Articles | Volume 25, issue 7
https://doi.org/10.5194/hess-25-3855-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-3855-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Robust historical evapotranspiration trends across climate regimes
Sanaa Hobeichi
CORRESPONDING AUTHOR
Climate Change Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
ARC Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, NSW 2052,
Australia
Gab Abramowitz
Climate Change Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
ARC Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, NSW 2052,
Australia
Jason P. Evans
Climate Change Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
ARC Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, NSW 2052,
Australia
Related authors
Georgina Falster, Gab Abramowitz, Sanaa Hobeichi, Cath Hughes, Pauline Treble, Nerilie J. Abram, Michael I. Bird, Alexandre Cauquoin, Bronwyn Dixon, Russell Drysdale, Chenhui Jin, Niels Munksgaard, Bernadette Proemse, Jonathan J. Tyler, Martin Werner, and Carol Tadros
EGUsphere, https://doi.org/10.5194/egusphere-2025-2458, https://doi.org/10.5194/egusphere-2025-2458, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
We used a random forest approach to produce estimates of monthly precipitation stable isotope variability from 1962–2023, at high resolution across the entire Australian continent. Comprehensive skill and sensitivity testing shows that our random forest models skilfully predict precipitation isotope values in places and times that observations are not available. We make all outputs publicly available, facilitating use in fields from ecology and hydrology to archaeology and forensic science.
Matthew O. Grant, Anna M. Ukkola, Elisabeth Vogel, Sanaa Hobeichi, Andy J. Pitman, Alex Raymond Borowiak, and Keirnan Fowler
EGUsphere, https://doi.org/10.5194/egusphere-2024-4024, https://doi.org/10.5194/egusphere-2024-4024, 2025
Short summary
Short summary
Australia is regularly subjected to severe and widespread drought. By using multiple drought indicators, we show that while there have been widespread decreases in droughts since the beginning of the 20th century. However, many regions have seen an increase in droughts in more recent decades. Despite these changes, our analysis shows that they remain within the range of observed variability and are not unprecedented in the context of past droughts.
Gab Abramowitz, Anna Ukkola, Sanaa Hobeichi, Jon Cranko Page, Mathew Lipson, Martin G. De Kauwe, Samuel Green, Claire Brenner, Jonathan Frame, Grey Nearing, Martyn Clark, Martin Best, Peter Anthoni, Gabriele Arduini, Souhail Boussetta, Silvia Caldararu, Kyeungwoo Cho, Matthias Cuntz, David Fairbairn, Craig R. Ferguson, Hyungjun Kim, Yeonjoo Kim, Jürgen Knauer, David Lawrence, Xiangzhong Luo, Sergey Malyshev, Tomoko Nitta, Jerome Ogee, Keith Oleson, Catherine Ottlé, Phillipe Peylin, Patricia de Rosnay, Heather Rumbold, Bob Su, Nicolas Vuichard, Anthony P. Walker, Xiaoni Wang-Faivre, Yunfei Wang, and Yijian Zeng
Biogeosciences, 21, 5517–5538, https://doi.org/10.5194/bg-21-5517-2024, https://doi.org/10.5194/bg-21-5517-2024, 2024
Short summary
Short summary
This paper evaluates land models – computer-based models that simulate ecosystem dynamics; land carbon, water, and energy cycles; and the role of land in the climate system. It uses machine learning and AI approaches to show that, despite the complexity of land models, they do not perform nearly as well as they could given the amount of information they are provided with about the prediction problem.
Lina Teckentrup, Martin G. De Kauwe, Gab Abramowitz, Andrew J. Pitman, Anna M. Ukkola, Sanaa Hobeichi, Bastien François, and Benjamin Smith
Earth Syst. Dynam., 14, 549–576, https://doi.org/10.5194/esd-14-549-2023, https://doi.org/10.5194/esd-14-549-2023, 2023
Short summary
Short summary
Studies analyzing the impact of the future climate on ecosystems employ climate projections simulated by global circulation models. These climate projections display biases that translate into significant uncertainty in projections of the future carbon cycle. Here, we test different methods to constrain the uncertainty in simulations of the carbon cycle over Australia. We find that all methods reduce the bias in the steady-state carbon variables but that temporal properties do not improve.
Mengyuan Mu, Martin G. De Kauwe, Anna M. Ukkola, Andy J. Pitman, Weidong Guo, Sanaa Hobeichi, and Peter R. Briggs
Earth Syst. Dynam., 12, 919–938, https://doi.org/10.5194/esd-12-919-2021, https://doi.org/10.5194/esd-12-919-2021, 2021
Short summary
Short summary
Groundwater can buffer the impacts of drought and heatwaves on ecosystems, which is often neglected in model studies. Using a land surface model with groundwater, we explained how groundwater sustains transpiration and eases heat pressure on plants in heatwaves during multi-year droughts. Our results showed the groundwater’s influences diminish as drought extends and are regulated by plant physiology. We suggest neglecting groundwater in models may overstate projected future heatwave intensity.
Yinglin Mu, Jason Evans, Andrea Taschetto, and Chiara Holgate
EGUsphere, https://doi.org/10.5194/egusphere-2025-2833, https://doi.org/10.5194/egusphere-2025-2833, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Lagrangian approaches have been increasingly employed due to their suitability for extreme events and climatological studies in finding moisture sources of precipitation. However, as these approaches track independent air parcels carrying moisture—rather than simulate processes based on governing physical equations—they rely on several underlying assumptions. This study tests these assumptions and refines the approaches to enhance their broader applicability.
Georgina Falster, Gab Abramowitz, Sanaa Hobeichi, Cath Hughes, Pauline Treble, Nerilie J. Abram, Michael I. Bird, Alexandre Cauquoin, Bronwyn Dixon, Russell Drysdale, Chenhui Jin, Niels Munksgaard, Bernadette Proemse, Jonathan J. Tyler, Martin Werner, and Carol Tadros
EGUsphere, https://doi.org/10.5194/egusphere-2025-2458, https://doi.org/10.5194/egusphere-2025-2458, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
We used a random forest approach to produce estimates of monthly precipitation stable isotope variability from 1962–2023, at high resolution across the entire Australian continent. Comprehensive skill and sensitivity testing shows that our random forest models skilfully predict precipitation isotope values in places and times that observations are not available. We make all outputs publicly available, facilitating use in fields from ecology and hydrology to archaeology and forensic science.
Lingfei Wang, Gab Abramowitz, Ying-Ping Wang, Andy Pitman, Philippe Ciais, and Daniel S. Goll
EGUsphere, https://doi.org/10.5194/egusphere-2025-2545, https://doi.org/10.5194/egusphere-2025-2545, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Accurate estimates of global soil organic carbon (SOC) content and its spatial pattern are critical for future climate change mitigation. However, the most advanced mechanistic SOC models struggle to do this task. Here we apply multiple explainable machine learning methods to identify missing variables and misrepresented relationships between environmental factors and SOC in these models, offering new insights to guide model development for more reliable SOC predictions.
Rajesh Kumar Sahu, Hamza Kunhu Bangalath, Suleiman Mostamandi, Jason Evans, Paul A. Kucera, and Hylke E. Beck
EGUsphere, https://doi.org/10.5194/egusphere-2025-912, https://doi.org/10.5194/egusphere-2025-912, 2025
Short summary
Short summary
This study evaluates 36 microphysics (MP) and boundary layer (BL) scheme combinations in the Weather Research and Forecasting (WRF) model for extreme rainfall over Saudi Arabia. Using Kling-Gupta Efficiency (KGE), results show YSU (BL1) and Thompson (MP8) perform best, while Morrison-MYNN (MP10_BL6) ranks lowest. The mean temporal KGE is 0.37, and the spatial KGE is 0.26, highlighting spatial prediction challenges. Findings aid model evaluation and forecasting in arid regions.
Giovanni Di Virgilio, Fei Ji, Eugene Tam, Jason P. Evans, Jatin Kala, Julia Andrys, Christopher Thomas, Dipayan Choudhury, Carlos Rocha, Yue Li, and Matthew L. Riley
Geosci. Model Dev., 18, 703–724, https://doi.org/10.5194/gmd-18-703-2025, https://doi.org/10.5194/gmd-18-703-2025, 2025
Short summary
Short summary
We evaluate the skill in simulating the Australian climate of some of the latest generation of regional climate models. We show when and where the models simulate this climate with high skill versus model limitations. We show how new models perform relative to the previous-generation models, assessing how model design features may underlie key performance improvements. This work is of national and international relevance as it can help guide the use and interpretation of climate projections.
Giovanni Di Virgilio, Jason P. Evans, Fei Ji, Eugene Tam, Jatin Kala, Julia Andrys, Christopher Thomas, Dipayan Choudhury, Carlos Rocha, Stephen White, Yue Li, Moutassem El Rafei, Rishav Goyal, Matthew L. Riley, and Jyothi Lingala
Geosci. Model Dev., 18, 671–702, https://doi.org/10.5194/gmd-18-671-2025, https://doi.org/10.5194/gmd-18-671-2025, 2025
Short summary
Short summary
We introduce new climate models that simulate Australia’s future climate at regional scales, including at an unprecedented resolution of 4 km for 1950–2100. We describe the model design process used to create these new climate models. We show how the new models perform relative to previous-generation models and compare their climate projections. This work is of national and international relevance as it can help guide climate model design and the use and interpretation of climate projections.
Matthew O. Grant, Anna M. Ukkola, Elisabeth Vogel, Sanaa Hobeichi, Andy J. Pitman, Alex Raymond Borowiak, and Keirnan Fowler
EGUsphere, https://doi.org/10.5194/egusphere-2024-4024, https://doi.org/10.5194/egusphere-2024-4024, 2025
Short summary
Short summary
Australia is regularly subjected to severe and widespread drought. By using multiple drought indicators, we show that while there have been widespread decreases in droughts since the beginning of the 20th century. However, many regions have seen an increase in droughts in more recent decades. Despite these changes, our analysis shows that they remain within the range of observed variability and are not unprecedented in the context of past droughts.
Gab Abramowitz, Anna Ukkola, Sanaa Hobeichi, Jon Cranko Page, Mathew Lipson, Martin G. De Kauwe, Samuel Green, Claire Brenner, Jonathan Frame, Grey Nearing, Martyn Clark, Martin Best, Peter Anthoni, Gabriele Arduini, Souhail Boussetta, Silvia Caldararu, Kyeungwoo Cho, Matthias Cuntz, David Fairbairn, Craig R. Ferguson, Hyungjun Kim, Yeonjoo Kim, Jürgen Knauer, David Lawrence, Xiangzhong Luo, Sergey Malyshev, Tomoko Nitta, Jerome Ogee, Keith Oleson, Catherine Ottlé, Phillipe Peylin, Patricia de Rosnay, Heather Rumbold, Bob Su, Nicolas Vuichard, Anthony P. Walker, Xiaoni Wang-Faivre, Yunfei Wang, and Yijian Zeng
Biogeosciences, 21, 5517–5538, https://doi.org/10.5194/bg-21-5517-2024, https://doi.org/10.5194/bg-21-5517-2024, 2024
Short summary
Short summary
This paper evaluates land models – computer-based models that simulate ecosystem dynamics; land carbon, water, and energy cycles; and the role of land in the climate system. It uses machine learning and AI approaches to show that, despite the complexity of land models, they do not perform nearly as well as they could given the amount of information they are provided with about the prediction problem.
Anjana Devanand, Jason Evans, Andy Pitman, Sujan Pal, David Gochis, and Kevin Sampson
EGUsphere, https://doi.org/10.5194/egusphere-2024-3148, https://doi.org/10.5194/egusphere-2024-3148, 2024
Short summary
Short summary
Including lateral flow increases evapotranspiration near major river channels in high-resolution land surface simulations in southeast Australia, consistent with observations. The 1-km resolution model shows a widespread pattern of dry ridges that does not exist at coarser resolutions. Our results have implications for improved simulations of droughts and future water availability.
Lingfei Wang, Gab Abramowitz, Ying-Ping Wang, Andy Pitman, and Raphael A. Viscarra Rossel
SOIL, 10, 619–636, https://doi.org/10.5194/soil-10-619-2024, https://doi.org/10.5194/soil-10-619-2024, 2024
Short summary
Short summary
Effective management of soil organic carbon (SOC) requires accurate knowledge of its distribution and factors influencing its dynamics. We identify the importance of variables in spatial SOC variation and estimate SOC stocks in Australia using various models. We find there are significant disparities in SOC estimates when different models are used, highlighting the need for a critical re-evaluation of land management strategies that rely on the SOC distribution derived from a single approach.
Conrad Wasko, Seth Westra, Rory Nathan, Acacia Pepler, Timothy H. Raupach, Andrew Dowdy, Fiona Johnson, Michelle Ho, Kathleen L. McInnes, Doerte Jakob, Jason Evans, Gabriele Villarini, and Hayley J. Fowler
Hydrol. Earth Syst. Sci., 28, 1251–1285, https://doi.org/10.5194/hess-28-1251-2024, https://doi.org/10.5194/hess-28-1251-2024, 2024
Short summary
Short summary
In response to flood risk, design flood estimation is a cornerstone of infrastructure design and emergency response planning, but design flood estimation guidance under climate change is still in its infancy. We perform the first published systematic review of the impact of climate change on design flood estimation and conduct a meta-analysis to provide quantitative estimates of possible future changes in extreme rainfall.
Lina Teckentrup, Martin G. De Kauwe, Gab Abramowitz, Andrew J. Pitman, Anna M. Ukkola, Sanaa Hobeichi, Bastien François, and Benjamin Smith
Earth Syst. Dynam., 14, 549–576, https://doi.org/10.5194/esd-14-549-2023, https://doi.org/10.5194/esd-14-549-2023, 2023
Short summary
Short summary
Studies analyzing the impact of the future climate on ecosystems employ climate projections simulated by global circulation models. These climate projections display biases that translate into significant uncertainty in projections of the future carbon cycle. Here, we test different methods to constrain the uncertainty in simulations of the carbon cycle over Australia. We find that all methods reduce the bias in the steady-state carbon variables but that temporal properties do not improve.
Jon Cranko Page, Martin G. De Kauwe, Gab Abramowitz, Jamie Cleverly, Nina Hinko-Najera, Mark J. Hovenden, Yao Liu, Andy J. Pitman, and Kiona Ogle
Biogeosciences, 19, 1913–1932, https://doi.org/10.5194/bg-19-1913-2022, https://doi.org/10.5194/bg-19-1913-2022, 2022
Short summary
Short summary
Although vegetation responds to climate at a wide range of timescales, models of the land carbon sink often ignore responses that do not occur instantly. In this study, we explore the timescales at which Australian ecosystems respond to climate. We identified that carbon and water fluxes can be modelled more accurately if we include environmental drivers from up to a year in the past. The importance of antecedent conditions is related to ecosystem aridity but is also influenced by other factors.
Anna M. Ukkola, Gab Abramowitz, and Martin G. De Kauwe
Earth Syst. Sci. Data, 14, 449–461, https://doi.org/10.5194/essd-14-449-2022, https://doi.org/10.5194/essd-14-449-2022, 2022
Short summary
Short summary
Flux towers provide measurements of water, energy, and carbon fluxes. Flux tower data are invaluable in improving and evaluating land models but are not suited to modelling applications as published. Here we present flux tower data tailored for land modelling, encompassing 170 sites globally. Our dataset resolves several key limitations hindering the use of flux tower data in land modelling, including incomplete forcing variable, data format, and low data quality.
Mengyuan Mu, Martin G. De Kauwe, Anna M. Ukkola, Andy J. Pitman, Weidong Guo, Sanaa Hobeichi, and Peter R. Briggs
Earth Syst. Dynam., 12, 919–938, https://doi.org/10.5194/esd-12-919-2021, https://doi.org/10.5194/esd-12-919-2021, 2021
Short summary
Short summary
Groundwater can buffer the impacts of drought and heatwaves on ecosystems, which is often neglected in model studies. Using a land surface model with groundwater, we explained how groundwater sustains transpiration and eases heat pressure on plants in heatwaves during multi-year droughts. Our results showed the groundwater’s influences diminish as drought extends and are regulated by plant physiology. We suggest neglecting groundwater in models may overstate projected future heatwave intensity.
Max Kulinich, Yanan Fan, Spiridon Penev, Jason P. Evans, and Roman Olson
Geosci. Model Dev., 14, 3539–3551, https://doi.org/10.5194/gmd-14-3539-2021, https://doi.org/10.5194/gmd-14-3539-2021, 2021
Short summary
Short summary
We present a novel stochastic approach based on Markov chains to estimate climate model weights of multi-model ensemble means. This approach showed improved performance (better correlation with observations) over existing alternatives during cross-validation and model-as-truth tests. The results of this comparative analysis should serve to motivate further studies in applications of Markov chain and other nonlinear methods to find optimal model weights for constructing ensemble means.
Cited articles
Abramowitz, G. and Bishop, C. H.: Climate model dependence and the ensemble
dependence transformation of CMIP projections, J. Climate, 28, 2332–2348,
https://doi.org/10.1175/JCLI-D-14-00364.1, 2015.
Abramowitz, G., Herger, N., Gutmann, E., Hammerling, D., Knutti, R., Leduc, M., Lorenz, R., Pincus, R., and Schmidt, G. A.: ESD Reviews: Model dependence in multi-model climate ensembles: weighting, sub-selection and out-of-sample testing, Earth Syst. Dynam., 10, 91–105, https://doi.org/10.5194/esd-10-91-2019, 2019.
Alemohammad, S. H., Fang, B., Konings, A. G., Aires, F., Green, J. K., Kolassa, J., Miralles, D., Prigent, C., and Gentine, P.: Water, Energy, and Carbon with Artificial Neural Networks (WECANN): a statistically based estimate of global surface turbulent fluxes and gross primary productivity using solar-induced fluorescence, Biogeosciences, 14, 4101–4124, https://doi.org/10.5194/bg-14-4101-2017, 2017.
Balsamo, G., Albergel, C., Beljaars, A., Boussetta, S., Brun, E., Cloke, H., Dee, D., Dutra, E., Muñoz-Sabater, J., Pappenberger, F., de Rosnay, P., Stockdale, T., and Vitart, F.: ERA-Interim/Land: a global land surface reanalysis data set, Hydrol. Earth Syst. Sci., 19, 389–407, https://doi.org/10.5194/hess-19-389-2015, 2015.
Bishop, C. H. and Abramowitz, G.: Climate model dependence and the replicate
Earth paradigm, Clim. Dynam, 41, 885–900,
https://doi.org/10.1007/s00382-012-1610-y, 2013.
Bodesheim, P., Jung, M., Gans, F., Mahecha, M. D., and Reichstein, M.: Upscaled diurnal cycles of land–atmosphere fluxes: a new global half-hourly data product, Earth Syst. Sci. Data, 10, 1327–1365, https://doi.org/10.5194/essd-10-1327-2018, 2018.
Burba, G. and Anderson, D. A.: brief practical guide to eddy covariance flux measurements: principles and workflow examples for scientific and industrial applications, Li-Cor Biosciences, Lincoln, Nebraska 68504, USA, 2010.
Candogan Yossef, N., van Beek, L. P. H., Kwadijk, J. C. J., and Bierkens, M. F. P.: Assessment of the potential forecasting skill of a global hydrological model in reproducing the occurrence of monthly flow extremes, Hydrol. Earth Syst. Sci., 16, 4233–4246, https://doi.org/10.5194/hess-16-4233-2012, 2012.
Chen, D. and Chen, H. W.: Using the Köppen classification to quantify
climate variation and change: An example for 1901–2010, Environ. Dev., 6,
69–79, 2013.
Chen, X., Su, Z., Ma, Y., Yang, K., Wen, J., and Zhang, Y.: An improvement of
roughness height parameterization of the Surface Energy Balance System
(SEBS) over the Tibetan plateau, J. Appl. Meteorol. Climatol., 52,
607–622, https://doi.org/10.1175/JAMC-D-12-056.1, 2013.
Chen, X., Massman, W. J., and Su, Z.: A column canopy-air turbulent diffusion
method for different canopy structures, J. Geophys. Res.-Atmos., 124,
488–506, 2019.
Dawdy, D. R., Lichty, R. W., and Bergmann, J. M.: A rainfall-runoff
simulation model for estimation of flood peaks for small drainage basins, US
Government Printing Office, Washington, USA, 1972.
Ershadi, A., McCabe, M. F., Evans, J. P., Chaney, N. W., and Wood, E. F.:
Multi-site evaluation of terrestrial evaporation models using FLUXNET data,
Agric. For. Meteorol., 187, 46–61, https://doi.org/10.1016/j.agrformet.2013.11.008,
2014.
Feng, F., Li, X., Yao, Y., Liang, S., Chen, J., Zhao, X., Jia, K.,
Pintér, K., and McCaughey, J. H.: An Empirical Orthogonal Function-Based
Algorithm for Estimating Terrestrial Latent Heat Flux from Eddy Covariance,
Meteorological and Satellite Observations, PLoS One, 11, e0160150,
https://doi.org/10.1371/journal.pone.0160150, 2016.
Fisher, R. A. and Koven, C. D.: Perspectives on the future of Land Surface
Models and the challenges of representing complex terrestrial systems, J.
Adv. Model. Earth Syst., 12, 1–24, https://doi.org/10.1029/2018ms001453, 2020.
Fratini, G., Sabbatini, S., Ediger, K., Riensche, B., Burba, G., Nicolini,
G., Vitale, D. and Papale, D.: Characterization of Eddy Covariance flux
errors due to data synchronization issues during data acquisition, Geophys. Res. Abstr, 21, EGU General Assembly 2019, 2019.
Han, D., Wang, G., Liu, T., Xue, B.-L., Kuczera, G., and Xu, X.:
Hydroclimatic response of evapotranspiration partitioning to prolonged
droughts in semiarid grassland, J. Hydrol., 563, 766–777, 2018.
Herger, N., Abramowitz, G., Knutti, R., Angélil, O., Lehmann, K., and Sanderson, B. M.: Selecting a climate model subset to optimise key ensemble properties, Earth Syst. Dynam., 9, 135–151, https://doi.org/10.5194/esd-9-135-2018, 2018.
Hobeichi, S.: Conserving Land-Atmosphere Synthesis Suite (CLASS) v 1.1,
https://doi.org/10.25914/5c872258dc183, 2019.
Hobeichi, S., Abramowitz, G., Evans, J., and Ukkola, A.: Derived Optimal Linear Combination Evapotranspiration (DOLCE): a global gridded synthesis ET estimate, Hydrol. Earth Syst. Sci., 22, 1317–1336, https://doi.org/10.5194/hess-22-1317-2018, 2018.
Hobeichi, S., Abramowitz, G., Evans, J., and Beck, H. E.: Linear Optimal Runoff Aggregate (LORA): a global gridded synthesis runoff product, Hydrol. Earth Syst. Sci., 23, 851–870, https://doi.org/10.5194/hess-23-851-2019, 2019.
Hobeichi, S., Abramowitz, G., and Evans, J. P.: Conserving Land – Atmosphere
Synthesis Suite (CLASS ), J. Climate, 33, 1821–1844,
https://doi.org/10.1175/JCLI-D-19-0036.1, 2020a.
Hobeichi, S., Abramowitz, G., and Evans, J. P.: Derived Optimal Linear Combination Evapotranspiration – DOLCE v2.1. NCI National Research Data Collection, https://doi.org/10.25914/5f1664837ef06, 2020b.
Hobeichi, S., Abramowitz, G., Contractor, S., and Evans, J.: Evaluating
precipitation datasets using surface water and energy budget closure, J.
Hydrometeorol., 21, 989–1009, https://doi.org/10.1175/jhm-d-19-0255.1, 2020c.
Hobeichi, S., Abramowitz, G., and Evans, J. P.: Derived Optimal Linear Combination Evapotranspiration – DOLCE v3.0. NCI National Research Data Collection, https://doi.org/10.25914/606e9120c5ebe, 2021.
Jiménez, C., Martens, B., Miralles, D. M., Fisher, J. B., Beck, H. E., and Fernández-Prieto, D.: Exploring the merging of the global land evaporation WACMOS-ET products based on local tower measurements, Hydrol. Earth Syst. Sci., 22, 4513–4533, https://doi.org/10.5194/hess-22-4513-2018, 2018.
Jung, M., Reichstein, M., Ciais, P., Seneviratne, S. I., Sheffield, J.,
Goulden, M. L., Bonan, G., Cescatti, A., Chen, J., De Jeu, R., Dolman, A.
J., Eugster, W., Gerten, D., Gianelle, D., Gobron, N., Heinke, J., Kimball,
J., Law, B. E., Montagnani, L., Mu, Q., Mueller, B., Oleson, K., Papale, D.,
Richardson, A. D., Roupsard, O., Running, S., Tomelleri, E., Viovy, N.,
Weber, U., Williams, C., Wood, E., Zaehle, S., and Zhang, K.: Recent decline
in the global land evapotranspiration trend due to limited moisture supply,
Nature, 467, 951–954, https://doi.org/10.1038/nature09396, 2010.
Jung, M., Koirala, S., Weber, U., Ichii, K., Gans, F., Gustau-Camps-Valls,
Papale, D., Schwalm, C., Tramontana, G., and Reichstein, M.: The FLUXCOM
ensemble of global land-atmosphere energy fluxes, Sci. Data, 6, 1–14,
https://doi.org/10.1038/s41597-019-0076-8, 2019.
Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S.-K., Hnilo, J. J.,
Fiorino, M., and Potter, G. L.: NCEP-DOE AMIP-II Reanalysis (R-2), B. Am.
Meteorol. Soc., 83, 1631–1644, https://doi.org/10.1175/BAMS-83-11-1631, 2002.
Kendall, M. G.: Rank correlation methods, Griffin, Oxford, England, 1948.
L'Ecuyer, T. S., Beaudoing, H. K., Rodell, M., Olson, W., Lin, B., Kato, S.,
Clayson, C. A., Wood, E., Sheffield, J., Adler, R., Huffman, G., Bosilovich,
M., Gu, G., Robertson, F., Houser, P. R., Chambers, D., Famiglietti, J. S.,
Fetzer, E., Liu, W. T., Gao, X., Schlosser, C. A., Clark, E., Lettenmaier,
D. P., and Hilburn, K.: The observed state of the energy budget in the early
twenty-first century, J. Climate, 28, 8319–8346,
https://doi.org/10.1175/JCLI-D-14-00556.1, 2015.
Liang, X., Lettenmaier, D. P., Wood, E. F., and Burges, S. J.: A simple
hydrologically based model of land surface water and energy fluxes for
general circulation models, J. Geophys. Res.-Atmos., 99, 14415–14428,
https://doi.org/10.1029/94JD00483, 1994.
Lloyd, S.: Least squares quantization in PCM, IEEE Trans. Inf. theory,
28, 129–137, 1982.
Long, D., Longuevergne, L., and Scanlon, B. R.: Uncertainty in
evapotranspiration fromland surfacemodeling, remote sensing, and GRACE
satellites, Water Resour. Res., 50, 1131–1151,
https://doi.org/10.1002/2013WR014581, 2014.
Lorenz, C., Tourian, M. J., Devaraju, B., Sneeuw, N., and Kunstmann, H.:
Basin-scale runoff prediction: An Ensemble Kalman Filter framework based on
global hydrometeorological data sets, Water Resour. Res., 51, 8450–8475,
https://doi.org/10.1002/2014WR016794, 2015.
MacQueen, J.: Some methods for classification and analysis of multivariate
observations, in: Proceedings of the fifth Berkeley symposium on mathematical
statistics and probability, 1, 281–297, Oakland, CA, USA, 1967.
Mann, H. B.: Nonparametric tests against trend, Econom. J. Econom. Soc.,
245–259, 1945.
Marengo, J. A., Souza, C. M., Thonicke, K., Burton, C., Halladay, K., Betts,
R. A., Alves, L. M., and Soares, W. R.: Changes in Climate and Land Use Over
the Amazon Region: Current and Future Variability and Trends, Front. Earth
Sci., 6, 228, https://doi.org/10.3389/feart.2018.00228, 2018.
Martens, B., Miralles, D., Lievens, H., Van Der Schalie, R., De Jeu, R.,
Fernández-Prieto, D., and Verhoest, N.: GLEAM v3: updated land
evaporation and root-zone soil moisture datasets, Geophys. Res. Abstr., EGU General Assembly 2016, 18, 2016–4253, 2016.
Martens, B., Miralles, D. G., Lievens, H., van der Schalie, R., de Jeu, R. A. M., Fernández-Prieto, D., Beck, H. E., Dorigo, W. A., and Verhoest, N. E. C.: GLEAM v3: satellite-based land evaporation and root-zone soil moisture, Geosci. Model Dev., 10, 1903–1925, https://doi.org/10.5194/gmd-10-1903-2017, 2017.
McCabe, M. F., Ershadi, A., Jimenez, C., Miralles, D. G., Michel, D., and Wood, E. F.: The GEWEX LandFlux project: evaluation of model evaporation using tower-based and globally gridded forcing data, Geosci. Model Dev., 9, 283–305, https://doi.org/10.5194/gmd-9-283-2016, 2016.
Michel, D., Jiménez, C., Miralles, D. G., Jung, M., Hirschi, M., Ershadi, A., Martens, B., McCabe, M. F., Fisher, J. B., Mu, Q., Seneviratne, S. I., Wood, E. F., and Fernández-Prieto, D.: The WACMOS-ET project – Part 1: Tower-scale evaluation of four remote-sensing-based evapotranspiration algorithms, Hydrol. Earth Syst. Sci., 20, 803–822, https://doi.org/10.5194/hess-20-803-2016, 2016.
Miralles, D. G., Holmes, T. R. H., De Jeu, R. A. M., Gash, J. H., Meesters, A. G. C. A., and Dolman, A. J.: Global land-surface evaporation estimated from satellite-based observations, Hydrol. Earth Syst. Sci., 15, 453–469, https://doi.org/10.5194/hess-15-453-2011, 2011a.
Miralles, D. G., De Jeu, R. A. M., Gash, J. H., Holmes, T. R. H., and Dolman, A. J.: Magnitude and variability of land evaporation and its components at the global scale, Hydrol. Earth Syst. Sci., 15, 967–981, https://doi.org/10.5194/hess-15-967-2011, 2011b.
Miralles, D. G., Van Den Berg, M. J., Gash, J. H., Parinussa, R. M., De Jeu,
R. A. M., Beck, H. E., Holmes, T. R. H., Jiménez, C., Verhoest, N. E.
C., Dorigo, W. A., Teuling, A. J., and Johannes Dolman, A.: El
Niño-La Niña cycle and recent trends in continental evaporation,
Nat. Clim. Change, 4, 122–126, https://doi.org/10.1038/nclimate2068, 2014.
Mu, Q., Zhao, M., and Running, S. W.: Improvements to a MODIS global
terrestrial evapotranspiration algorithm, Remote Sens. Environ., 115,
1781–1800, https://doi.org/10.1016/j.rse.2011.02.019, 2011.
Mueller, B., Seneviratne, S. I., Jimenez, C., Corti, T., Hirschi, M.,
Balsamo, G., Ciais, P., Dirmeyer, P., Fisher, J. B., Guo, Z., Jung, M.,
Maignan, F., McCabe, M. F., Reichle, R., Reichstein, M., Rodell, M.,
Sheffield, J., Teuling, A. J., Wang, K., Wood, E. F., and Zhang, Y.:
Evaluation of global observations-based evapotranspiration datasets and IPCC
AR4 simulations, Geophys. Res. Lett., 38, 3–10,
https://doi.org/10.1029/2010GL046230, 2011.
Mueller, B., Hirschi, M., Jimenez, C., Ciais, P., Dirmeyer, P. A., Dolman, A. J., Fisher, J. B., Jung, M., Ludwig, F., Maignan, F., Miralles, D. G., McCabe, M. F., Reichstein, M., Sheffield, J., Wang, K., Wood, E. F., Zhang, Y., and Seneviratne, S. I.: Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis, Hydrol. Earth Syst. Sci., 17, 3707–3720, https://doi.org/10.5194/hess-17-3707-2013, 2013.
Munier, S., Aires, F., Schlaffer, S., Prigent, C., Papa, F., Maisongrande,
P., and Pan, M.: Combining datasets of satellite retrieved products for
basin-scale water balance study. Part II: Evaluation on the Mississippi
Basin and closure correction model, J. Geophys. Res.-Atmos., 119,
12100–12116, https://doi.org/10.1002/2014JD021953, 2014.
Muñoz Sabater, J.: ERA5-Land monthly averaged data from 1981 to end of 2018, Copernicus Climate Change Service (C3S) Climate Data Store (CDS), https://doi.org/10.24381/cds.68d2bb30, 2019.
Paca, V. H. d. M., Espinoza-Dávalos, G. E., Hessels, T. M., Moreira, D.
M., Comair, G. F., and Bastiaanssen, W. G. M.: The spatial variability of
actual evapotranspiration across the Amazon River Basin based on remote
sensing products validated with flux towers, Ecol. Process., 8, 1–20, https://doi.org/10.1186/s13717-019-0158-8, 2019.
Pan, M., Sahoo, A. K., Troy, T. J., Vinukollu, R. K., Sheffield, J., and Wood, E. F.: Multisource estimation of long-term terrestrial water budget for major global river basins, J. Climate, 25, 3191–3206, https://doi.org/10.1175/JCLI-D-11-00300.1, 2012.
Pan, S., Pan, N., Tian, H., Friedlingstein, P., Sitch, S., Shi, H., Arora, V. K., Haverd, V., Jain, A. K., Kato, E., Lienert, S., Lombardozzi, D., Nabel, J. E. M. S., Ottlé, C., Poulter, B., Zaehle, S., and Running, S. W.: Evaluation of global terrestrial evapotranspiration using state-of-the-art approaches in remote sensing, machine learning and land surface modeling, Hydrol. Earth Syst. Sci., 24, 1485–1509, https://doi.org/10.5194/hess-24-1485-2020, 2020.
Quesada-Montano, B., Wetterhall, F., Westerberg, I. K., Hidalgo, H. G., and Halldin, S.: Characterising droughts in Central America with uncertain hydro-meteorological data, Theor. Appl. Climatol., 137, 2125–2138, https://doi.org/10.1007/s00704-018-2730-z, 2019.
Rodell, M., Beaudoing, H. K., L'Ecuyer, T. S., Olson, W. S., Famiglietti, J.
S., Houser, P. R., Adler, R., Bosilovich, M. G., Clayson, C. A., Chambers,
D., Clark, E., Fetzer, E. J., Gao, X., Gu, G., Hilburn, K., Huffman, G. J.,
Lettenmaier, D. P., Liu, W. T., Robertson, F. R., Schlosser, C. A.,
Sheffield, J., and Wood, E. F.: The observed state of the water cycle in the
early twenty-first century, J. Climate, 28, 8289–8318,
https://doi.org/10.1175/JCLI-D-14-00555.1, 2015.
Sahoo, A. K., Pan, M., Troy, T. J., Vinukollu, R. K., Sheffield, J., and
Wood, E. F.: Reconciling the global terrestrial water budget using satellite
remote sensing, Remote Sens. Environ., 115, 1850–1865,
https://doi.org/10.1016/j.rse.2011.03.009, 2011.
Sen, P. K.: Estimates of the regression coefficient based on Kendall's tau,
J. Am. Stat. Assoc., 63, 1379–1389, 1968.
Sharma, A., Wasko, C., and Lettenmaier, D. P.: If precipitation extremes are
increasing, why aren't floods?, Water Resour. Res., 54, 8545–8551,
2018.
Sheffield, J., Wood, E. F., and Roderick, M. L.: Little change in global
drought over the past 60 years, Nature, 491, 435–438,
https://doi.org/10.1038/nature11575, 2012.
Stackhouse Jr., P. W., Gupta, S. K., Cox, S. J., Zhang, T., Mikovitz, J. C., and Hinkelman, L. M.: 24.5-Year surface radiation budget data set released,
Glob. Energy Water Cycle Exp. News, 21, 1–20, 2011.
Stephens, G. L., Li, J., Wild, M., Clayson, C. A., Loeb, N., Kato, S.,
L'Ecuyer, T., Stackhouse, P. W., Lebsock, M., and Andrews, T.: An update on
Earth's energy balance in light of the latest global observations, Nat.
Geosci., 5, 691–696, https://doi.org/10.1038/ngeo1580, 2012.
Su, Z.: The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes, Hydrol. Earth Syst. Sci., 6, 85–100, https://doi.org/10.5194/hess-6-85-2002, 2002.
Teuling, A. J.: A hot future for European droughts, Nat. Clim. Chang., 8,
364–365, 2018.
Teuling, A. J., Van Loon, A. F., Seneviratne, S. I., Lehner, I., Aubinet,
M., Heinesch, B., Bernhofer, C., Grünwald, T., Prasse, H., and Spank, U.:
Evapotranspiration amplifies European summer drought, Geophys. Res. Lett.,
40, 2071–2075, 2013.
Ukkola, A. M., Pitman, A. J., Donat, M. G., De Kauwe, M. G., and Angélil,
O.: Evaluating the Contribution of Land-Atmosphere Coupling to Heat Extremes
in CMIP5 Models, Geophys. Res. Lett., 45, 9003–9012,
https://doi.org/10.1029/2018GL079102, 2018.
van der Horst, S. V. J., Pitman, A. J., De Kauwe, M. G., Ukkola, A., Abramowitz, G., and Isaac, P.: How representative are FLUXNET measurements of surface fluxes during temperature extremes?, Biogeosciences, 16, 1829–1844, https://doi.org/10.5194/bg-16-1829-2019, 2019.
Vinukollu, R. K., Wood, E. F., Ferguson, C. R., and Fisher, J. B.: Global
estimates of evapotranspiration for climate studies using multi-sensor
remote sensing data: Evaluation of three process-based approaches, Remote
Sens. Environ., 115, 801–823, https://doi.org/10.1016/j.rse.2010.11.006, 2011.
Wan, Z., Zhang, K., Xue, X., Hong, Z., Hong, Y., and Gourley, J.: Water
balance-based actual evapotranspiration reconstruction fromground and
satellite observations over the conterminous United States Zhanming, Water
Resour. Res., 51, 6485–6499, https://doi.org/10.1002/2015WR017311, 2015.
Zhang, K., Kimball, J. S., Nemani, R. R., and Running, S. W.: A continuous
satellite-derived global record of land surface evapotranspiration from 1983
to 2006, Water Resour. Res., 46, W09522, https://doi.org/10.1029/2009WR008800, 2010.
Zhang, K., Kimball, J. S., Nemani, R. R., Running, S. W., Hong, Y., Gourley,
J. J., and Yu, Z.: Vegetation Greening and Climate Change Promote
Multidecadal Rises of Global Land Evapotranspiration, Sci. Rep., 5,
1–9, https://doi.org/10.1038/srep15956, 2015.
Zhang, Y., Peña-Arancibia, J. L., McVicar, T. R., Chiew, F. H. S., Vaze,
J., Liu, C., Lu, X., Zheng, H., Wang, Y., Liu, Y. Y., Miralles, D. G., and
Pan, M.: Multi-decadal trends in global terrestrial evapotranspiration and
its components, Sci. Rep., 6, 19124, https://doi.org/10.1038/srep19124, 2016.
Zhang, Y., Pan, M., Sheffield, J., Siemann, A. L., Fisher, C. K., Liang, M., Beck, H. E., Wanders, N., MacCracken, R. F., Houser, P. R., Zhou, T., Lettenmaier, D. P., Pinker, R. T., Bytheway, J., Kummerow, C. D., and Wood, E. F.: A Climate Data Record (CDR) for the global terrestrial water budget: 1984–2010, Hydrol. Earth Syst. Sci., 22, 241–263, https://doi.org/10.5194/hess-22-241-2018, 2018.
Short summary
Evapotranspiration (ET) links the water, energy and carbon cycle on land. Reliable ET estimates are key to understand droughts and flooding. We develop a new ET dataset, DOLCE V3, by merging multiple global ET datasets, and we show that it matches ET observations better and hence is more reliable than its parent datasets. Next, we use DOLCE V3 to examine recent changes in ET and find that ET has increased over most of the land, decreased in some regions, and has not changed in some other regions
Evapotranspiration (ET) links the water, energy and carbon cycle on land. Reliable ET estimates...