Articles | Volume 25, issue 5
https://doi.org/10.5194/hess-25-2617-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-2617-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The role of dew and radiation fog inputs in the local water cycling of a temperate grassland during dry spells in central Europe
Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
Franziska Aemisegger
Institute for Atmospheric and Climate Science, ETH Zurich, Zurich,
Switzerland
Andreas Riedl
Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
Nina Buchmann
Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
Werner Eugster
CORRESPONDING AUTHOR
Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
Related authors
Andreas Riedl, Yafei Li, Jon Eugster, Nina Buchmann, and Werner Eugster
Hydrol. Earth Syst. Sci., 26, 91–116, https://doi.org/10.5194/hess-26-91-2022, https://doi.org/10.5194/hess-26-91-2022, 2022
Short summary
Short summary
The aim of this study was to develop a high-accuracy micro-lysimeter system for the quantification of non-rainfall water inputs that overcomes existing drawbacks. The micro-lysimeter system had a high accuracy and allowed us to quantify and distinguish between different types of non-rainfall water inputs, like dew and fog. Non-rainfall water inputs occurred frequently in a Swiss Alpine grassland ecosystem. These water inputs can be an important water source for grasslands during dry periods.
Yi Wang, Iris Feigenwinter, Lukas Hörtnagl, Anna K. Gilgen, and Nina Buchmann
EGUsphere, https://doi.org/10.5194/egusphere-2025-3562, https://doi.org/10.5194/egusphere-2025-3562, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Our study shows that managed grasslands can maintain stable CO2 uptake despite rising temperature and declining soil moisture. Using 20 years of data from a Swiss grassland, we found that light, temperature, and management strongly influenced the ecosystem CO2 exchange. During summer droughts, low soil moisture limited plant growth, but smart management choices helped buffer these effects. This suggests that even small, well-timed actions can support climate resilience in agriculture.
Joëlle C. Rieder, Franziska Aemisegger, Elad Dente, and Moshe Armon
Hydrol. Earth Syst. Sci., 29, 1395–1427, https://doi.org/10.5194/hess-29-1395-2025, https://doi.org/10.5194/hess-29-1395-2025, 2025
Short summary
Short summary
The Sahara was wetter in the past and may become wetter in the future. Lake remnants are evidence of the desert’s wetter past. If the Sahara gets wetter in the future, these lakes may serve as a water resource. However, it is unclear how these lakes get filled and how moisture is carried into the desert and converted into rain in the first place. Therefore, we examine processes currently leading to the filling of a dry lake in the Sahara, which can help assess future water availability.
Mana Gharun, Ankit Shekhar, Lukas Hörtnagl, Luana Krebs, Nicola Arriga, Mirco Migliavacca, Marilyn Roland, Bert Gielen, Leonardo Montagnani, Enrico Tomelleri, Ladislav Šigut, Matthias Peichl, Peng Zhao, Marius Schmidt, Thomas Grünwald, Mika Korkiakoski, Annalea Lohila, and Nina Buchmann
Biogeosciences, 22, 1393–1411, https://doi.org/10.5194/bg-22-1393-2025, https://doi.org/10.5194/bg-22-1393-2025, 2025
Short summary
Short summary
The effect of winter warming on forest CO2 fluxes has rarely been investigated. We tested the effect of the warm winter of 2020 on the forest CO2 fluxes across 14 sites in Europe and found that the net ecosystem productivity (NEP) across most sites declined during the warm winter due to increased respiration fluxes.
Mana Gharun, Ankit Shekhar, Jingfeng Xiao, Xing Li, and Nina Buchmann
Biogeosciences, 21, 5481–5494, https://doi.org/10.5194/bg-21-5481-2024, https://doi.org/10.5194/bg-21-5481-2024, 2024
Short summary
Short summary
In 2022, Europe's forests faced unprecedented dry conditions. Our study aimed to understand how different forest types respond to extreme drought. Using meteorological data and satellite imagery, we compared 2022 with two previous extreme years, 2003 and 2018. Despite less severe drought in 2022, forests showed a 30 % greater decline in photosynthesis compared to 2018 and 60 % more than 2003. This suggests an alarming level of vulnerability of forests across Europe to more frequent droughts.
Jacob A. Nelson, Sophia Walther, Fabian Gans, Basil Kraft, Ulrich Weber, Kimberly Novick, Nina Buchmann, Mirco Migliavacca, Georg Wohlfahrt, Ladislav Šigut, Andreas Ibrom, Dario Papale, Mathias Göckede, Gregory Duveiller, Alexander Knohl, Lukas Hörtnagl, Russell L. Scott, Jiří Dušek, Weijie Zhang, Zayd Mahmoud Hamdi, Markus Reichstein, Sergio Aranda-Barranco, Jonas Ardö, Maarten Op de Beeck, Dave Billesbach, David Bowling, Rosvel Bracho, Christian Brümmer, Gustau Camps-Valls, Shiping Chen, Jamie Rose Cleverly, Ankur Desai, Gang Dong, Tarek S. El-Madany, Eugenie Susanne Euskirchen, Iris Feigenwinter, Marta Galvagno, Giacomo A. Gerosa, Bert Gielen, Ignacio Goded, Sarah Goslee, Christopher Michael Gough, Bernard Heinesch, Kazuhito Ichii, Marcin Antoni Jackowicz-Korczynski, Anne Klosterhalfen, Sara Knox, Hideki Kobayashi, Kukka-Maaria Kohonen, Mika Korkiakoski, Ivan Mammarella, Mana Gharun, Riccardo Marzuoli, Roser Matamala, Stefan Metzger, Leonardo Montagnani, Giacomo Nicolini, Thomas O'Halloran, Jean-Marc Ourcival, Matthias Peichl, Elise Pendall, Borja Ruiz Reverter, Marilyn Roland, Simone Sabbatini, Torsten Sachs, Marius Schmidt, Christopher R. Schwalm, Ankit Shekhar, Richard Silberstein, Maria Lucia Silveira, Donatella Spano, Torbern Tagesson, Gianluca Tramontana, Carlo Trotta, Fabio Turco, Timo Vesala, Caroline Vincke, Domenico Vitale, Enrique R. Vivoni, Yi Wang, William Woodgate, Enrico A. Yepez, Junhui Zhang, Donatella Zona, and Martin Jung
Biogeosciences, 21, 5079–5115, https://doi.org/10.5194/bg-21-5079-2024, https://doi.org/10.5194/bg-21-5079-2024, 2024
Short summary
Short summary
The movement of water, carbon, and energy from the Earth's surface to the atmosphere, or flux, is an important process to understand because it impacts our lives. Here, we outline a method called FLUXCOM-X to estimate global water and CO2 fluxes based on direct measurements from sites around the world. We go on to demonstrate how these new estimates of net CO2 uptake/loss, gross CO2 uptake, total water evaporation, and transpiration from plants compare to previous and independent estimates.
Sonja Wahl, Benjamin Walter, Franziska Aemisegger, Luca Bianchi, and Michael Lehning
The Cryosphere, 18, 4493–4515, https://doi.org/10.5194/tc-18-4493-2024, https://doi.org/10.5194/tc-18-4493-2024, 2024
Short summary
Short summary
Wind-driven airborne transport of snow is a frequent phenomenon in snow-covered regions and a process difficult to study in the field as it is unfolding over large distances. Thus, we use a ring wind tunnel with infinite fetch positioned in a cold laboratory to study the evolution of the shape and size of airborne snow. With the help of stable water isotope analyses, we identify the hitherto unobserved process of airborne snow metamorphism that leads to snow particle rounding and growth.
Liliana Scapucci, Ankit Shekhar, Sergio Aranda-Barranco, Anastasiia Bolshakova, Lukas Hörtnagl, Mana Gharun, and Nina Buchmann
Biogeosciences, 21, 3571–3592, https://doi.org/10.5194/bg-21-3571-2024, https://doi.org/10.5194/bg-21-3571-2024, 2024
Short summary
Short summary
Forests face increased exposure to “compound soil and atmospheric drought” (CSAD) events due to global warming. We examined the impacts and drivers of CO2 fluxes during CSAD events at multiple layers of a deciduous forest over 18 years. Results showed reduced net ecosystem productivity and forest-floor respiration during CSAD events, mainly driven by soil and atmospheric drought. This unpredictability in forest CO2 fluxes jeopardises reforestation projects aimed at mitigating CO2 emissions.
Ellina Agayar, Franziska Aemisegger, Moshe Armon, Alexander Scherrmann, and Heini Wernli
Nat. Hazards Earth Syst. Sci., 24, 2441–2459, https://doi.org/10.5194/nhess-24-2441-2024, https://doi.org/10.5194/nhess-24-2441-2024, 2024
Short summary
Short summary
This study presents the results of a climatological investigation of extreme precipitation events (EPEs) in Ukraine for the period 1979–2019. During all seasons EPEs are associated with pronounced upper-level potential vorticity (PV) anomalies. In addition, we find distinct seasonal and regional differences in moisture sources. Several extreme precipitation cases demonstrate the importance of these processes, complemented by a detailed synoptic analysis.
Luana Krebs, Susanne Burri, Iris Feigenwinter, Mana Gharun, Philip Meier, and Nina Buchmann
Biogeosciences, 21, 2005–2028, https://doi.org/10.5194/bg-21-2005-2024, https://doi.org/10.5194/bg-21-2005-2024, 2024
Short summary
Short summary
This study explores year-round forest-floor greenhouse gas (GHG) fluxes in a Swiss spruce forest. Soil temperature and snow depth affected forest-floor respiration, while CH4 uptake was linked to snow cover. Negligible N2O fluxes were observed. In 2022, a warm year, CO2 emissions notably increased. The study suggests rising forest-floor GHG emissions due to climate change, impacting carbon sink behavior. Thus, for future forest management, continuous year-round GHG flux measurements are crucial.
Esther S. Breuninger, Julie Tolu, Iris Thurnherr, Franziska Aemisegger, Aryeh Feinberg, Sylvain Bouchet, Jeroen E. Sonke, Véronique Pont, Heini Wernli, and Lenny H. E. Winkel
Atmos. Chem. Phys., 24, 2491–2510, https://doi.org/10.5194/acp-24-2491-2024, https://doi.org/10.5194/acp-24-2491-2024, 2024
Short summary
Short summary
Atmospheric deposition is an important source of selenium (Se) and other health-relevant trace elements in surface environments. We found that the variability in elemental concentrations in atmospheric deposition reflects not only changes in emission sources but also weather conditions during atmospheric removal. Depending on the sources and if Se is derived more locally or from further away, the Se forms can be different, affecting the bioavailability of Se atmospherically supplied to soils.
Leonie Villiger and Franziska Aemisegger
Atmos. Chem. Phys., 24, 957–976, https://doi.org/10.5194/acp-24-957-2024, https://doi.org/10.5194/acp-24-957-2024, 2024
Short summary
Short summary
Three numerical simulations performed with an isotope-enabled weather forecast model are used to investigate the cloud–circulation coupling between shallow trade-wind cumulus clouds and atmospheric circulations on different scales. It is shown that stable water isotopes near cloud base in the tropics reflect (1) the diel cycle of the atmospheric circulation, which drives the formation and dissipation of clouds, and (2) changes in the large-scale circulation over the North Atlantic.
Leonie Villiger, Marina Dütsch, Sandrine Bony, Marie Lothon, Stephan Pfahl, Heini Wernli, Pierre-Etienne Brilouet, Patrick Chazette, Pierre Coutris, Julien Delanoë, Cyrille Flamant, Alfons Schwarzenboeck, Martin Werner, and Franziska Aemisegger
Atmos. Chem. Phys., 23, 14643–14672, https://doi.org/10.5194/acp-23-14643-2023, https://doi.org/10.5194/acp-23-14643-2023, 2023
Short summary
Short summary
This study evaluates three numerical simulations performed with an isotope-enabled weather forecast model and investigates the coupling between shallow trade-wind cumulus clouds and atmospheric circulations on different scales. We show that the simulations reproduce key characteristics of shallow trade-wind clouds as observed during the field experiment EUREC4A and that the spatial distribution of stable-water-vapour isotopes is shaped by the overturning circulation associated with these clouds.
Adriana Bailey, Franziska Aemisegger, Leonie Villiger, Sebastian A. Los, Gilles Reverdin, Estefanía Quiñones Meléndez, Claudia Acquistapace, Dariusz B. Baranowski, Tobias Böck, Sandrine Bony, Tobias Bordsdorff, Derek Coffman, Simon P. de Szoeke, Christopher J. Diekmann, Marina Dütsch, Benjamin Ertl, Joseph Galewsky, Dean Henze, Przemyslaw Makuch, David Noone, Patricia K. Quinn, Michael Rösch, Andreas Schneider, Matthias Schneider, Sabrina Speich, Bjorn Stevens, and Elizabeth J. Thompson
Earth Syst. Sci. Data, 15, 465–495, https://doi.org/10.5194/essd-15-465-2023, https://doi.org/10.5194/essd-15-465-2023, 2023
Short summary
Short summary
One of the novel ways EUREC4A set out to investigate trade wind clouds and their coupling to the large-scale circulation was through an extensive network of isotopic measurements in water vapor, precipitation, and seawater. Samples were taken from the island of Barbados, from aboard two aircraft, and from aboard four ships. This paper describes the full collection of EUREC4A isotopic in situ data and guides readers to complementary remotely sensed water vapor isotope ratios.
Iris Thurnherr and Franziska Aemisegger
Atmos. Chem. Phys., 22, 10353–10373, https://doi.org/10.5194/acp-22-10353-2022, https://doi.org/10.5194/acp-22-10353-2022, 2022
Short summary
Short summary
Stable water isotopes in marine boundary layer vapour are strongly influenced by the strength of air–sea fluxes. Here, we investigate a distinct vapour isotope signal observed in the warm sector of Southern Ocean cyclones. Single-process air parcel models are used together with high-resolution isotope-enabled simulations with the weather prediction model COSMOiso to improve our understanding of the importance of air–sea fluxes for the moisture cycling in the context of extratropical cyclones.
Andries Jan de Vries, Franziska Aemisegger, Stephan Pfahl, and Heini Wernli
Atmos. Chem. Phys., 22, 8863–8895, https://doi.org/10.5194/acp-22-8863-2022, https://doi.org/10.5194/acp-22-8863-2022, 2022
Short summary
Short summary
The Earth's water cycle contains the common H2O molecule but also the less abundant, heavier HDO. We use their different physical properties to study tropical ice clouds in model simulations of the West African monsoon. Isotope signals reveal different processes through which ice clouds form and decay in deep-convective and widespread cirrus. Previously observed variations in upper-tropospheric vapour isotopes are explained by microphysical processes in convective updraughts and downdraughts.
Sandrine Bony, Marie Lothon, Julien Delanoë, Pierre Coutris, Jean-Claude Etienne, Franziska Aemisegger, Anna Lea Albright, Thierry André, Hubert Bellec, Alexandre Baron, Jean-François Bourdinot, Pierre-Etienne Brilouet, Aurélien Bourdon, Jean-Christophe Canonici, Christophe Caudoux, Patrick Chazette, Michel Cluzeau, Céline Cornet, Jean-Philippe Desbios, Dominique Duchanoy, Cyrille Flamant, Benjamin Fildier, Christophe Gourbeyre, Laurent Guiraud, Tetyana Jiang, Claude Lainard, Christophe Le Gac, Christian Lendroit, Julien Lernould, Thierry Perrin, Frédéric Pouvesle, Pascal Richard, Nicolas Rochetin, Kevin Salaün, Alfons Schwarzenboeck, Guillaume Seurat, Bjorn Stevens, Julien Totems, Ludovic Touzé-Peiffer, Gilles Vergez, Jessica Vial, Leonie Villiger, and Raphaela Vogel
Earth Syst. Sci. Data, 14, 2021–2064, https://doi.org/10.5194/essd-14-2021-2022, https://doi.org/10.5194/essd-14-2021-2022, 2022
Short summary
Short summary
The French ATR42 research aircraft participated in the EUREC4A international field campaign that took place in 2020 over the tropical Atlantic, east of Barbados. We present the extensive instrumentation of the aircraft, the research flights and the different measurements. We show that the ATR measurements of humidity, wind, aerosols and cloudiness in the lower atmosphere are robust and consistent with each other. They will make it possible to advance understanding of cloud–climate interactions.
Andreas Schneider, Tobias Borsdorff, Joost aan de Brugh, Alba Lorente, Franziska Aemisegger, David Noone, Dean Henze, Rigel Kivi, and Jochen Landgraf
Atmos. Meas. Tech., 15, 2251–2275, https://doi.org/10.5194/amt-15-2251-2022, https://doi.org/10.5194/amt-15-2251-2022, 2022
Short summary
Short summary
This paper presents an extended H₂O/HDO total column dataset from short-wave infrared measurements by TROPOMI including cloudy and clear-sky scenes. Coverage is tremendously increased compared to previous TROPOMI HDO datasets. The new dataset is validated against recent ground-based FTIR measurements from TCCON and against aircraft measurements over the ocean. The use of the new dataset is demonstrated with a case study of a cold air outbreak in January 2020.
Qing Sun, Valentin H. Klaus, Raphaël Wittwer, Yujie Liu, Marcel G. A. van der Heijden, Anna K. Gilgen, and Nina Buchmann
Biogeosciences, 19, 1853–1869, https://doi.org/10.5194/bg-19-1853-2022, https://doi.org/10.5194/bg-19-1853-2022, 2022
Short summary
Short summary
Drought is one of the biggest challenges for future food production globally. During a simulated drought, pea and barley mainly relied on water from shallow soil depths, independent of different cropping systems.
Leonie Villiger, Heini Wernli, Maxi Boettcher, Martin Hagen, and Franziska Aemisegger
Weather Clim. Dynam., 3, 59–88, https://doi.org/10.5194/wcd-3-59-2022, https://doi.org/10.5194/wcd-3-59-2022, 2022
Short summary
Short summary
The coupling between the large-scale atmospheric circulation and the clouds in the trade-wind region is complex and not yet fully understood. In this study, the formation pathway of two anomalous cloud layers over Barbados during the field campaign EUREC4A is described. The two case studies highlight the influence of remote weather systems on the local environmental conditions in Barbados.
Andreas Riedl, Yafei Li, Jon Eugster, Nina Buchmann, and Werner Eugster
Hydrol. Earth Syst. Sci., 26, 91–116, https://doi.org/10.5194/hess-26-91-2022, https://doi.org/10.5194/hess-26-91-2022, 2022
Short summary
Short summary
The aim of this study was to develop a high-accuracy micro-lysimeter system for the quantification of non-rainfall water inputs that overcomes existing drawbacks. The micro-lysimeter system had a high accuracy and allowed us to quantify and distinguish between different types of non-rainfall water inputs, like dew and fog. Non-rainfall water inputs occurred frequently in a Swiss Alpine grassland ecosystem. These water inputs can be an important water source for grasslands during dry periods.
Fabienne Dahinden, Franziska Aemisegger, Heini Wernli, Matthias Schneider, Christopher J. Diekmann, Benjamin Ertl, Peter Knippertz, Martin Werner, and Stephan Pfahl
Atmos. Chem. Phys., 21, 16319–16347, https://doi.org/10.5194/acp-21-16319-2021, https://doi.org/10.5194/acp-21-16319-2021, 2021
Short summary
Short summary
We use high-resolution numerical isotope modelling and Lagrangian backward trajectories to identify moisture transport pathways and governing physical and dynamical processes that affect the free-tropospheric humidity and isotopic variability over the eastern subtropical North Atlantic. Furthermore, we conduct a thorough isotope modelling validation with aircraft and remote-sensing observations of water vapour isotopes.
Bjorn Stevens, Sandrine Bony, David Farrell, Felix Ament, Alan Blyth, Christopher Fairall, Johannes Karstensen, Patricia K. Quinn, Sabrina Speich, Claudia Acquistapace, Franziska Aemisegger, Anna Lea Albright, Hugo Bellenger, Eberhard Bodenschatz, Kathy-Ann Caesar, Rebecca Chewitt-Lucas, Gijs de Boer, Julien Delanoë, Leif Denby, Florian Ewald, Benjamin Fildier, Marvin Forde, Geet George, Silke Gross, Martin Hagen, Andrea Hausold, Karen J. Heywood, Lutz Hirsch, Marek Jacob, Friedhelm Jansen, Stefan Kinne, Daniel Klocke, Tobias Kölling, Heike Konow, Marie Lothon, Wiebke Mohr, Ann Kristin Naumann, Louise Nuijens, Léa Olivier, Robert Pincus, Mira Pöhlker, Gilles Reverdin, Gregory Roberts, Sabrina Schnitt, Hauke Schulz, A. Pier Siebesma, Claudia Christine Stephan, Peter Sullivan, Ludovic Touzé-Peiffer, Jessica Vial, Raphaela Vogel, Paquita Zuidema, Nicola Alexander, Lyndon Alves, Sophian Arixi, Hamish Asmath, Gholamhossein Bagheri, Katharina Baier, Adriana Bailey, Dariusz Baranowski, Alexandre Baron, Sébastien Barrau, Paul A. Barrett, Frédéric Batier, Andreas Behrendt, Arne Bendinger, Florent Beucher, Sebastien Bigorre, Edmund Blades, Peter Blossey, Olivier Bock, Steven Böing, Pierre Bosser, Denis Bourras, Pascale Bouruet-Aubertot, Keith Bower, Pierre Branellec, Hubert Branger, Michal Brennek, Alan Brewer, Pierre-Etienne Brilouet, Björn Brügmann, Stefan A. Buehler, Elmo Burke, Ralph Burton, Radiance Calmer, Jean-Christophe Canonici, Xavier Carton, Gregory Cato Jr., Jude Andre Charles, Patrick Chazette, Yanxu Chen, Michal T. Chilinski, Thomas Choularton, Patrick Chuang, Shamal Clarke, Hugh Coe, Céline Cornet, Pierre Coutris, Fleur Couvreux, Susanne Crewell, Timothy Cronin, Zhiqiang Cui, Yannis Cuypers, Alton Daley, Gillian M. Damerell, Thibaut Dauhut, Hartwig Deneke, Jean-Philippe Desbios, Steffen Dörner, Sebastian Donner, Vincent Douet, Kyla Drushka, Marina Dütsch, André Ehrlich, Kerry Emanuel, Alexandros Emmanouilidis, Jean-Claude Etienne, Sheryl Etienne-Leblanc, Ghislain Faure, Graham Feingold, Luca Ferrero, Andreas Fix, Cyrille Flamant, Piotr Jacek Flatau, Gregory R. Foltz, Linda Forster, Iulian Furtuna, Alan Gadian, Joseph Galewsky, Martin Gallagher, Peter Gallimore, Cassandra Gaston, Chelle Gentemann, Nicolas Geyskens, Andreas Giez, John Gollop, Isabelle Gouirand, Christophe Gourbeyre, Dörte de Graaf, Geiske E. de Groot, Robert Grosz, Johannes Güttler, Manuel Gutleben, Kashawn Hall, George Harris, Kevin C. Helfer, Dean Henze, Calvert Herbert, Bruna Holanda, Antonio Ibanez-Landeta, Janet Intrieri, Suneil Iyer, Fabrice Julien, Heike Kalesse, Jan Kazil, Alexander Kellman, Abiel T. Kidane, Ulrike Kirchner, Marcus Klingebiel, Mareike Körner, Leslie Ann Kremper, Jan Kretzschmar, Ovid Krüger, Wojciech Kumala, Armin Kurz, Pierre L'Hégaret, Matthieu Labaste, Tom Lachlan-Cope, Arlene Laing, Peter Landschützer, Theresa Lang, Diego Lange, Ingo Lange, Clément Laplace, Gauke Lavik, Rémi Laxenaire, Caroline Le Bihan, Mason Leandro, Nathalie Lefevre, Marius Lena, Donald Lenschow, Qiang Li, Gary Lloyd, Sebastian Los, Niccolò Losi, Oscar Lovell, Christopher Luneau, Przemyslaw Makuch, Szymon Malinowski, Gaston Manta, Eleni Marinou, Nicholas Marsden, Sebastien Masson, Nicolas Maury, Bernhard Mayer, Margarette Mayers-Als, Christophe Mazel, Wayne McGeary, James C. McWilliams, Mario Mech, Melina Mehlmann, Agostino Niyonkuru Meroni, Theresa Mieslinger, Andreas Minikin, Peter Minnett, Gregor Möller, Yanmichel Morfa Avalos, Caroline Muller, Ionela Musat, Anna Napoli, Almuth Neuberger, Christophe Noisel, David Noone, Freja Nordsiek, Jakub L. Nowak, Lothar Oswald, Douglas J. Parker, Carolyn Peck, Renaud Person, Miriam Philippi, Albert Plueddemann, Christopher Pöhlker, Veronika Pörtge, Ulrich Pöschl, Lawrence Pologne, Michał Posyniak, Marc Prange, Estefanía Quiñones Meléndez, Jule Radtke, Karim Ramage, Jens Reimann, Lionel Renault, Klaus Reus, Ashford Reyes, Joachim Ribbe, Maximilian Ringel, Markus Ritschel, Cesar B. Rocha, Nicolas Rochetin, Johannes Röttenbacher, Callum Rollo, Haley Royer, Pauline Sadoulet, Leo Saffin, Sanola Sandiford, Irina Sandu, Michael Schäfer, Vera Schemann, Imke Schirmacher, Oliver Schlenczek, Jerome Schmidt, Marcel Schröder, Alfons Schwarzenboeck, Andrea Sealy, Christoph J. Senff, Ilya Serikov, Samkeyat Shohan, Elizabeth Siddle, Alexander Smirnov, Florian Späth, Branden Spooner, M. Katharina Stolla, Wojciech Szkółka, Simon P. de Szoeke, Stéphane Tarot, Eleni Tetoni, Elizabeth Thompson, Jim Thomson, Lorenzo Tomassini, Julien Totems, Alma Anna Ubele, Leonie Villiger, Jan von Arx, Thomas Wagner, Andi Walther, Ben Webber, Manfred Wendisch, Shanice Whitehall, Anton Wiltshire, Allison A. Wing, Martin Wirth, Jonathan Wiskandt, Kevin Wolf, Ludwig Worbes, Ethan Wright, Volker Wulfmeyer, Shanea Young, Chidong Zhang, Dongxiao Zhang, Florian Ziemen, Tobias Zinner, and Martin Zöger
Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, https://doi.org/10.5194/essd-13-4067-2021, 2021
Short summary
Short summary
The EUREC4A field campaign, designed to test hypothesized mechanisms by which clouds respond to warming and benchmark next-generation Earth-system models, is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. It was the first campaign that attempted to characterize the full range of processes and scales influencing trade wind clouds.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Anna B. Harper, Karina E. Williams, Patrick C. McGuire, Maria Carolina Duran Rojas, Debbie Hemming, Anne Verhoef, Chris Huntingford, Lucy Rowland, Toby Marthews, Cleiton Breder Eller, Camilla Mathison, Rodolfo L. B. Nobrega, Nicola Gedney, Pier Luigi Vidale, Fred Otu-Larbi, Divya Pandey, Sebastien Garrigues, Azin Wright, Darren Slevin, Martin G. De Kauwe, Eleanor Blyth, Jonas Ardö, Andrew Black, Damien Bonal, Nina Buchmann, Benoit Burban, Kathrin Fuchs, Agnès de Grandcourt, Ivan Mammarella, Lutz Merbold, Leonardo Montagnani, Yann Nouvellon, Natalia Restrepo-Coupe, and Georg Wohlfahrt
Geosci. Model Dev., 14, 3269–3294, https://doi.org/10.5194/gmd-14-3269-2021, https://doi.org/10.5194/gmd-14-3269-2021, 2021
Short summary
Short summary
We evaluated 10 representations of soil moisture stress in the JULES land surface model against site observations of GPP and latent heat flux. Increasing the soil depth and plant access to deep soil moisture improved many aspects of the simulations, and we recommend these settings in future work using JULES. In addition, using soil matric potential presents the opportunity to include parameters specific to plant functional type to further improve modeled fluxes.
Iris Thurnherr, Katharina Hartmuth, Lukas Jansing, Josué Gehring, Maxi Boettcher, Irina Gorodetskaya, Martin Werner, Heini Wernli, and Franziska Aemisegger
Weather Clim. Dynam., 2, 331–357, https://doi.org/10.5194/wcd-2-331-2021, https://doi.org/10.5194/wcd-2-331-2021, 2021
Short summary
Short summary
Extratropical cyclones are important for the transport of moisture from low to high latitudes. In this study, we investigate how the isotopic composition of water vapour is affected by horizontal temperature advection associated with extratropical cyclones using measurements and modelling. It is shown that air–sea moisture fluxes induced by this horizontal temperature advection lead to the strong variability observed in the isotopic composition of water vapour in the marine boundary layer.
Franziska Aemisegger, Raphaela Vogel, Pascal Graf, Fabienne Dahinden, Leonie Villiger, Friedhelm Jansen, Sandrine Bony, Bjorn Stevens, and Heini Wernli
Weather Clim. Dynam., 2, 281–309, https://doi.org/10.5194/wcd-2-281-2021, https://doi.org/10.5194/wcd-2-281-2021, 2021
Short summary
Short summary
The interaction of clouds in the trade wind region with the atmospheric flow is complex and at the heart of uncertainties associated with climate projections. In this study, a natural tracer of atmospheric circulation is used to establish a link between air originating from dry regions of the midlatitudes and the occurrence of specific cloud patterns. Two pathways involving transport within midlatitude weather systems are identified, by which air is brought into the trades within 5–10 d.
Lutz Merbold, Charlotte Decock, Werner Eugster, Kathrin Fuchs, Benjamin Wolf, Nina Buchmann, and Lukas Hörtnagl
Biogeosciences, 18, 1481–1498, https://doi.org/10.5194/bg-18-1481-2021, https://doi.org/10.5194/bg-18-1481-2021, 2021
Short summary
Short summary
Our study investigated the exchange of the three major greenhouse gases (GHGs) over a temperate grassland prior to and after restoration through tillage in central Switzerland. Our results show that irregular management events, such as tillage, have considerable effects on GHG emissions in the year of tillage while leading to enhanced carbon uptake and similar nitrogen losses via nitrous oxide in the years following tillage to those observed prior to tillage.
Cited articles
Aemisegger, F., Sturm, P., Graf, P., Sodemann, H., Pfahl, S., Knohl, A., and Wernli, H.: Measuring variations of δ18O and δ2H in atmospheric water vapour using two commercial laser-based spectrometers: an instrument characterisation study, Atmos. Meas. Tech., 5, 1491–1511, https://doi.org/10.5194/amt-5-1491-2012, 2012.
Aemisegger, F., Pfahl, S., Sodemann, H., Lehner, I., Seneviratne, S. I., and Wernli, H.: Deuterium excess as a proxy for continental moisture recycling and plant transpiration, Atmos. Chem. Phys., 14, 4029–4054, https://doi.org/10.5194/acp-14-4029-2014, 2014.
Agam, N. and Berliner, P. R.: Dew formation and water vapor adsorption in
semi-arid environments – A review, J. Arid Environ., 65,
572–590, https://doi.org/10.1016/j.jaridenv.2005.09.004, 2006.
Atzema, A. J., Jacobs, A. F. G., and Wartena, L.: Moisture distribution
within a maize crop due to dew, Neth. J. Agr. Sci., 38, 117–129, https://doi.org/10.18174/njas.v38i2.16599, 1990.
Aubinet, M., Vesala, T., and Papale, D.:
Eddy Covariance: A Practical Guide to Measurement and Data Analysis, Springer Science & Business Media, Dordrecht, The Netherlands, 438 pp., https://doi.org/10.1007/978-94-007-2351-1, 2012.
Barnes, C. J. and Turner, J. V.: Isotopic exchange in soil
water, in: Isotope tracers in catchment hydrology, edited by: Kendall, C.
and McDonnell, J. J., Elsevier, Amsterdam, The Netherlands, 137–163,
https://doi.org/10.1016/B978-0-444-81546-0.50012-4, 1998.
Berkelhammer, M., Hu, J., Bailey, A., Noone, D. C., Still, C. J., Barnard,
H., Gochis, D., Hsiao, G. S., Rahn, T., and Turnipseed, A.: The nocturnal
water cycle in an open-canopy forest,
J. Geophys. Res.-Atmos., 118, 10225–10242, https://doi.org/10.1002/jgrd.50701, 2013.
Beysens, D.: Dew water, River Publishers, Denmark, 2018.
Beysens, D., Clus, O., Mileta, M., Milimouk, I., Muselli, M., and Nikolayev,
V. S.: Collecting dew as a water source on small islands: the dew equipment
for water project in Bisevo (Croatia), Energy, 32, 1032–1037,
https://doi.org/10.1016/j.energy.2006.09.021, 2007.
Bigeleisen, J.: Statistical mechanics of isotope effects on the
thermodynamic properties of condensed systems, J. Chem. Phys., 34, 1485–1493, https://doi.org/10.1063/1.1701033, 1961.
Bruijnzeel, L., Eugster, W., and Burkard, R.: Fog as a hydrologic input, in:
Encyclopedia of hydrological sciences, John Wiley & Sons, Ltd, 1–24, https://doi.org/10.1002/0470848944.hsa041, 2006.
Buck, A. L.: New equations for computing vapor pressure and enhancement
factor, J. Appl. Meteorol., 20, 1527–1532,
https://doi.org/10.1175/1520-0450(1981)020<1527:NEFCVP>2.0.CO;2, 1981.
Campbell, G. S. and Norman, J. M.: Water vapor and other gases, in: An
Introduction to Environmental Biophysics, edited by: Campbell, G. S. and
Norman, J. M., Springer New York, New York, USA, 37–51,
https://doi.org/10.1007/978-1-4612-1626-1_3, 1998.
Castillo, J. L. and Rosner, D. E.: Theory of surface deposition from a unary
dilute vapor-containing stream allowing for condensation within the laminar
boundary-layer, Chem. Eng. Sci., 44, 925–937,
https://doi.org/10.1016/0301-9322(89)90088-8, 1989.
Chaney, W. R.: Sources of water, in: Woody plant communities,
edited by: Kozlowski, T. T., Academic Press, 1–47, New York, USA, https://doi.org/10.1016/B978-0-12-424156-5.50007-X, 1981.
Clus, O., Ortega, P., Muselli, M., Milimouk, I., and Beysens, D.: Study of
dew water collection in humid tropical islands, J. Hydrol., 361,
159–171, https://doi.org/10.1016/j.jhydrol.2008.07.038, 2008.
Craig, H. and Gordon, L. I.: Deuterium and Oxygen 18 variations in the ocean
and the marine atmosphere, Consiglio nazionale delle richerche, Laboratorio
de geologia nucleare Pisa, Spoleto, Italy, 9–130, 1965.
Dansgaard, W.: Stable isotopes in precipitation, Tellus, 16, 436–468,
https://doi.org/10.1111/j.2153-3490.1964.tb00181.x, 1964.
Dawson, T. E.: Fog in the California redwood forest: ecosystem inputs and
use by plants, Oecologia, 117, 476–485,
https://doi.org/10.1007/s004420050683, 1998.
Dawson, T. E., Mambelli, S., Plamboeck, A. H., Templer, P. H., and Tu, K.
P.: Stable isotopes in plant ecology, Annu. Rev. Ecol. Syst., 33, 507–559,
https://doi.org/10.1146/annurev.ecolsys.33.020602.095451, 2002.
del Prado, R. and Sancho, L. G.: Dew as a key factor for the distribution
pattern of the lichen species Teloschistes lacunosus in the Tabernas Desert
(Spain), Flora, 202, 417–428, https://doi.org/10.1016/j.flora.2006.07.007,
2007.
Delattre, H., Vallet-Coulomb, C., and Sonzogni, C.: Deuterium excess in the atmospheric water vapour of a Mediterranean coastal wetland: regional vs. local signatures, Atmos. Chem. Phys., 15, 10167–10181, https://doi.org/10.5194/acp-15-10167-2015, 2015.
Denmead, O. T., Raupach, M. R., Dunin, F. X., Cleugh, H. A., and Leuning,
R.: Boundary layer budgets for regional estimates of scalar fluxes,
Global Change Biol., 2, 255–264,
https://doi.org/10.1111/j.1365-2486.1996.tb00077.x, 1996.
Dongmann, G., Nurnberg, H. W., Forstel, H., and Wagener, K.: On the
enrichment of H O in the leaves of transpiring plants,
Radiat. Environ. Bioph., 11, 41–52, https://doi.org/10.1007/BF01323099, 1974.
Drobinski, P., Haeberli, C., Richard, E., Lothon, M., Dabas, A. M., Flamant,
P. H., Furger, M., and Steinacker, R.: Scale interaction processes during
the MAP IOP 12 south fohn event in the Rhine Valley,
Q. J. Roy. Meteor. Soc., 129, 729–753,
https://doi.org/10.1256/qj.02.35, 2003.
Duine, G. J., Hedde, T., Roubin, P., and Durand, P.: A simple method based
on routine observations to nowcast down-valley flows in shallow, narrow
valleys, J. Appl. Meteorol. Clim., 55, 1497–1511,
https://doi.org/10.1175/JAMC-D-15-0274.1, 2016.
Epstein, M., Hauser, G. M., Fauske, H. K., Grolmes, M. A., Henry, R. E., and
Leung, J. C.: Fog formation and deposition within laminar and turbulent
natural-convection boundary-layers along cold vertical plates,
Chem. Eng. Commun., 118, 163–187, https://doi.org/10.1080/00986449208936092, 1992.
Eugster, W. and Merbold, L.: Eddy covariance for quantifying trace gas fluxes from soils, SOIL, 1, 187–205, https://doi.org/10.5194/soil-1-187-2015, 2015.
Eugster, W. and Siegrist, F.: The influence of nocturnal CO2 advection
on CO2 flux measurements, Basic Appl. Ecol., 1, 177–188,
https://doi.org/10.1078/1439-1791-00028, 2000.
Farquhar, G. D. and Lloyd, J.: Carbon and oxygen isotope effects in the
exchange of carbon dioxide between terrestrial plants and the atmosphere,
in: Stable Isotopes and Plant Carbon-water Relations, edited by: Ehleringer,
J. R., Hall, A. E., and Farquhar, G. D., Academic Press, San Diego, USA, 47–70, https://doi.org/10.1016/B978-0-08-091801-3.50011-8, 1993.
Foken, T., Göockede, M., Mauder, M., Mahrt, L., Amiro, B., and Munger,
W.: Post-field data quality control, in: Handbook of micrometeorology: a
guide for surface flux measurement and analysis, edited by: Lee, X.,
Massman, W., and Law, B., Springer, Dordrecht, The Netherlands, 181–208,
https://doi.org/10.1007/1-4020-2265-4_9, 2005.
Franssen, H. J. H., Stockli, R., Lehner, I., Rotenberg, E., and Seneviratne,
S. I.: Energy balance closure of eddy-covariance data: A multisite analysis
for European FLUXNET stations, Agr. Forest Meteorol., 150,
1553–1567, https://doi.org/10.1016/j.agrformet.2010.08.005, 2010.
Fratini, G., Ibrom, A., Arriga, N., Burba, G., and Papale, D.: Relative
humidity effects on water vapour fluxes measured with closed-path
eddy-covariance systems with short sampling lines,
Agr. Forest Meteorol., 165, 53–63, https://doi.org/10.1016/j.agrformet.2012.05.018,
2012.
Fritschen, L. J. and Doraiswamy, P.: Dew: An dddition of hydrologic balance
of Douglas Fir, Water Resour. Res., 9, 891–894,
https://doi.org/10.1029/WR009i004p00891, 1973.
Fuchs, K., Hörtnagl, L., Buchmann, N., Eugster, W., Snow, V., and Merbold, L.: Management matters: testing a mitigation strategy for nitrous oxide emissions using legumes on intensively managed grassland, Biogeosciences, 15, 5519–5543, https://doi.org/10.5194/bg-15-5519-2018, 2018.
Galewsky, J., Steen-Larsen, H. C., Field, R. D., Worden, J., Risi, C., and
Schneider, M.: Stable isotopes in atmospheric water vapor and applications
to the hydrologic cycle, Rev. Geophys., 54, 809–865,
https://doi.org/10.1002/2015RG000512, 2016.
Gallagher, M. W., Nemitz, E., Dorsey, J. R., Fowler, D., Sutton, M. A.,
Flynn, M., and Duyzer, J.: Measurements and parameterizations of small
aerosol deposition velocities to grassland, arable crops, and forest:
Influence of surface roughness length on deposition, J. Geophys. Res.-Atmos., 107, AAC 8-1–AAC 8-10, https://doi.org/10.1029/2001JD000817, 2002.
Garratt, J. R.: The atmospheric boundary layer, Earth-Sci. Rev., 89–134, Cambridge, England., 336 pp., 1992.
Gat, J. R.: Stable isotope hydrology: Deuterium and oxygen-18 in the water
cycle, International Atomic Energy Agency (IAEA), available at:
https://inis.iaea.org/collection/NCLCollectionStore/_Public/13/677/13677657.pdf?r=1 (last access: 4 May 2021), 1981.
Gat, J. R.: Oxygen and hydrogen isotopes in the hydrological cycle,
Annu. Rev. Earth Pl. Sc., 24, 225–262,
https://doi.org/10.1146/annurev.earth.24.1.225, 1996.
Gay, L. W., Vogt, R., Bernhofer, C., and Blanford, J. H.: Flux agreement
above a Scots pine plantation, Theor. Appl. Climatol., 53, 33–48,
https://doi.org/10.1007/Bf00866409, 1996.
Gehre, M., Geilmann, H., Richter, J., Werner, R. A., and Brand, W. A.:
Continuous flow 2H H and 18O O analysis of water
samples with dual inlet precision,
Rapid Commun. Mass Sp., 18, 2650–2660, https://doi.org/10.1002/rcm.1672, 2004.
Glickman, T. S. and Zenk, W.: Glossary of meteorology, American
Meteorological Society (AMS), Boston, USA, 855 pp., 2000.
Goulden, M. L., Miller, S. D., and da Rocha, H. R.: Nocturnal cold air
drainage and pooling in a tropical forest, J. Geophys. Res.-Atmos.,
111, D08S04, https://doi.org/10.1029/2005JD006037, 2006.
He, S. and Richards, K.: The role of dew in the monsoon season assessed via
stable isotopes in an alpine meadow in Northern Tibet, Atmos. Res.,
151, 101–109, https://doi.org/10.1016/j.atmosres.2014.02.014, 2015.
Hiatt, C., Fernandez, D., and Potter, C.: Measurements of fog water
deposition on the California central coast, Atmospheric and Climate Sciences, 2, 525–531, https://doi.org/10.4236/acs.2012.24047, 2012.
Hindman, E. E., Borys, R. D., and Demott, P. J.: Hydrometeorological
significance of rime ice deposits in the colorado rockies,
Water Resour. Bull., 19, 619–624, https://doi.org/10.1111/j.1752-1688.1983.tb02779.x, 1983.
Horita, J. and Wesolowski, D. J.: Liquid-vapor fractionation of oxygen and
hydrogen isotopes of water from the freezing to the critical temperature,
Geochim. Cosmochim. Ac., 58, 3425–3437,
https://doi.org/10.1016/0016-7037(94)90096-5, 1994.
Horst, T. W. and Lenschow, D. H.: Attenuation of scalar fluxes measured with
spatially-displaced sensors, Bound.-Lay. Meteorol., 130, 275–300, https://doi.org/10.1007/s10546-008-9348-0, 2009.
Huang, L. and Wen, X.: Temporal variations of atmospheric water vapor
δD and δ18O above an arid artificial oasis cropland in
the Heihe River Basin, J. Geophys. Res.-Atmos., 119,
11456–11476, https://doi.org/10.1002/2014JD021891, 2014.
Hughes, R. N. and Brimblecombe, P.: Dew and guttation – formation and
environmental significance, Agr. Forest Meteorol., 67,
173–190, https://doi.org/10.1016/0168-1923(94)90002-7, 1994.
IAEA: Reference Sheet for VSMOW2 and SLAP2 International Measurement
Standards, International Atomic Energy Agency (IAEA), Vienna, Austria, 8 pp., 2009.
Jacobs, A. F. G., Heusinkveld, B. G., and Berkowicz, S. M.: A simple model
for potential dewfall in an arid region, Atmos. Res., 64, 285–295,
https://doi.org/10.1016/S0169-8095(02)00099-6, 2002.
Jacobs, A. F. G., Heusinkveld, B. G., Kruit, R. J. W., and Berkowicz, S. M.:
Contribution of dew to the water budget of a grassland area in the
Netherlands, Water Resour. Res., 42, W03415, https://doi.org/10.1029/2005WR004055, 2006.
Jouzel, J., Russell, G. L., Suozzo, R. J., Koster, R. D., White, J. W. C.,
and Broecker, W. S.: Simulations of the HDO and H O atmospheric
cycles using the NASA GISS general circulation model: The seasonal cycle for
present-day conditions, J. Geophys. Res.-Atmos., 92,
14739–14760, https://doi.org/10.1029/JD092iD12p14739, 1987.
Kaseke, K. F., Mills, A. J., Brown, R., Esler, K. J., Henschel, J. R., and
Seely, M. K.: A method for direct assessment of the “Non rainfall”
atmospheric water cycle: input and evaporation from the soil,
Pure Appl. Geophys., 169, 847–857, https://doi.org/10.1007/s00024-011-0328-9, 2012.
Kaseke, K. F., Wang, L. X., and Seely, M. K.: Nonrainfall water origins and
formation mechanisms, Science Advances, 3, e1603131, https://doi.org/10.1126/sciadv.1603131, 2017.
Keeling, C. D.: The concentration and isotopic abundances of atmospheric
carbon dioxide in rural areas, Geochim. Cosmochim. Ac., 13, 322–334,
https://doi.org/10.1016/0016-7037(58)90033-4, 1958.
Kelliher, F. M., Leuning, R., and Schulze, E. D.: Evaporation and canopy
characteristics of coniferous forests and grasslands, Oecologia, 95,
153–163, https://doi.org/10.1007/BF00323485, 1993.
Kidron, G. J. and Temina, M.: The Effect of Dew and Fog on Lithic Lichens
Along an Altitudinal Gradient in the Negev Desert, Geomicrobiol. J.,
30, 281–290, https://doi.org/10.1080/01490451.2012.672542, 2013.
Kidron, G. J., Herrnstadt, I., and Barzilay, E.: The role of dew as a
moisture source for sand microbiotic crusts in the Negev Desert, Israel,
J. Arid Environ., 52, 517–533, https://doi.org/10.1006/jare.2002.1014, 2002.
Lai, C. T. and Ehleringer, J. R.: Deuterium excess reveals diurnal sources
of water vapor in forest air, Oecologia, 165, 213–223,
https://doi.org/10.1007/s00442-010-1721-2, 2011.
Lee, H., Smith, R., and Williams, J.: Water vapour 18O O isotope
ratio in surface air in New England, USA, Tellus B, 58, 293–304,
https://doi.org/10.1111/j.1600-0889.2006.00191.x, 2006.
LI-COR: Eddy covariance processing software, Version 7.0.6 [Software],
LI-COR, Inc, available at: https://www.licor.com/env/products/eddy_covariance/software.html (last access: 4 May 2021), 2017.
Li, Y.: Data from: The role of dew and radiation fog inputs in the local water cycling of a temperate grassland during dry spells in Central Europe, ETH Zurich, https://doi.org/10.3929/ethz-b-000465064, 2020.
Long, I. F.: Dew and guttation, Weather, 10, 128–128,
https://doi.org/10.1002/j.1477-8696.1955.tb00170.x, 1955.
López, A., Molina-Aiz, F. D., Valera, D. L., and Peña, A.:
Determining the emissivity of the leaves of nine horticultural crops by
means of infrared thermography, Sci. Hortic.-Amsterdam, 137, 49–58,
https://doi.org/10.1016/j.scienta.2012.01.022, 2012.
Malek, E., McCurdy, G., and Giles, B.: Dew contribution to the annual water
balances in semi-arid desert valleys, J. Arid Environ., 42,
71–80, https://doi.org/10.1006/jare.1999.0506, 1999.
McHugh, T. A., Morrissey, E. M., Reed, S. C., Hungate, B. A., and Schwartz,
E.: Water from air: an overlooked source of moisture in arid and semiarid
regions, Sci. Rep.-UK, 5, 13767, https://doi.org/10.1038/srep13767, 2015.
Meng, Y. and Wen, X. F.: Characteristics of dew events in an arid artificial
oasis cropland and a sub-humid cropland in China, J. Arid Land, 8,
399–408, https://doi.org/10.1007/s40333-016-0006-y, 2016.
Merlivat, L.: Molecular diffusivities of H O, HD16O, and
H O in gases, J. Chem. Phys., 69, 2864–2871,
https://doi.org/10.1063/1.436884, 1978.
MeteoSwiss Operational Applications within COSMO, available at: http://www.cosmo-model.org/content/tasks/operational/meteoSwiss/default.htm, last access: 4 May 2021.
Moene, A. F. and van Dam, J. C.: Transport in the Atmosphere-Vegetation-Soil
Continuum, Cambridge University Press, Cambridge, UK,
https://doi.org/10.1017/CBO9781139043137, 2014.
Moncrieff, J., Clement, R., Finnigan, J., and Meyers, T.: Averaging,
detrending, and filtering of eddy covariance time series, in: Handbook of
Micrometeorology: A Guide for Surface Flux Measurement and Analysis, edited
by: Lee, X., Massman, W., and Law, B., Springer, Dordrecht, The Netherlands,
7–31, https://doi.org/10.1007/1-4020-2265-4_2, 2005.
Monin, A. S. and Obukhov, A. M.: Osnovnye zakonomernosti turbulentnogo peremesivanija v prizemnom sloe atmosfery (in Russian), Trudy Geofizicheskogo Instituta Akademiya Nauk SSSR, 24, 163–187, 1954.
Monteith, J. L.: Dew, Q. J. Roy. Meteor. Soc., 83,
322–341, https://doi.org/10.1002/qj.49708335706, 1957.
Monteith, J. L. and Unsworth, M. H. (Eds.): Principles of environmental physics,
Principles of environmental physics, edn. 4, Academic Press, Boston, Oxford, UK, 422 pp.,
https://doi.org/10.1016/B978-0-12-386910-4.00018-4, 2013.
Moore, C. J.: A comparative study of radiation balance above forest and
grassland, Q. J. Roy. Meteor. Soc., 102,
889–899, https://doi.org/10.1002/qj.49710243416, 1976.
Nadeau, D. F., Pardyjak, E. R., Higgins, C. W., Huwald, H., and Parlange, M.
B.: Flow during the evening transition over steep Alpine slopes, Q. J. Roy. Meteor. Soc., 139, 607–624, https://doi.org/10.1002/qj.1985, 2013.
Oke, T. R.: Temperature Profile near Ground on Calm Clear Nights, Q. J. Roy. Meteor. Soc., 96, 14–23, https://doi.org/10.1002/qj.49709640703, 1970.
Oke, T. R.: Boundary layer climates, edn. 2, Routledge, London, UK,
https://doi.org/10.4324/9780203407219, 2002.
Pan, Y. X., Wang, X. P., and Zhang, Y. F.: Dew formation characteristics in
a revegetation-stabilized desert ecosystem in Shapotou area, Northern China,
J. Hydrol., 387, 265–272, https://doi.org/10.1016/j.jhydrol.2010.04.016, 2010.
Panofsky, H. A.: Atmospheric turbulence, John Wiley & Sons, New York,
USA, 1984.
Parish, O. O. and Putnam, T. W.: Equations for the determination of humidity
from dewpoint and psychrometric data, NASA, Washington D.C., USA, available at: https://ntrs.nasa.gov/citations/19770009916 (last access: 4 May 2021), 1977.
Parkes, S. D., McCabe, M. F., Griffiths, A. D., Wang, L., Chambers, S., Ershadi, A., Williams, A. G., Strauss, J., and Element, A.: Response of water vapour D-excess to land–atmosphere interactions in a semi-arid environment, Hydrol. Earth Syst. Sci., 21, 533–548, https://doi.org/10.5194/hess-21-533-2017, 2017.
Pasquill, F.: Eddy diffusion of water vapour and heat near the ground,
Proc. R. Soc. Lon. Ser.-A, 198, 116–140, https://doi.org/10.1098/rspa.1949.0090, 1949.
Pfahl, S. and Wernli, H.: Air parcel trajectory analysis of stable isotopes
in water vapor in the eastern Mediterranean, J. Geophys. Res.-Atmos., 113, D20104, https://doi.org/10.1029/2008JD009839, 2008.
Philip, J. R. and De Vries, D. A.: Moisture movement in porous materials
under temperature gradients, Eos-Transactions American Geophysical Union,
38, 222–232, https://doi.org/10.1029/TR038i002p00222, 1957.
Phillips, D. L., Newsome, S. D., and Gregg, J. W.: Combining sources in
stable isotope mixing models: alternative methods, Oecologia, 144, 520–527,
https://doi.org/10.1007/s00442-004-1816-8, 2005.
Prechsl, U. E., Gilgen, A. K., Kahmen, A., and Buchmann, N.: Reliability and
quality of water isotope data collected with a lowbudget rain collector,
Rapid Commun. Mass Sp., 28, 879–885, https://doi.org/10.1002/rcm.6852, 2014.
Prechsl, U. E., Burri, S., Gilgen, A. K., Kahmen, A., and Buchmann, N.: No
shift to a deeper water uptake depth in response to summer drought of two
lowland and sub-alpine C3-grasslands in Switzerland, Oecologia, 177,
97–111, https://doi.org/10.1007/s00442-014-3092-6, 2015.
R Core Team: A language and environment for statistical computing, available at: https://www.R-project.org/ (last access: 4 May 2021), 2020.
Rai, R. K., Singh, V. P., and Upadhyay, A.: Soil analysis, in:
Planning and evaluation of irrigation projects, edited by: Rai, R. K.,
Singh, V. P., and Upadhyay, A., Academic Press, Texas, USA, 505–523,
https://doi.org/10.1016/B978-0-12-811748-4.00017-0, 2017.
Roth, K.: Bodenkartierung und GIS-basierte Kohlenstoffinventur von
Graslandböden: Untersuchungen an den ETH-Forschungsstationen Chamau und
Früebüel (ZG, Schweiz), University of Zurich, Zurich, Switzerland, 2006 (in German).
Saxton, K. E., Rawls, W. J., Romberger, J. S., and Papendick, R. I.:
Estimating generalized soil-water characteristics from texture,
Soil Sci. Soc. Am. J., 50, 1031–1036,
https://doi.org/10.2136/sssaj1986.03615995005000040039x, 1986.
Schreel, J. D. M. and Steppe, K.: Foliar Water Uptake in Trees: Negligible
or Necessary?, Trends Plant Sci., 25, 590–603,
https://doi.org/10.1016/j.tplants.2020.01.003, 2020.
Spiegel, J. K., Aemisegger, F., Scholl, M., Wienhold, F. G., Collett Jr., J. L., Lee, T., van Pinxteren, D., Mertes, S., Tilgner, A., Herrmann, H., Werner, R. A., Buchmann, N., and Eugster, W.: Temporal evolution of stable water isotopologues in cloud droplets in a hill cap cloud in central Europe (HCCT-2010), Atmos. Chem. Phys., 12, 11679–11694, https://doi.org/10.5194/acp-12-11679-2012, 2012.
Stieger, J., Bamberger, I., Buchmann, N., and Eugster, W.: Validation of farm-scale methane emissions using nocturnal boundary layer budgets, Atmos. Chem. Phys., 15, 14055–14069, https://doi.org/10.5194/acp-15-14055-2015, 2015.
Stocking, C. R.: Guttation and bleeding, in: Pflanze und Wasser/Water relations of plants, edited by: Adriani, M. J., Aslyng, H. C., Burström, H., Geiger,
R., Gessner, F., Härtel, O., Huber, B., Hülsbruch, M., Kalle, K.,
Kern, H., Killian, C., Kisser, J. G., Kramer, P. J., Lemée, G., Levitt,
J., Meyer, B. S., Mothes, K., Pisek, A., Ruttner, F., Stålfelt, M. G.,
Stiles, W., Stocker, O., Stocking, C. R., Straka, H., Thornthwaite, W. C.,
Troll, C., Ullrich, H., and Veihmeyer, F. J., Springer Berlin Heidelberg,
Berlin, Heidelberg, Germany, 489–502, https://doi.org/10.1007/978-3-642-94678-3_25,
1956.
Stull, R. B. (Ed.): Stable boundary layer, in: An Introduction to Boundary Layer Meteorology, Springer, Dordrecht, Dordrecht, The Netherlands,
499–543, https://doi.org/10.1007/978-94-009-3027-8_12, 1988.
Sun, H. Z., Clark, T. L., Stull, R. B., and Black, T. A.: Two-dimensional
simulation of airflow and carbon dioxide transport over a forested mountain
– Part I: Interactions between thermally-forced circulations, Agr. Forest Meteorol., 140, 338–351, https://doi.org/10.1016/j.agrformet.2006.03.023, 2006.
Thurnherr, I., Kozachek, A., Graf, P., Weng, Y., Bolshiyanov, D., Landwehr, S., Pfahl, S., Schmale, J., Sodemann, H., Steen-Larsen, H. C., Toffoli, A., Wernli, H., and Aemisegger, F.: Meridional and vertical variations of the water vapour isotopic composition in the marine boundary layer over the Atlantic and Southern Ocean, Atmos. Chem. Phys., 20, 5811–5835, https://doi.org/10.5194/acp-20-5811-2020, 2020.
Tomaszkiewicz, M., Abou Najm, M., Zurayk, R., and El-Fadel, M.: Dew as an
adaptation measure to meet water demand in agriculture and reforestation,
Agr. Forest Meteorol., 232, 411–421,
https://doi.org/10.1016/j.agrformet.2016.09.009, 2017.
Tuller, S. E. and Chilton, R.: The role of dew in the seasonal moisture
balance of a summer-dry climate, Agr. Meteorol., 11, 135–142,
https://doi.org/10.1016/0002-1571(73)90057-5, 1973.
Ucles, O., Villagarcia, L., Canton, Y., and Domingo, F.: Microlysimeter
station for long term non-rainfall water input and evaporation studies,
Agr. Forest Meteorol., 182, 13–20,
https://doi.org/10.1016/j.agrformet.2013.07.017, 2013.
Venables, W. N. and Ripley, B. D.: Modern applied statistics with S, edn. 4, Springer, New York, USA, 498 pp., https://doi.org/10.1007/978-0-387-21706-2, 2002.
Vickers, D. and Mahrt, L.: Quality control and flux sampling problems for
tower and aircraft data, J. Atmos. Ocean. Tech., 14,
512–526, https://doi.org/10.1175/1520-0426(1997)014<0512:QCAFSP>2.0.CO;2, 1997.
Wang, C., Cen, Y., Liu, M., and Bowler, P.: Formation and influencing
factors of dew in sparse elm woods and grassland in a semi-arid area,
Acta Ecologica Sinica, 37, 125–132, https://doi.org/10.1016/j.chnaes.2017.06.004,
2017.
Welp, L. R., Lee, X., Griffis, T. J., Wen, X.-F., Xiao, W., Li, S., Sun, X.,
Hu, Z., Val Martin, M., and Huang, J.: A meta-analysis of water vapor
deuterium-excess in the midlatitude atmospheric surface layer, Global Biogeochem. Cy., 26, GB3021, https://doi.org/10.1029/2011GB004246, 2012.
Wen, X. F., Lee, X., Sun, X. M., Wang, J. L., Hu, Z. M., Li, S. G., and Yu,
G. R.: Dew water isotopic ratios and their relationships to ecosystem water
pools and fluxes in a cropland and a grassland in China, Oecologia, 168,
549–561, https://doi.org/10.1007/s00442-011-2091-0, 2012.
Werner, R. A. and Brand, W. A.: Referencing strategies and techniques in
stable isotope ratio analysis, Rapid Commun. Mass Sp.,
15, 501–519, https://doi.org/10.1002/rcm.258, 2001.
Westerhuis, S., Fuhrer, O., Cermak, J., and Eugster, W.: Identifying the key
challenges for fog and low stratus forecasting in complex terrain, Q. J. Roy. Meteor. Soc., 146, 3347–3367, https://doi.org/10.1002/qj.3849, 2020.
Whiteman, C. D., Hoch, S. W., Lehner, M., and Haiden, T.: Nocturnal cold-air
intrusions into a closed basin: observational evidence and conceptual model,
J. Appl. Meteorol. Clim., 49, 1894–1905,
https://doi.org/10.1175/2010JAMC2470.1, 2010.
Wilczak, J. M., Oncley, S. P., and Stage, S. A.: Sonic anemometer tilt
correction algorithms, Bound.-Lay. Meteorol., 99, 127–150,
https://doi.org/10.1023/A:1018966204465, 2001.
Williams, C. A., Reichstein, M., Buchmann, N., Baldocchi, D., Beer, C.,
Schwalm, C., Wohlfahrt, G., Hasler, N., Bernhofer, C., Foken, T., Papale,
D., Schymanski, S., and Schaefer, K.: Climate and vegetation controls on the
surface water balance: Synthesis of evapotranspiration measured across a
global network of flux towers, Water Resour. Res., 48, W06523, https://doi.org/10.1029/2011WR011586, 2012.
Wilson, K., Goldstein, A., Falge, E., Aubinet, M., Baldocchi, D., Berbigier,
P., Bernhofer, C., Ceulemans, R., Dolman, H., Field, C., Grelle, A., Ibrom,
A., Law, B. E., Kowalski, A., Meyers, T., Moncrieff, J., Monson, R., Oechel,
W., Tenhunen, J., Valentini, R., and Verma, S.: Energy balance closure at
FLUXNET sites, Agr. Forest Meteorol., 113, 223–243,
https://doi.org/10.1016/S0168-1923(02)00109-0, 2002.
Wolf, S., Eugster, W., Ammann, C., Häni, M., Zielis, S., Hiller, R.,
Stieger, J., Imer, D., Merbold, L., and Buchmann, N.: Contrasting response
of grassland versus forest carbon and water fluxes to spring drought in
Switzerland, Environ. Res. Lett., 8, 035007,
https://doi.org/10.1088/1748-9326/8/3/035007, 2013.
Wyngaard, J. C.: Turbulence in the Atmosphere, Cambridge University Press, Cambridge, https://doi.org/10.1017/CBO9780511840524, 2010.
Xu, Y. Y., Yi, Y., Yang, X., and Dou, Y. B.: Using stable hydrogen and
oxygen isotopes to distinguish the sources of plant leaf surface moisture in
an urban environment, Water-Sui, 11, 2287, https://doi.org/10.3390/w11112287,
2019.
Yakir, D. and Sternberg, L. d. S. L.: The use of stable isotopes to study
ecosystem gas exchange, Oecologia, 123, 297–311,
https://doi.org/10.1007/s004420051016, 2000.
Yepez, E. A., Williams, D. G., Scott, R. L., and Lin, G.: Partitioning
overstory and understory evapotranspiration in a semiarid savanna woodland
from the isotopic composition of water vapor, Agr. Forest Meteorol., 119, 53–68, https://doi.org/10.1016/S0168-1923(03)00116-3, 2003.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(11068 KB) - Full-text XML
Short summary
During dry spells, dew and fog potentially play an increasingly important role in temperate grasslands. Research on the combined mechanisms of dew and fog inputs to ecosystems and distillation of water vapor from soil to plant surfaces is rare. Our results using stable water isotopes highlight the importance of dew and fog inputs to temperate grasslands during dry spells and reveal the complexity of the local water cycling in such conditions, including different pathways of dew and fog inputs.
During dry spells, dew and fog potentially play an increasingly important role in temperate...