
Hydrol. Earth Syst. Sci., 24, 4239–4255, https://doi.org/10.5194/hess-24-4239-2020,https://doi.org/10.5194/hess-24-4239-2020, 2020
Short summary

Cited articles

Addisie, M. B., Ayele, G. K., Gessess, A. A., Tilahun, S. A., Zegeye, A. D., Moges, M. M., Schmitter, P., Langendoen, E. J., and Steenhuis, T. S.: Gully head retreat in the sub-humid Ethiopian Highlands: The Ene-Chilala catchment, Land Degrad. Dev., 28, 1579–1588, https://doi.org/10.1002/ldr.2688, 2017. 
Ali, M., Seeger, M., Sterk, G., and Moore, D.: A unit stream power based sediment transport function for overland flow, Catena, 101, 197–204, https://doi.org/10.1016/j.catena.2012.09.006, 2013. 
Alonso, C. V., Bennett, S. J., and Stein, O. R.: Predicting head cut erosion and migration in concentrated flows typical of upland areas, Water Resour. Res., 38, 39-1–39-15, https://doi.org/10.1029/2001WR001173, 2002. 
Amare, S., Keesstra, S., van der Ploeg, M., Langendoen, E., Steenhuis, T., and Tilahun, S.: Causes and controlling factors of Valley bottom Gullies, Land, 8, 141, https://doi.org/10.3390/land8090141, 2019. 
Amare, S., Langendoen, E., Keesstra, S., Ploeg, M. V. D., Gelagay, H., Lemma, H., and van der Zee, S. E.: Susceptibility to Gully Erosion: Applying Random Forest (RF) and Frequency Ratio (FR) Approaches to a Small Catchment in Ethiopia, Water, 13, 216, https://doi.org/10.3390/w13020216, 2021. 
Download
Short summary
Gully headcut erosion is always a difficult issue in soil erosion, which hinders the revelation of gully erosion mechanisms and the establishment of a gully erosion model. This study clarified the spatiotemporal changes in flow properties, energy consumption, and soil loss, confirming that gully head consumed the most of flow energy (78 %) and can contribute 89 % of total soil loss. Critical energy consumption initiating soil erosion of the upstream area, gully head, and gully bed is confirmed.